郭成根,全浙平,施文海,陳奧娜,周愛(ài)國(guó)
不同界面上“Plyometric”訓(xùn)練對(duì)運(yùn)動(dòng)表現(xiàn)與肌肉損傷的研究進(jìn)展及對(duì)運(yùn)動(dòng)訓(xùn)練的啟示
郭成根1,全浙平1,施文海1,陳奧娜2,周愛(ài)國(guó)2
1.太原師范學(xué)院體育系,山西 晉中,030619;2.北京體育大學(xué),北京,100084。
采用文獻(xiàn)資料法、邏輯分析法等探究硬地面與非硬地(水中、沙地)界面上進(jìn)行“plyometric”訓(xùn)練對(duì)運(yùn)動(dòng)表現(xiàn)與肌肉損傷的影響,并提出運(yùn)動(dòng)訓(xùn)練實(shí)踐建議。研究發(fā)現(xiàn):硬地與水中plyometric訓(xùn)練均可以提高運(yùn)動(dòng)表現(xiàn),且干預(yù)效果相似;硬地與沙地進(jìn)行plyometric訓(xùn)練,均可以提高運(yùn)動(dòng)表現(xiàn),不同的測(cè)試指標(biāo)反向縱跳、蹲跳、垂直跳的干預(yù)效果存在異同。水中和沙地相對(duì)于硬地面進(jìn)行plyometric訓(xùn)練可以明顯較少訓(xùn)練后肌肉酸痛程度,降低運(yùn)動(dòng)損傷風(fēng)險(xiǎn)。硬地面適應(yīng)機(jī)制:肌腱復(fù)合體和關(guān)節(jié)的訓(xùn)練適應(yīng)機(jī)制;神經(jīng)-肌肉對(duì)訓(xùn)練的適用機(jī)制等。水中和沙地的適應(yīng)機(jī)制:“離心-向心”轉(zhuǎn)化速度;神經(jīng)沖動(dòng)與適應(yīng)機(jī)制等。對(duì)運(yùn)動(dòng)訓(xùn)練的建議:在水中進(jìn)行plyometric訓(xùn)練時(shí),水面一般在身體的腰部-胸部位置,水溫的選擇一般在27°C左右;水中、硬地plyometric訓(xùn)練的干預(yù)周期介于6-10周之間,每周干預(yù)頻率介于2-3次之間;組合界面plyometric訓(xùn)練的相關(guān)研究文獻(xiàn)較少,需進(jìn)一步研究論證;當(dāng)在硬界面時(shí),中等負(fù)荷量可誘導(dǎo)出最佳的效果;在進(jìn)行Plyometric訓(xùn)練時(shí),強(qiáng)度比量更重要,且小強(qiáng)度優(yōu)于大強(qiáng)度;不同年齡、性別進(jìn)行Plyometric訓(xùn)練時(shí),要選擇適應(yīng)的訓(xùn)練手段,水中和沙地面可以作為傳統(tǒng)訓(xùn)練的替換手段。
Plyometric;超等長(zhǎng);運(yùn)動(dòng)損傷;不同界面;體能訓(xùn)練;運(yùn)動(dòng)表現(xiàn)
Plyometric在國(guó)內(nèi)有多種翻譯版本,如“超等長(zhǎng)訓(xùn)練”、“增強(qiáng)式訓(xùn)練”、“快速伸縮復(fù)合訓(xùn)練”、“震蕩訓(xùn)練”、“彈震式訓(xùn)練”等等[1]。Plyometric由于其拉長(zhǎng)-縮短周期(SSC)更加貼近人體運(yùn)動(dòng)的形式[2],且可顯著提高運(yùn)動(dòng)員力量、爆發(fā)力、跳躍能力等[3],在實(shí)踐中被廣泛關(guān)注運(yùn)用。然而有研究認(rèn)為傳統(tǒng)硬地plyometric(Land plyometric training,LPT)雖然可以顯著提高運(yùn)動(dòng)員運(yùn)動(dòng)表現(xiàn),但由于硬地面或者陸地的沖擊,極易誘發(fā)肌肉酸痛,甚至是運(yùn)動(dòng)損傷,給運(yùn)動(dòng)訓(xùn)練帶來(lái)不良的影響[4,5],這在青少年或者plyometric訓(xùn)練初期的運(yùn)動(dòng)員尤為明顯[5]。因此如何規(guī)避傳統(tǒng)硬地或者陸地Plyometric帶來(lái)的不良影響,同時(shí)又可以提高運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)是亟待解決的關(guān)鍵性問(wèn)題。
近些年,一些研究開(kāi)始轉(zhuǎn)向水中plyometric(Aquatic plyometric training,APT)、沙地plyometric(Sand plyometric training,SPT)等其他界面,探究解決方案,如Donoghue等[6]研究認(rèn)為水中plyometric較陸地上plyometric可以減少地面最大反作用力33%-54%,減少脈沖19%-54%;Impellizzeri FM等[7]和Robinson LE等[8]研究認(rèn)為,沙地或水中plyometric相對(duì)于硬地或者陸地,由于沙子的緩沖和水的浮力作用,減少了關(guān)節(jié)處受力,且能產(chǎn)生更少的乳酸,因而能起到預(yù)防損傷的作用。
然而,軟界面plyometric可能影響正確技術(shù)動(dòng)作的發(fā)揮[6],影響訓(xùn)練效果,且由于plyometric的機(jī)制在于拉長(zhǎng)-縮短周期(SSC),水中和沙地由于緩沖作用,會(huì)減少了肌肉-肌腱復(fù)合體的剛度,水和沙特殊的界面可能會(huì)增大拉長(zhǎng)-縮短周期(SSC)的時(shí)間,進(jìn)而可能對(duì)運(yùn)動(dòng)的效果造成不良影響。當(dāng)前關(guān)于沙地和水中進(jìn)行plyometric對(duì)運(yùn)動(dòng)員的影響研究并不多[1],因此有必要綜述當(dāng)前關(guān)于硬地、沙子、水中等不同界面plyometric訓(xùn)練的效果,為運(yùn)動(dòng)實(shí)踐提供依據(jù)。
水的密度遠(yuǎn)遠(yuǎn)大于空氣,由于水的浮力作用,APT可以緩沖人體下落過(guò)程中的沖擊力,顯著減少關(guān)節(jié)、肌肉、結(jié)締組織等處的壓力,起到預(yù)防損傷的作用。但正是由于水的浮力作用,也會(huì)導(dǎo)致訓(xùn)練中,完成動(dòng)作時(shí)肌肉收縮時(shí)間延長(zhǎng),必然導(dǎo)致離心-向心收縮階段銜接出現(xiàn)障礙,已獲得的彈性能量不能轉(zhuǎn)變成起跳的力量[9],這些是否會(huì)影響運(yùn)動(dòng)的訓(xùn)練效果,值得探究。
Arazi等[10]研究結(jié)果顯示:實(shí)驗(yàn)后水中plyometric訓(xùn)練組在下肢1RM肌力、36.5m和60m疾跑時(shí)間均優(yōu)于硬地plyometric訓(xùn)練組,但統(tǒng)計(jì)學(xué)并無(wú)差異;動(dòng)態(tài)平衡測(cè)試硬地plyometric訓(xùn)練組優(yōu)于水中plyometric訓(xùn)練組,但也無(wú)統(tǒng)計(jì)學(xué)差異。因此認(rèn)為硬地plyometric訓(xùn)練組與水中plyometric訓(xùn)練組均可提高運(yùn)動(dòng)員運(yùn)動(dòng)表現(xiàn),但兩者之間無(wú)明顯差異。該研究的方案設(shè)計(jì)為:將18名籃球運(yùn)動(dòng)員隨機(jī)分為硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,每組各6人。水中plyometric訓(xùn)練組在游泳池中進(jìn)行,70%身體于水面下,游泳池溫度27-28°C,硬地plyometric訓(xùn)練組在體育館內(nèi)3cm厚硬墊子上,分別進(jìn)行腳踝跳(Ankle jump)、軍步跑(Speed marching)、蹲跳(Squat jump)、踏跳(Skipping drill)4個(gè)Plyometric動(dòng)作,每個(gè)動(dòng)作間有60s休息,每組之間有3min休息,訓(xùn)練過(guò)程,受試者全力以赴,整個(gè)過(guò)程約40min,常規(guī)對(duì)照組進(jìn)行正常訓(xùn)練不做任何干預(yù),實(shí)驗(yàn)周期為8周,每周3次。Jurado等[11]研究結(jié)果顯示:硬地plyometric訓(xùn)練組與水中plyometric訓(xùn)練組均可提高健康大學(xué)生的跳躍能力,兩者沒(méi)有表現(xiàn)出差異,但水中plyometric訓(xùn)練組可減少肌肉酸痛程度。該研究的方案設(shè)計(jì)為:將65名健康男性大學(xué)生被隨機(jī)分硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組在長(zhǎng)約25m的游泳池中進(jìn)行,硬地plyometric訓(xùn)練組在常規(guī)陸地上進(jìn)行,每組之間有充分間歇時(shí)間。硬地和水中plyometric訓(xùn)練組,各干預(yù)10周,每周2次,其中,第1周2次×10組×10次跳(jumps)=200次跳(jumps),后續(xù)每周組數(shù)不變,但次數(shù)增加5次,第10周時(shí)為2次×10組×55次跳(jumps)=1100次跳(jumps),10周干預(yù)硬地和水中plyometric訓(xùn)練組分別共進(jìn)行6500次跳(jumps)。常規(guī)對(duì)照組保持原有訓(xùn)練計(jì)劃,不做干預(yù)。FONSECA等[12]研究發(fā)現(xiàn),硬地和水中plyometric訓(xùn)練組垂直跳躍高度無(wú)差別;但水中plyometric訓(xùn)練組腳觸地時(shí)間和延遲性肌肉酸痛少于硬地plyometric訓(xùn)練組。該研究的方案設(shè)計(jì)為將24名男性足球運(yùn)動(dòng)員被隨機(jī)分硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組在水池中進(jìn)行,溫度約28±1°C,硬地plyometric訓(xùn)練組在足球場(chǎng)地上進(jìn)行,兩組在高約50cm的跳箱上練習(xí)。每周兩次,共6周,總共完成944次跳躍。
MALLORY等[13]研究認(rèn)為,水中plyometric訓(xùn)練組可提高動(dòng)態(tài)平衡,肌肉力量和爆發(fā)力,并可以減少地面的反作用力。該研究的方案為將34名大學(xué)生(男21人,女13人)被隨機(jī)分為硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組在水中進(jìn)行,水的高度約腰部-胸部,溫度約為26-28°C,練習(xí)動(dòng)作包括跳深、蹲跳、提踵跳、弓箭步跳、提膝抱腹跳、跳箱、單腿跳、單腿側(cè)滑跳。硬地plyometric訓(xùn)練組為陸地上進(jìn)行練習(xí)。兩組各進(jìn)行9周,組數(shù)隨周數(shù)增加,第9周時(shí)為3組。Stemm等2007[5]研究發(fā)現(xiàn),水中plyometric訓(xùn)練組可減少地面的沖擊力,且訓(xùn)練效果與硬地plyometric訓(xùn)練組相似。該研究方案為將21名男性業(yè)余活大學(xué)生被隨機(jī)分硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組在水中進(jìn)行,水高約處于膝蓋處,硬地plyometric訓(xùn)練組于硬地上進(jìn)行;練習(xí)內(nèi)容包括蹲跳、直腳左右跳、提膝跳,每個(gè)動(dòng)作15次/組×3組,中間有間歇1min;每周2次,共6周;常規(guī)對(duì)照組不進(jìn)行任何訓(xùn)練;。Miller等2002[14]研究發(fā)現(xiàn),硬地、水中plyometric訓(xùn)練組垂直彈跳訓(xùn)練效果相似;水中plyometric訓(xùn)練組可以產(chǎn)生較少的肌肉酸痛,在訓(xùn)練實(shí)踐中可作為替代訓(xùn)練。該研究的方案為將40名業(yè)余活動(dòng)人群(F21人,M19人)分為硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組于水上運(yùn)動(dòng)中心進(jìn)行,水面高度約為腰部位置,硬地plyometric訓(xùn)練組于硬地毯上進(jìn)行。練習(xí)動(dòng)作包括,左右腳踝跳、立定跳、障礙跳、雙腳跳、側(cè)向單腳跳、提膝觸胸跳。每周2次×8周,訓(xùn)練強(qiáng)度逐漸增加。常規(guī)對(duì)照組不進(jìn)行任何訓(xùn)練;Robinson等2004[8]研究發(fā)現(xiàn),硬地plyometric訓(xùn)練組與水中plyometric訓(xùn)練組訓(xùn)練效果相似,但APT可以產(chǎn)生較少的的肌肉酸痛。該研究方案為:將31名女性鍛煉人群被隨機(jī)分硬地、水中plyometric訓(xùn)練組和常規(guī)對(duì)照組,水中plyometric訓(xùn)練組于水池中進(jìn)行,水溫約25-26°C,硬地plyometric訓(xùn)練組于體育館內(nèi)進(jìn)行。訓(xùn)練包括3個(gè)跳躍動(dòng)作,每個(gè)動(dòng)作10-20次重復(fù),3-5組。每周3次×8周。常規(guī)對(duì)照組不進(jìn)行任何訓(xùn)練。
綜上所述,硬地與水中plyometric訓(xùn)練可以提高運(yùn)動(dòng)表現(xiàn),且兩者干預(yù)效果相似。水中比硬地plyometric訓(xùn)練能減小骨骼、肌肉受到的地面沖擊力,進(jìn)而能起到減小損傷的效果。
表1 LPT與APT對(duì)運(yùn)動(dòng)表現(xiàn)及肌肉酸痛影響的研究
Impellizzeri FM等[7]將37名足球運(yùn)動(dòng)員隨機(jī)分為實(shí)驗(yàn)組(SPT)與對(duì)照組(LPT),進(jìn)行為期3次/周×4周的Plyometric訓(xùn)練,具體訓(xùn)練安排見(jiàn)表2。該研究結(jié)果顯示:SPT與LPT受試者在短距離沖刺方面表現(xiàn)出相似效果。但跳躍能力方面且表現(xiàn)出不同的效果,SPT在提高SJ(squat jump)方面優(yōu)于LPT,而LPT對(duì)于CMJ(countermovement jump)的提高比SPT更明顯;此外,SPT訓(xùn)練后肌肉酸痛明顯少于LPT。Campilo等[15]將29個(gè)無(wú)訓(xùn)練經(jīng)驗(yàn)的大學(xué)男性受試者隨機(jī)分為4組,進(jìn)行7周干預(yù),探究不同負(fù)荷量和不同硬度界面的Plyometric訓(xùn)練效果。研究認(rèn)為,單純量或界面均能影響Plyometric訓(xùn)練,當(dāng)為硬界面時(shí),中等負(fù)荷量可誘導(dǎo)出雙倍效果。此外,負(fù)荷強(qiáng)度與神經(jīng)沖動(dòng)相關(guān),小強(qiáng)度Plyometric訓(xùn)練更利于神經(jīng)適應(yīng)。Hamid等[16]研究認(rèn)為硬地上進(jìn)行Plyometric訓(xùn)練,下肢所受到的反作用力是在沙地或水中的3-4倍,這些反作用力會(huì)肌肉骨骼系統(tǒng),進(jìn)而誘導(dǎo)出急性的肌肉酸痛、肌肉損傷,甚至是骨骼肌肉損傷。沙地里訓(xùn)練將會(huì)減少骨骼和肌肉組織的壓力,水中訓(xùn)練比硬地和沙地里所受到的下肢沖擊力更小,是最安全的訓(xùn)練方式。Giatsis等[17]選取15名高水平沙排運(yùn)動(dòng)員探究了不同界面上(SPT與LPT)SJ的生物力學(xué)特征。結(jié)果顯示LPT上SJ的跳躍高度優(yōu)于SPT。運(yùn)動(dòng)學(xué)顯示兩組在完成動(dòng)作時(shí)髖、膝、踝的位置、角度、速度都表現(xiàn)出明顯的差異。Asadi等[18]將14名受試者隨機(jī)分為草地跳深組(LDJ)和沙地跳深組(SDJ)進(jìn)行2次/周×6周的Plyometric訓(xùn)練。研究認(rèn)為L(zhǎng)DJ和SDJ均可以提高受試者垂直縱跳、立定跳遠(yuǎn)、20m測(cè)試、40m測(cè)試、T靈敏測(cè)試和下肢1RM測(cè)試成績(jī),但組間比較沒(méi)有顯著性差異。
表2 Impellizzeri FM等Plyometric訓(xùn)練安排[7]
此外,Alvarez等[19]選取了11-13歲23名男性足球運(yùn)動(dòng)員探究了組合界面(草地、硬泥土地、沙地、木制地板、體育館地面、墊子、塑膠場(chǎng)地)對(duì)比單一界面(草地)的作用效果。8周干預(yù)后,研究認(rèn)為組合界面更適合人體的生理機(jī)制,比如力量和速度的發(fā)展,且與運(yùn)動(dòng)專(zhuān)項(xiàng)更為貼合,因此相比較于單一運(yùn)動(dòng)表面表現(xiàn)出更好的運(yùn)動(dòng)表現(xiàn)效果,受試者在組合界面上比單一界面能承受更大的負(fù)荷量和負(fù)荷強(qiáng)度。
綜上所述,不同界面硬地與沙地進(jìn)行plyometric訓(xùn)練,都可以提高運(yùn)動(dòng)表現(xiàn)。但不同的測(cè)試指標(biāo)CMJ、SJ、VJ結(jié)果顯示硬地與沙地對(duì)運(yùn)動(dòng)表現(xiàn)干預(yù)的效果存在異同。運(yùn)動(dòng)損傷方面表現(xiàn)為運(yùn)動(dòng)后沙地肌肉酸痛程度明顯小于硬地,表明沙地對(duì)人體肌肉-骨骼系統(tǒng)的損傷小于硬地。
上述文獻(xiàn)來(lái)源:PubMed、Web of Science、CNKI等數(shù)據(jù)。檢索的時(shí)間為建庫(kù)至2019年10月。中文檢索詞以“超等長(zhǎng)訓(xùn)練”、“增強(qiáng)式訓(xùn)練”、“快速伸縮復(fù)合訓(xùn)練”、“彈震式訓(xùn)練”等為關(guān)鍵詞進(jìn)行組合式混合檢索;外文檢索詞以“plyometric”、“Land plyometric”、“Aquatic plyometric”等為關(guān)鍵詞進(jìn)行組合式混合檢索,對(duì)文獻(xiàn)上的參考文獻(xiàn)再次進(jìn)行二次檢索,保證研究綜述的嚴(yán)謹(jǐn)性。文獻(xiàn)納入標(biāo)準(zhǔn):(1)隨機(jī)對(duì)照實(shí)驗(yàn)。受試者被隨機(jī)分為實(shí)驗(yàn)組和對(duì)照實(shí)驗(yàn);(2)文獻(xiàn)中運(yùn)動(dòng)表現(xiàn)指標(biāo)應(yīng)至少包括力量、爆發(fā)力或者跳躍能力(VJ、SJ、CMJ)其中一項(xiàng);(3)文獻(xiàn)研究需為實(shí)驗(yàn)驗(yàn)證;(4)方法學(xué)質(zhì)量評(píng)價(jià)后Jadad得分需為高質(zhì)量(≥3分)。文獻(xiàn)排除標(biāo)準(zhǔn):(1)非英語(yǔ)或漢語(yǔ)文獻(xiàn);(2)下肢有損傷者。
早期關(guān)于硬地面上進(jìn)行plyometric訓(xùn)練提高運(yùn)動(dòng)表現(xiàn)的機(jī)制,已有大量研究[20,21,22,23]。梳理早期研究發(fā)現(xiàn),其機(jī)制主要包括以下方面:(1)牽張反射。當(dāng)完成某一動(dòng)作時(shí),主動(dòng)肌受到牽拉時(shí),就會(huì)反射性地收縮,提高肌肉收縮速度和力量;(2)肌肉的儲(chǔ)存的彈性勢(shì)能轉(zhuǎn)化為機(jī)械能。plyometric訓(xùn)練完成動(dòng)作的過(guò)程表現(xiàn)為“拉長(zhǎng)-縮短-周期”(SSC),即“離心-向心-復(fù)合式收縮”,當(dāng)處于被“拉長(zhǎng)或者離心”階段時(shí),肌肉的儲(chǔ)存的彈性勢(shì)能被儲(chǔ)存;(3)離心和向心的銜接。離心階段儲(chǔ)存的肌肉彈性勢(shì)能,在轉(zhuǎn)化為向心階段時(shí)被釋放為機(jī)械能,提高運(yùn)動(dòng)表現(xiàn)。
近30年以來(lái),關(guān)于plyometric訓(xùn)練提高運(yùn)動(dòng)表現(xiàn)及機(jī)制的探索從未停止,且一直是運(yùn)動(dòng)訓(xùn)練中的熱點(diǎn)問(wèn)題。相關(guān)機(jī)制研究更加深入,梳理發(fā)現(xiàn)其機(jī)制主要表現(xiàn)為:(1)肌腱復(fù)合體和關(guān)節(jié)的訓(xùn)練適應(yīng)機(jī)制。在完成拉長(zhǎng)-縮短周期的動(dòng)作中(SSC),肌肉的彈性勢(shì)能、肌腱和韌帶扮演了極其重要的角色[24,25,26]。Wu等[27]研究中發(fā)現(xiàn)8周的plyometric訓(xùn)練受試者跟腱的彈性勢(shì)能對(duì)訓(xùn)練產(chǎn)生適用;Burgess等[28]研究發(fā)現(xiàn)6周plyometric訓(xùn)練受試者肌腱的剛度增加29%。(2)神經(jīng)-肌肉對(duì)訓(xùn)練的適用機(jī)制。①肌纖維類(lèi)型的適應(yīng)性變化,動(dòng)物研究顯示plyometric訓(xùn)練可誘導(dǎo)大鼠比目魚(yú)肌II型肌纖維的適應(yīng)性變化[29,30]。在人類(lèi)的研究中也有II型肌纖維的適應(yīng)性變化報(bào)道,比如,Perez-Gomez等研究發(fā)現(xiàn)受試者股外側(cè)肌中II型肌纖維發(fā)生適應(yīng)性變化[31]。②是神經(jīng)適應(yīng),神經(jīng)控制一定程度上能反映在拉長(zhǎng)-縮短周期(SSC)階段力的發(fā)展?jié)摿?。關(guān)于神經(jīng)適應(yīng)的探索,大部分研究都建立于表面肌電(sEMG)的基礎(chǔ)上。比如,Chimera等[32]研究發(fā)現(xiàn),plyometric訓(xùn)練可誘導(dǎo)內(nèi)收肌的預(yù)激活以及內(nèi)收肌群和外展肌群共激活作用增加。
本研究發(fā)現(xiàn)水中plyometric訓(xùn)練相對(duì)于硬地plyometric訓(xùn)練可以減少肌肉酸痛以及訓(xùn)練中潛在的損傷風(fēng)險(xiǎn)??赡苁且?yàn)椋旱孛鏇_擊力和力的生成速率(RFD)這兩個(gè)參數(shù)可以間接反映骨骼肌肉系統(tǒng)所承受的壓力水平[33]。在水中訓(xùn)練時(shí),力的生成速率(RFD)要比硬地慢80%[34],因此,水中訓(xùn)練時(shí)關(guān)節(jié)所受到的壓力要比硬地低,起到預(yù)防運(yùn)動(dòng)損傷的效果。
Fabricius[35]研究認(rèn)為硬地上進(jìn)行plyometric訓(xùn)練時(shí),腳與地面的觸地時(shí)間要長(zhǎng)于水中plyometric訓(xùn)練;Colado等[36]研究認(rèn)為在水中訓(xùn)練時(shí),可以減少體重、牽張發(fā)射和離心階段的沖擊力,減少了腳與地面的觸地時(shí)間,使向心收縮更容易發(fā)生,有利于爆發(fā)力的發(fā)展;因此,在水中進(jìn)行plyometric訓(xùn)練時(shí),由于水的浮力作用,一定程度上可以促進(jìn)離心階段向向心階段轉(zhuǎn)化的時(shí)間縮短。而“離心-向心”轉(zhuǎn)化速度影響plyometric訓(xùn)練訓(xùn)練效果,時(shí)間越短,速度越快,越有利于爆發(fā)力的提高。在硬地上訓(xùn)練時(shí),沒(méi)有水的浮力作用,所受到的地面沖擊力大,“離心-向心”轉(zhuǎn)化期相對(duì)于水中長(zhǎng),更有利于力量的增加[14]。這兩種訓(xùn)練方法在測(cè)試中轉(zhuǎn)化為跳躍的高度、速度,即運(yùn)動(dòng)表現(xiàn)均有提高,但并沒(méi)有表現(xiàn)出顯著差異。
沙地上進(jìn)行plyometric訓(xùn)練時(shí),主要表現(xiàn)為由于沙子的緩沖作用,使得地面的反作用力減少。但研究結(jié)果顯示其可以提高運(yùn)動(dòng)表現(xiàn)。與硬地面相比,不同的測(cè)試指標(biāo)CMJ、SJ、VJ對(duì)運(yùn)動(dòng)表現(xiàn)干預(yù)的效果存在異同。其機(jī)制主要是:(1)雖然緩沖時(shí)間延長(zhǎng),但沙地不穩(wěn)定界面的刺激,使得神經(jīng)-肌肉控制作用更加顯著,可以動(dòng)員更多的運(yùn)動(dòng)單位參與。(2)增加了肌群之間的協(xié)調(diào)性與提高了主動(dòng)肌和拮抗肌之間的共激活作用。
水深和溫度是水中plyometric訓(xùn)練時(shí)兩個(gè)重要因素。Arazi等[10]研究認(rèn)為應(yīng)該身體70%于水面下,約胸部位置,溫度27-28°C的游泳池中進(jìn)行水中plyometric訓(xùn)練;Jurado等[11]研究中認(rèn)為應(yīng)該在水深2.2m溫度27°C的游泳池中進(jìn)行,但未交代身體水面與身體的位置。MALLORY等[13]、Miller等[14]研究認(rèn)為在水中訓(xùn)練時(shí),水面的高度應(yīng)該到達(dá)腰部-胸部的位置,水的溫度應(yīng)該在26-28°C之間;Stemm等[5]認(rèn)為水中訓(xùn)練時(shí)水面應(yīng)該到膝蓋處,但未交代水溫;Robinson等2004[8]認(rèn)為水中訓(xùn)練時(shí)水溫為25-26°C。
綜上可知,在水中進(jìn)行plyometric訓(xùn)練時(shí),水面一般在身體的腰部-胸部位置,水溫的選擇一般在27°C左右。
Arazi等[10]研究中訓(xùn)練內(nèi)容包括四個(gè)動(dòng)作,每個(gè)動(dòng)作間有60s休息,每組之間有3min休息,整個(gè)訓(xùn)練過(guò)程約持續(xù)40min,實(shí)驗(yàn)周期總共干預(yù)8周,每周3次。Jurado等[11]研究中硬地和水中plyometric訓(xùn)練組,各干預(yù)10周,每周2次,10周干預(yù)兩組分別共進(jìn)行6500次跳。FONSECA等[12]研究中,硬地和水中plyometric訓(xùn)練組,每周兩次,共6周,總共完成944次跳躍。MALLORY等[13]研究中,水中和硬地訓(xùn)練組各干預(yù)9周,組數(shù)隨周數(shù)增加而增加。Stemm等2007[5]研究中每周干預(yù)2次,共6周。Miller等2002[14]研究中每周干預(yù)2次,共干預(yù)8周時(shí)間,訓(xùn)練強(qiáng)度逐漸增加。Robinson等2004[8]研究中每周干預(yù)3次,共干預(yù)8周。Impellizzeri FM等[7]研究中沙地組和對(duì)照組的每周干預(yù)3次,總共干預(yù)4周。Campilo等[15]將29個(gè)無(wú)訓(xùn)練經(jīng)驗(yàn)的大學(xué)男性受試者隨機(jī)分為4組,每周各干預(yù)7周。Asadi等[18]將14名受試者隨機(jī)分為草地跳深組(LDJ)和沙地跳深組(SDJ)兩組各進(jìn)行了每周2次,共6周的Plyometric訓(xùn)練。Alvarez等[19]選取了11-13歲23名男性足球運(yùn)動(dòng)員探究了組合界面(草地、硬泥土地、沙地、木制地板、體育館地面、墊子、塑膠場(chǎng)地)對(duì)比單一界面(草地)的作用效果,在實(shí)驗(yàn)中共進(jìn)行了8周干預(yù)。
綜上可知,水中、硬地plyometric訓(xùn)練的干預(yù)周期介于6-10周之間,每周干預(yù)頻率介于2-3次之間。組合界面plyometric訓(xùn)練的相關(guān)研究文獻(xiàn)較少,干預(yù)周期和干預(yù)頻率需進(jìn)一步研究論證。
負(fù)荷量、強(qiáng)度、不同的訓(xùn)練界面均可以影響到plyometric的訓(xùn)練效果,且三者之間存在著交互關(guān)系。前期研究已經(jīng)表明Plyometric訓(xùn)練,比如跳深,可以提高運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)[37,38]。Campilo等[15]研究認(rèn)為進(jìn)行Plyometric訓(xùn)練時(shí),高負(fù)荷量、中等負(fù)荷量、低負(fù)荷量誘導(dǎo)運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn)存在差異,同時(shí)相同負(fù)荷量作用于不同界面時(shí),誘導(dǎo)效果也不同。當(dāng)在硬界面時(shí),中等負(fù)荷量可誘導(dǎo)出最佳的效果。
負(fù)荷強(qiáng)度反映著刺激的深度,與神經(jīng)沖動(dòng)相關(guān)。在進(jìn)行Plyometric訓(xùn)練時(shí),首先要保證訓(xùn)練的質(zhì)量,如跳的高度、速度等等,這些均與訓(xùn)練強(qiáng)度密切相關(guān),因此在進(jìn)行訓(xùn)練時(shí),負(fù)荷強(qiáng)度比負(fù)荷量更應(yīng)該值得考慮。井蘭香等[39]研究不同負(fù)重超等長(zhǎng)訓(xùn)練動(dòng)作下肢各關(guān)節(jié)角沖量及做功時(shí)發(fā)現(xiàn),無(wú)強(qiáng)度時(shí)膝關(guān)節(jié)做功最大。郭成根等[40]研究中發(fā)現(xiàn),上肢小強(qiáng)度超等長(zhǎng)訓(xùn)練能發(fā)揮出最大的速度和功率輸出,且更利于神經(jīng)適應(yīng)。在進(jìn)行Plyometric訓(xùn)練時(shí),小強(qiáng)度優(yōu)于大強(qiáng)度,且小強(qiáng)度有利于運(yùn)動(dòng)損傷的預(yù)防。
綜上可知,當(dāng)在硬界面時(shí),中等負(fù)荷量可誘導(dǎo)出最佳的效果。在進(jìn)行Plyometric訓(xùn)練時(shí),強(qiáng)度比量更重要,且小強(qiáng)度優(yōu)于大強(qiáng)度。
訓(xùn)練的手段是指在運(yùn)動(dòng)訓(xùn)練實(shí)踐中,完成某一訓(xùn)練目的所采用的具體的身體練習(xí)。Plyometric的訓(xùn)練手段按照身體部位來(lái)分可以分為上肢、下肢、核心區(qū)域,本研究中主要針對(duì)下肢。生活中,很多下肢的練習(xí)都屬于Plyometric的練習(xí)手段,比如跳繩、蛙跳、跳遠(yuǎn)等等,但這些練習(xí)的強(qiáng)度不同對(duì)運(yùn)動(dòng)員或者健身人群的干預(yù)效果也存在差異。Chu等[41,42]對(duì)Plyometric訓(xùn)練手段中的跳躍動(dòng)作強(qiáng)度進(jìn)行了研究,認(rèn)為強(qiáng)度由小到大為:原地多次跳躍,立定跳躍,多級(jí)跳躍,跳箱,跳深。
在進(jìn)行Plyometric的練習(xí)實(shí)踐中,對(duì)于青少年運(yùn)動(dòng)員應(yīng)該選擇負(fù)荷強(qiáng)度低的練習(xí)手段,適當(dāng)增加一些負(fù)荷量的練習(xí),比如原地的連續(xù)縱跳、跳繩等等,以避免訓(xùn)練中地面反作用力過(guò)大,影響青少年的骨骼-肌肉系統(tǒng)的發(fā)育。對(duì)于處于黃金階段的運(yùn)動(dòng)員來(lái)說(shuō),Plyometric的練習(xí)應(yīng)選擇強(qiáng)度較高的練習(xí)手段,減少負(fù)荷量,保證神經(jīng)系統(tǒng)的興奮性,如跳箱、跳深等。對(duì)于處于術(shù)后或者康復(fù)期的運(yùn)動(dòng)員來(lái)說(shuō),在水中或者沙地進(jìn)行Plyometric練習(xí)是一個(gè)好的選擇,水的浮力或者沙子的緩沖作用,可以有效降低地面的反作用力,又可以保證訓(xùn)練的質(zhì)量。
運(yùn)動(dòng)損傷的預(yù)防是現(xiàn)代體能訓(xùn)練的理念重要的一部分,貫穿于訓(xùn)練的整個(gè)方案之中。運(yùn)動(dòng)損傷不可避免,但如何在最大限度減少損傷的同時(shí),提高運(yùn)動(dòng)表現(xiàn),是現(xiàn)代訓(xùn)練所要追求的。研究綜述顯示水中和沙地面進(jìn)行Plyometric可以有效提高運(yùn)動(dòng)員的運(yùn)動(dòng)表現(xiàn),且可以減少訓(xùn)練后肌肉的酸痛程度,達(dá)到減少運(yùn)動(dòng)損傷的目的。因此在進(jìn)行訓(xùn)練時(shí),根據(jù)運(yùn)動(dòng)員不同的水平、年齡等,選擇適合的訓(xùn)練手段,比如對(duì)于術(shù)后恢復(fù)的運(yùn)動(dòng)員來(lái)說(shuō),可以選擇水界面進(jìn)行訓(xùn)練。
硬地與水中plyometric訓(xùn)練均可以提高運(yùn)動(dòng)表現(xiàn),且干預(yù)效果相似;硬地與沙地進(jìn)行plyometric訓(xùn)練,均可以提高運(yùn)動(dòng)表現(xiàn),不同的測(cè)試指標(biāo)反向縱跳、蹲跳、垂直跳的干預(yù)效果存在異同。水中和沙地相對(duì)于硬地面進(jìn)行plyometric訓(xùn)練可以明顯較少訓(xùn)練后肌肉酸痛程度,降低運(yùn)動(dòng)損傷風(fēng)險(xiǎn)。硬地面適應(yīng)機(jī)制:肌腱復(fù)合體和關(guān)節(jié)的訓(xùn)練適應(yīng)機(jī)制;神經(jīng)-肌肉對(duì)訓(xùn)練的適用機(jī)制等。水中和沙地的適應(yīng)機(jī)制:“離心-向心”轉(zhuǎn)化速度;神經(jīng)沖動(dòng)與適應(yīng)機(jī)制等。
在水中進(jìn)行plyometric訓(xùn)練時(shí),水面一般在身體的腰部-胸部位置,水溫的選擇一般在27°C左右;水中、硬地plyometric訓(xùn)練的干預(yù)周期介于6-10周之間,每周干預(yù)頻率介于2-3次之間,組合界面plyometric訓(xùn)練的相關(guān)研究文獻(xiàn)較少,干預(yù)周期、頻率需進(jìn)一步研究論證;當(dāng)在硬界面時(shí),中等負(fù)荷量可誘導(dǎo)出最佳的效果。在進(jìn)行Plyometric訓(xùn)練時(shí),強(qiáng)度比量更重要,且小強(qiáng)度優(yōu)于大強(qiáng)度;不同年齡、性別進(jìn)行Plyometric訓(xùn)練時(shí),要選擇適應(yīng)的訓(xùn)練手段,水中和沙地面可以作為傳統(tǒng)訓(xùn)練的替換手段。
[1] 張可盈,張 冰,劉書(shū)娟,李志利,張劍鋒,郭明航.航天在軌快速伸縮復(fù)合訓(xùn)練研究進(jìn)展[J].軍事醫(yī)學(xué),2017,41(06):534~539.
[2] Nicol C, Avela J, Komi PV. The stretch-shortening cycle: Amodel to study naturally occurring neuromuscular fatigue[J]. Sports Med,2006, 36(11): 977~999.
[3] Fatouros I G , Jamurtas A Z , Leontsini D , et al. Evaluation of Plyometric Exercise Training, Weight Training, and Their Combination on Vertical Jumping Performance and Leg Strength[J]. The Journal of Strength & Conditioning Research, 2000, 14.
[4] Miyama M, Nosaka K. Influence of Surface on Muscle Damage and Soreness Induced by Consecutive Drop Jumps[J]. Journal of Strength and Conditioning Research, 2004, 18(02): 206~211.
[5] Stemm, John D.1; Jacobson, Bert H.2 bert. jacobson@okstate.edu. Comparison of land- and aquatic-based plyometric training on vertical jump performance[J].The Journal of Strength and Conditioning Research. 2007, Vol.21(02): 568~571.
[6] Orna A. Donoghue , PhD * ;Hirofumi Shimojo , MSc and; Hideki Takagi, PhD .Impact Forces of Plyometric Exercises Performed on Land and in Water[J].Sports Health.2011,Vol.3(03): 303~307.
[7] Impellizzeri F M, Rampinini E , Castagna C, et al. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players[J]. British Journal of Sports Medicine, 2007, 42(01): 42~46.
[8] Robinson L E , Devor S T , Merrick M A , et al. The effects of land vs. aquatic plyometrics on power, torque, velocity, and muscle soreness in women[j]. Journal of Strength and Conditioning Research, 2004, 18(01): 84~91.
[9] 張曉暉.訓(xùn)練新方法——水中超等長(zhǎng)訓(xùn)練及在運(yùn)動(dòng)訓(xùn)練中的應(yīng)用[J].中國(guó)體育科技,2014,50(06):19~23.
[10] Arazi, H., & Asadi, A. (2011). The Effect of Aquatic and Land Plyometric Training on Strength, Sprint, and Balance in Young Basketball Players. Journal of Human Sport and Exercise, 6(01): 101~111. doi:10.4100/jhse.2011.61.12.
[11] Jurado Lavanant, A.;Fernandez-Garcia, J. C.;Pareja-Blanco, F.; Alvero-Cruz, J. R.. Effects of Land vs. Aquatic Plyometric Training on Vertical Jump[J]. Revista Internacional De Medicina y Ciencias De La Actividad fisica y del Deporte. 2017, vol.17(no.65): 73~84.
[12] Fonseca Rt, Nunes Rdam, Castro Jbpd, et al. The Effect of Aquatic and Land Plyometric Training on the Vertical Jump and Delayed Onset Muscle Soreness in Brazilian Soccer Players. HumanMovement. 2017, 18(05): 63~70.
[13] Mallory S. Kobak; Michael J. Rebold; Renee DeSalvo; Ronald Otterstetter. A Comparison of Aquatic- vs. Land-Based Plyometrics on Various Performance Variables[J]. International Journal of Exercise Science.2015, 8(02)
[14] Michael G. Miller;*; David C. Berry;*;Susan Bullard;*; Roger Gilders;*. Comparisons of Land-Based and Aquatic-Based Plyometric Programs During an 8-Week Training Period.[J]. Journal of Sport Rehabilitation.2002, 11(04): 268~283.
[15] Ramírez-Campillo, Rodrigo, Andrade D C , Izquierdo M . Effects of Plyometric Training Volume and Training Surface on Explosive Strength[J]. Journal of Strength and Conditioning Research, 2013, 27(10): 2714~2722.
[16] Hamid A , Roger E , Abbas A , et al. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage[J]. Sports, 2016, 4(01): 15~21.
[17] Giatsis G , Kollias I , Panoutsakopoulos V , et al. Biomechanical differences in elite beach-volleyball players in vertical squat jump on rigid and sand surface[J]. Sports Biomechanics, 2004, 3(01): 145~158.
[18] Arazi H , Mohammadi M , Asadi A . Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface[J]. Interventional Medicine and Applied Science, 2014, 6(03): 125~130.
[19] Ramirez-Campillo R , Cristian álvarez, Felipe García-Pinillos, et al. Effects of Combined Surfaces vs. Single-Surface Plyometric Training on Soccer Players? Physical Fitness[J]. The Journal of Strength and Conditioning Research, 2019.1.
[20] Bobbert M F, Huijing P A , Jan V I S G . Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping[J]. Medicine & Science in Sports & Exercise, 1987, 19(04): 339~346.
[21] H. Kyr inen;P. V. Komi. Differences in mechanical efficiency between power- and endurance-trained athletes while jumping[J]. European Journal of Applied Physiology and Occupational Physiology. 1995, Vol. 70(01): 36~44.
[22] KOMI, Paavo V. Physiological and Biomechanical Correlates of Muscle Function[J]. Exercise and Sport Sciences Reviews, 1984, 12(01): 181~122.
[23] Paavo V. Komi;Albert Gollhofer.Stretch Reflexes Can Have an Important Role in Force Enhancement During SSC Exercise[J]. JAB.1997,Vol.13(No.4): 451~459.
[24] Alexander R M . Storage of elastic strain energy in muscle and other tissues[J]. Nature, 1977, 12(02): 265~277.
[25] McNeill Alexander,R.1. alexander. Tendon elasticity and muscle function[J].Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology.2002, Vol.133(NO.4): 1001~1011.
[26] Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretchshortening cycle on force and speed. Exerc Sport Sci Rev 1984; 12: 81~121.
[27] Wu YK, Lien YH, Lin KH, et al. Relationships between three potentiation effects of plyometric training and performance.Scand J Med Sci Sports 2009 Apr 15; 20 (1): E80~E86.
[28] Burgess KE, Connick MJ, Graham-Smith P, et al. Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res 2007 Aug; 21 (03): 986~997.
[29] Almeida-Silveira MI, Perot C, Pousson M, et al. Effects of stretch-shortening cycle training on mechanical properties and fibre type transition in the rat soleus muscle. Pflugers Arch 1994 Jun; 427 (3-4): 289~294.
[30] Maria-Izabel Almeida-Silveira (1);Chantal Pérot (1);Francis Goubel (1).Neuromuscular adaptations in rats trained by muscle stretch-shortening.[J].European Journal of Applied Physiology and Occupational Physiology.1996,Vol.72(No.3): 261~266.
[31] Perez-Gomez, Jorge1,2;Olmedillas, Hugo1;Delgado-Guerra, Safira1;Royo, Ignacio Ara1,3;Vicente-Rodriguez, German1,3;Ortiz, Rafael Arteaga4;Chavarren, Javier1;Calbet, Jose A.L.1.Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football[J].Applied Physiology, Nutrition and Metabolism. 2008, Vol. 33(No.3): 501~510.
[32] Nicole J.Chimera; Kathleen A.Swanik;C.Buz Swanik and Stephen J.Straub.Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes[J].Journal of Athletic Training. 2004, 39(01): 24~31.
[33] Irmischer, Bobbie S.1;Harris, Chad1;Pfeiffer, Ronald P.1; DeBeliso, Mark A.1;Adams, Kent J.2;Shea, Kevin G.1,3.EFFECTS OF A KNEE LIGAMENT INJURY PREVENTION EXERCISE PROGRAM ON IMPACT FORCES IN WOMEN.[J].The Journal of Strength and Conditioning Research.2004, 18(04): 703~707.
[34] Triplett,N. Travis, Colado, Juan C.3;Benavent, Juan3;Alakhdar, Yasser4; Madera, Joaquin3;Gonzalez, Luis M.3;Tella, Victor3. Concentric and impact forces of single-leg jumps in an aquatic environment versus on land.[J].Medecine and Science in Sports and Exercise.2009, 41(09): 1790~1796.
[35] Fabricius DL. Comparison of aquatic and land based plyometric training on power, speed and agility in ado-lescent rugby union players. thesis, Stellenbosch University; 2011.
[36] Colado JC, Garcia-Masso X, González LM, Triplett NT, Mayo C, Merce J. Two-leg squat jumps in water:an effective alternative to dry land jumps. [J].Sports Med. 2010, 31(02): 118~122.
[37] Holcomb, WR, Lander, JE, Rutland, RM, and Wilson, GD. Theeffectiveness of a modified plyometric program on power and thevertical jump. [J]. Strength Cond Res. 1996, 10(02): 89~92.
[38] Thomas, K, French, D, and Hayes, PR. The effect of two plyometrictraining techniques on muscular power and agility in youth soccerplayers.[ J].Strength Cond Res , 2009, 23(05): 332~335.
[39] 井蘭香,劉宇.不同負(fù)重超等長(zhǎng)訓(xùn)練動(dòng)作下肢各關(guān)節(jié)角沖量及做功分析[J].山東體育學(xué)院學(xué)報(bào),2013(02):59~63.
[40] 郭成根,周愛(ài)國(guó).不同負(fù)荷快速離心——向心臥推練習(xí)動(dòng)力學(xué)參數(shù)及sEMG研究[J].河北體育學(xué)院學(xué)報(bào),2019,33(05):90~96.
[41] Donald A. Chu, R.P.T.; Lisa Plummer, intern.The language of plyometrics.[J].Strength and Conditioning Journal.1984, 6(05): 30~31.
[42] Donald A. Chu.Jumping into Plyometrics: 100 Exercises For Power & Strength[M]. Human Kinetics Publishers.
Research Progress of “Plyometric” Training on Sports Performance and Muscle Injury on Different Interfaces and its Enlightenment to Sports Training
GUO Chenggen1, QUAN Zheping1, SHI Wenhai1, et al
1.Department of Physical Education, Taiyuan Normal University, Jinzhong Shanxi, 030619, China;2.Beijing Sport University, Beijing, 100084, China.
The literature method and logic analysis method were used to explore the effects of “plyometric” training on the performance of sports and muscle injury at the interface between hard ground and non-hard ground (water and sand), and put forward practical suggestions for exercise training. The study found that both plyometric training in hard ground and water can improve exercise performance, and the intervention effect is similar; plyometric training in hard ground and sandy land can improve exercise performance, and different test indicators reverse vertical jump, jump, vertical jump there are similarities and differences in the effects of interventions. Plyometric training in water and sand relative to hard ground can significantly reduce muscle soreness after training and reduce the risk of sports injury. Hard ground adaptation mechanism: training adaptation mechanism of tendon complex and joint; application mechanism of nerve-muscle training. Adaptation mechanisms in water and sand: “centrifugation – centripetal” transformation speed; nerve impulses and adaptation mechanisms. Suggestions for sports training: When performing plyometric training in water, the water surface is generally at the waist-chest position of the body, and the water temperature is generally selected at about 27°C; the intervention period of water and hard plyometric training is between 6-10 weeks. The frequency of intervention per week is between 2-3 times; there is less research literature on the combination interface plyometric training, which needs further research and demonstration; when it is at the hard interface, the medium load can induce the best effect; In training, intensity ratio is more important, and small intensity is better than large intensity; when Plyometric training is performed for different ages and genders, adaptive training methods should be selected, and water and sand ground can be used as a substitute for traditional training.
Plyometric; Superequivalent; Sports injury; Different interfaces; Physical training; Athletic performance
G804.5
A
1007―6891(2021)02―0026―07
10.13932/j.cnki.sctykx.2021.02.07
2019-11-28
2020-01-16