耿寧寧 戴竹青 牛麗影 劉春菊 吳剛 宋江峰
摘要:膳食纖維具有獨特的理化性質(zhì)和廣泛功能特性,膳食纖維及其發(fā)酵產(chǎn)物短鏈脂肪酸(short chain fatty acids,簡稱SAFCs)可選擇性地改變腸道微生物的組成,進而起到預(yù)防糖尿病、降低血糖血壓、控制體質(zhì)量、提高免疫力、降低炎性因子表達水平和患心腦血管疾病風(fēng)險的作用效果。在查閱大量文獻的基礎(chǔ)上對膳食纖維的分類、理化性質(zhì)、功能特性以及影響機體健康的機制進行了綜述并對未來的研究進行展望。
關(guān)鍵詞:膳食纖維;腸道微生物;短鏈脂肪酸;機體健康;糖尿病;心血管疾病
中圖分類號: TS201.4文獻標(biāo)志碼: A
文章編號:1002-1302(2021)07-0051-06
收稿日期:202020-08-03
基金項目:江蘇省重點研發(fā)計劃(現(xiàn)代農(nóng)業(yè))項目(編號:BE2019324)。
作者簡介:耿寧寧 (1996—),女,河南許昌人,碩士研究生,主要從事果蔬加工研究。E-mail:1584940455@qq.com。
通信作者:宋江峰,博士,副研究員,湖北隨州人,主要從事果蔬加工與品質(zhì)功能調(diào)控研究。E-mail:songjiangfeng102@163.com。
近些年,人們的飲食習(xí)慣發(fā)生了很大變化,高度加工的面粉、大米及高熱量、高脂肪和高膽固醇動物性食物的攝入引起一系列的代謝性疾病發(fā)病率急劇升高,飲食健康成為人們關(guān)注的焦點。由于富含膳食纖維的食品可以降低代謝性疾病的發(fā)生率,因此成為研究的熱點[1-2]。膳食纖維主要通過改變胃腸道內(nèi)容物的性質(zhì)以及其他營養(yǎng)、化學(xué)物質(zhì)的吸收方式發(fā)揮作用[3]。再者,腸道中存在以細菌為主,包括病毒、原生動物、古細菌、真菌等十分豐富的微生物群,其中擬桿菌屬和硬毛菌屬的含量占據(jù)腸道微生物的90%以上[4]。膳食纖維可經(jīng)腸道微生物發(fā)酵產(chǎn)生一系列的短鏈脂肪酸(short chain fits acid,簡稱SAFCs)、乳酸和氫氣、二氧化碳甲烷等氣體,SAFCs在腸道中能夠調(diào)節(jié)腸道微生物的組成和比例,從而有利于機體健康[5]。隨著現(xiàn)代生物技術(shù)手段的發(fā)展,腸道微生物與一系列慢性代謝疾病的關(guān)系也引起了人們的注意[6],研究腸道微生物與機體健康之間的關(guān)系變得愈發(fā)重要,本文主要從膳食纖維在腸道微生物的作用下引起微生物群、機體代謝以及內(nèi)分泌的變化最終影響機體健康等方面進行綜述,以期為膳食纖維和腸道微生物的進一步研究提供參考。
1 膳食纖維的分類及理化性質(zhì)
2008年,國際食品法典委員會定義膳食纖維為由多個單體單元構(gòu)成的不會被人小腸中的內(nèi)源酶水解的碳水化合物聚合物[7]。包括非淀粉多糖(纖維素、半纖維素、果膠、樹膠、黏液、β-葡聚糖)、抗性低聚糖類(菊粉、低聚果糖、半乳低聚糖)、抗性淀粉、木質(zhì)素等[8]。
膳食纖維的分類方法有很多種。一般根據(jù)膳食纖維是否溶于水為可溶性膳食纖維(soluble dietary fiber,簡稱SDF)和不溶性膳食纖維(insoluble dietary fiber,簡稱IDF),SDF包括果膠、β-葡聚糖、樹膠和一些半纖維素,而IDF主要由細胞壁成分組成,包括木質(zhì)素、纖維素和一些半纖維素[9]。SDF在腸道中可以形成黏性凝膠,經(jīng)腸道微生物發(fā)酵后產(chǎn)生SAFCs等物質(zhì),而IDF可以增加腸道內(nèi)容物的持水力,增大糞便體積,減緩胃排空等[10]。根據(jù)來源可分為植物膳食纖維和動物膳食纖維,植物膳食纖維又可分為谷物膳食纖維和果蔬膳食纖維。人體攝入的膳食纖維以谷物膳食纖維為主,占總量的50%,其次是蔬菜膳食纖維,占總量的30%~40%,16%左右來源于水果[11]。不同來源的膳食纖維中SDF和IDF的比例不同,如柑橘類果皮的IDF含量為48.5%~50.3%,而SDF含量為12.9%~141%[12]。當(dāng)SDF含量占總膳食纖維含量比例為 30%~50%時,具有最佳的調(diào)節(jié)腸道生理和降低膽固醇效應(yīng)[13]。
膳食纖維的理化特性包括溶解性、黏性、粒徑、吸附性和持水性等,主要與膳食纖維的分子量和結(jié)構(gòu)有關(guān)。高度晶體化的膳食纖維通常難溶于水,而結(jié)構(gòu)不規(guī)則的膳食纖維更易溶于水,膳食纖維中基團的電荷含量也會影響其溶解性[14]。膳食纖維的黏度受分子量、化學(xué)成分、持水量、粒徑、溶液的溫度、加工時間等條件以及pH值等[15]因素的影響,粒徑越小,膳食纖維黏度越大,膳食纖維黏度的增加會使腸道內(nèi)容物黏度增大,有利于阻止腸道上皮細胞對營養(yǎng)物的吸收[16]。
膳食纖維的生理特性包括降血壓、預(yù)防心臟病、預(yù)防中風(fēng)、控制體質(zhì)量、減緩胃腸道疾病、改善血脂水平、控制餐后血糖、提高免疫力等。盡管膳食纖維在增大糞便體積,降低餐后血糖指數(shù)和維持正常血液膽固醇水平的功能已被廣泛接受,但增強免疫力、抗癌等一系列有益功能還有待考證[10]。另外,膳食纖維的攝入還可以增加人體對維生素A、維生素B1、維生素C、維生素E以及鈣、鐵、鋅、鉀、錳、銅等礦物質(zhì)的吸收[17],而且可以吸附膽汁,阻止其轉(zhuǎn)變?yōu)榇紊懼?,加快膽固醇的消耗[8]。
2 膳食纖維對腸道的調(diào)節(jié)作用
膳食纖維對腸道的影響體現(xiàn)在多方面,包括調(diào)節(jié)食欲、為結(jié)腸上皮細胞提供能量、促進腸道黏膜的產(chǎn)生、刺激腸蠕動和增強消化功能等。膳食纖維在厭氧條件下被結(jié)腸中的微生物發(fā)酵產(chǎn)生乙酸、丙酸、丁酸、戊酸和異戊酸等SAFCs[18]。不同種類膳食纖維發(fā)酵產(chǎn)生的SAFCs有所不同,如果膠和木聚糖通常被發(fā)酵成乙酸鹽,阿拉伯半乳糖被發(fā)酵成乙酸鹽和丙酸鹽,丁酸鹽由淀粉發(fā)酵而來[19]。膳食纖維的攝入通常會使小腸、盲腸、結(jié)腸等消化器官的大小和長度發(fā)生改變,與腸道上皮形態(tài)有關(guān),最終會影響腸道消化和水解功能[20]。腸道作為消化系統(tǒng)的主要組成部分,須要承擔(dān)管腔內(nèi)存在的巨大微生物負荷,并且還要預(yù)防感染和防止有害物質(zhì)通過淋巴和血液系統(tǒng)傳遞到身體其他部位,維持上皮層的完整性對確保將腸腔中的內(nèi)容物與淋巴和血液系統(tǒng)區(qū)分開至關(guān)重要[21]。
黏膜屏障是腸道主要防御機制之一,起到保護腸道上皮抵抗化學(xué)和生物危害的屏障作用。膳食纖維能夠增加組成腸道黏膜的黏蛋白向腔內(nèi)釋放并為大腸中共生菌的生長和繁殖提供更多底物,試驗結(jié)果表明,攝入膳食纖維后黏蛋白種類比例發(fā)生了變化[22]。多項試驗結(jié)果表明,包含大量可溶性和不溶性膳食纖維的飲食可增加黏液層對結(jié)腸的保護作用[8]??砂l(fā)酵膳食纖維形成的SCFAs對上皮黏膜的完整性產(chǎn)生積極影響[21]。人類干預(yù)研究表明,補充抗性淀粉(23 g/d)或聚右旋糖(12 g/d)50 d 會導(dǎo)致直腸黏膜信號通路的改變,這可能與結(jié)直腸癌發(fā)生有關(guān)[23]。
腸道上皮是黏膜外的另一層屏障。位于隱窩底部的干細胞經(jīng)常分裂產(chǎn)生大量的轉(zhuǎn)運擴增細胞,這些細胞會不斷地向腔表面上皮移近,從而更好地分化為吸收性細胞、腸內(nèi)分泌細胞、杯狀細胞、簇狀細胞和特定部位的M細胞等不同類型的細胞,所有分化的細胞都在大腸上皮的屏障功能中發(fā)揮重要作用[24]。膳食纖維在腸道中發(fā)酵產(chǎn)生丁酸酯對腸道上皮有積極的作用,首先它是上皮細胞的首選底物,其次能通過降低腸道上皮中局部氧誘導(dǎo)因子的濃度改善腸道屏障[25]。
3 膳食纖維調(diào)節(jié)腸道微生物對機體健康的影響
3.1 糖尿病
α細胞功能異常,胰高血糖素的分泌不會被胰島素抑制或β細胞功能不全導(dǎo)致胰島素的生成和分泌受損都會引起二型糖尿病(type 2 diabetes,簡稱T2D),但機體抗胰島素是T2D主要發(fā)病因素[26]。此外,T2D還伴隨著腸道微生物群在機體內(nèi)的比例的變化。研究表明,對T2D患者進行微生物群落測定,發(fā)現(xiàn)其共同特征為缺乏生產(chǎn)丁酸鹽的腸道菌種包括梭狀芽胞桿菌、直腸細菌、小腸玫瑰菌、腸內(nèi)營養(yǎng)菌和玫瑰糖原菌,但硫酸鹽還原菌、脫硫弧菌、加氏乳桿菌、羅伊氏乳桿菌和植物乳酸桿菌數(shù)量增加[27]。
膳食纖維可通過阻止機體對營養(yǎng)物質(zhì)的吸收或經(jīng)腸道微生物發(fā)酵產(chǎn)生的SAFCs進而對T2D預(yù)防和血糖控制產(chǎn)生一定的作用。對T2D的隊列試驗結(jié)果表明,谷物膳食纖維攝入量與患T2D的風(fēng)險有關(guān),當(dāng)飲食中存在含量較高的能夠被機體快速吸收的碳水化合物或含有較低谷物膳食纖維時會增加機體患T2D的風(fēng)險[28],另有試驗發(fā)現(xiàn)谷物纖維對預(yù)防T2D的能力比水果等來源的膳食纖維更高[29],這說明谷物纖維降低T2D風(fēng)險的機制與其對血糖的影響幾乎沒有關(guān)系[30]。由此推測,谷物膳食纖維對T2D的影響可能與其自身的性質(zhì)有關(guān)。
膳食纖維發(fā)酵產(chǎn)生SAFCs主要通過結(jié)腸上皮細胞上的受體對其他器官進行調(diào)節(jié)起到控制血糖作用。SCFAs通過G蛋白偶聯(lián)受體41(G protein-coupled receptors,簡稱GPCR41)或G蛋白偶聯(lián)受體43(G protein-coupled receptors,簡稱GPCR43)調(diào)節(jié)胰腺β細胞的增殖和胰島素的生物合成;通過血液運輸?shù)礁鱾€器官,作為氧化、脂質(zhì)合成和能量代謝的底物;在肝細胞促進糖異生。腸內(nèi)分泌細胞上的GPCR41被激活刺激腸道激素肽的分泌,減少能量攝入[31]。
當(dāng)GPCR43受到SCFAs刺激后,會觸發(fā)腸降血糖素激素胰高血糖素樣肽-1(glucagon-like peptide 1,簡稱GLP-1)的產(chǎn)生,從而降低胃排空率,增加外周葡萄糖清除率并改善胰島素分泌[32]。GLP-1和葡萄糖依賴性促胰島素多肽(glucose-dependent insulinotropic polypeptide,簡稱GIP)通過平衡胰島素和葡萄糖的分泌來維持葡萄糖的穩(wěn)態(tài)。SCFAs可通過激活游離脂肪酸受體2(recombinant free fatty acid receptor 2,簡稱FFAR2)來誘導(dǎo)GLP-1和胰島淀粉樣多肽的分泌。GLP-1受體通過誘導(dǎo)胰島素分泌并抑制胰高血糖素分泌來調(diào)節(jié)胰腺激素的分泌[33]。
回腸和結(jié)腸末端產(chǎn)生GLP-1的L細胞上有大量的SCFAs受體,因此,腸道中的SCFAs可通過FFAR2促進L細胞產(chǎn)生GLP-1。在這個過程中起作用的主要是SAFCs中的丁酸類。首先丁酸酯通過上調(diào)負責(zé)GLP-1合成和分泌的基因來增強 GLP-1 的分泌,促進GLP-1活性增強和胰島素敏感性提升。其次通過刺激胰腺β細胞誘導(dǎo)GLP-1和GIP分泌,不過,在這個過程中丁酸鹽通過游離脂肪酸受體3(recombinant free fatty acid receptor 3,簡稱FFAR3)才能最大程度傳遞誘導(dǎo)GLP-1產(chǎn)生的信號[34]。SCFAs通過激活GLP-1受體可改善蛋白激酶 B(protein kinase B,簡稱PKB)和胰十二指腸同源框因子-1(pancreatic and duodenal homeobox factor 1,簡稱PDX1)介導(dǎo)胰島細胞增殖和保護作用[34-36]。間接證據(jù)表明,SCFAs可以通過GLP-1介導(dǎo)胞內(nèi)磷脂酰肌醇激酶依賴性叉頭框蛋白O1(polyclonal antibody to forkhead box protein O1,簡稱FOXO1)抑制和PDX1上調(diào)來阻止FOXO1引起的胰腺β細胞去分化和反分化[37-38]。丁酸鈉也被證明具有胰腺發(fā)育因子性質(zhì),它可以在GLP-1存在的情況下誘導(dǎo)巢蛋白增強綠色熒光蛋白祖細胞轉(zhuǎn)化為胰島素分泌細胞促進胰島素分泌[36,39]。另外,丁酸鹽還可以誘導(dǎo)胰腺發(fā)育基因和β細胞胚胎干細胞分化,促進β細胞的發(fā)育、增殖、分化和功能化[40]。
3.2 腸道免疫與炎癥
腸道淋巴組織是人體免疫系統(tǒng)的最大組成部分,并且具有防御功能。免疫系統(tǒng)通常由脂多糖、肽聚糖、多糖、脂蛋白酸、脂蛋白、微球蛋白等特定的細菌抗原觸發(fā),這些結(jié)構(gòu)能夠被受體識別,并引發(fā)多種反應(yīng),對于維持腸道屏障的完整性和宿主微生物的動態(tài)平衡至關(guān)重要[41-42]。膳食纖維可直接與具有免疫調(diào)節(jié)作用的Toll樣受體結(jié)合[43],有研究指出攝入膳食纖維后,免疫反應(yīng)中觀察到免疫防御系統(tǒng)的警惕性更高,但由于缺乏關(guān)于人體健康或疾病的有效生物標(biāo)記物,這些結(jié)果的相關(guān)性仍不確定[44]。
腸道菌群作為關(guān)鍵的穩(wěn)態(tài)調(diào)節(jié)器,可通過產(chǎn)生SCFAs調(diào)節(jié)能量代謝并有助于降低炎癥水平[41]。研究表明,SCFAs可通過多種機制促進腸道屏障功能和腸道免疫穩(wěn)態(tài),有利于預(yù)防克羅恩病和潰瘍性結(jié)腸炎等炎癥性疾病,從而通過免疫調(diào)節(jié)纖維在腸道中的親和力,并增加構(gòu)成腸道微生物菌群中的有益細菌比例[45]。
SAFCs促進腸道適應(yīng)性免疫,抑制組蛋白去乙?;福╤istone deacetylase,簡稱HDAC)導(dǎo)致哺乳動物雷帕霉素靶蛋白途徑活化和白介素10(interleukin-10,簡稱IL-10)產(chǎn)生[44]。SCFAs受體FFAR2會影響介導(dǎo)的炎癥的單核細胞和嗜中性粒細胞分化和激活并且激活細胞內(nèi)信號通路,絲裂原活化蛋白激酶,蛋白激酶C和磷脂酶C來觸發(fā)白細胞循環(huán)募集至炎癥位點[46]。另外,SCFAs引起GPCR109a信號傳導(dǎo)誘導(dǎo)白細胞介素IL-18轉(zhuǎn)錄,促進 NLRP3炎癥小體,IL-18從其前肽成熟[47]。SCFAs激活T調(diào)節(jié)細胞(regulatory T cells,簡稱 Tregs)上GPCR43誘導(dǎo)Tregs抑制結(jié)腸炎癥和癌變的增殖和下調(diào)嗜中性粒細胞的趨化性受體CXCR2的表達,從而抑制了它們的趨化性。
丁酸酯通過下調(diào)腫瘤壞死因子-α (tumor necrosis factor-α,簡稱TNF-α)介導(dǎo)的人血管內(nèi)皮細胞黏附分子1的表達從而阻止白細胞遷移并且誘導(dǎo)IL-10介導(dǎo)的Tregs功能抑制炎癥[48],激活GPCR109a促進結(jié)腸巨噬細胞和樹突狀細胞(dendritic cell,簡稱DC)功能成熟,刺激轉(zhuǎn)化生長因子的產(chǎn)生,誘導(dǎo)產(chǎn)生Tregs和IL-10的T細胞[49],DC產(chǎn)生IL-10和視黃酸,刺激幼稚T細胞轉(zhuǎn)化為Tregs并抑制促進炎癥和結(jié)腸癌發(fā)生的輔助性T細胞17的產(chǎn)生[50]。另外,丙酸酯和丁酸酯可以有效抑制核因子kb(NF-kb)信號通路的活化[49],炎性細胞因子基因的表達及其在體外的釋放并通過下調(diào)腫瘤壞死因子-α,白細胞介素1β(interleukin-1β,簡稱IL-1β)和IL-6等促炎癥細胞因子發(fā)揮抗炎作用[51]。丁酸鹽和乙酸鹽在DC和T細胞中也起到組蛋白脫乙?;敢种苿┑淖饔?,能夠達到調(diào)節(jié)基因表達的目的[52]。
3.3 心血管疾病和肥胖等
人們飲食的變化導(dǎo)致了高血壓、冠狀動脈硬化、心力衰竭、中風(fēng)等多種心血管疾病的發(fā)病率不斷攀升。推算我國心血管病現(xiàn)患人數(shù)2.9億,心血管病死亡率占城鄉(xiāng)居民總疾病死亡率的首位,尤其凸顯的是農(nóng)村居民的心血管病死亡率大幅上升[53]。有研究表明,膳食纖維攝入量最高的人患冠心病的風(fēng)險比攝入量最低的人低29%,每天攝入約6 g SDF可降低血清低密度脂蛋白膽固醇約5.4%,降低患冠心病的風(fēng)險約9%[8]。維持血壓動態(tài)平衡是一個復(fù)雜的生理過程,其中SCFAs通過多種受體發(fā)揮作用。具體來說,丙酸酯激活GPCR41,從而降低高血壓[54]。最近發(fā)現(xiàn)膳食纖維改變了結(jié)腸微生物群的組成和SCFAs的產(chǎn)生進而調(diào)節(jié)胃腸道受體,有助于控制血壓[55-58]。膳食纖維對血壓的影響取決于其類型(不溶或可溶)、劑量與來源等[59-61]。通常,可溶性纖維比不溶性纖維具有更好的降血壓作用,這種作用在年齡大、超重的老年人群體中體現(xiàn)的較為明顯[60-61]。
膳食纖維主要通過直接作用和間接作用控制體質(zhì)量。大多數(shù)SDF可增加腸內(nèi)容物的黏度,這可能會延遲胃排空和腸道吸收[45]。在小腸中,SDF可能會使餐后的血糖和胰島素反應(yīng)減弱,這與饑餓反饋率的降低和隨后能量攝入有關(guān)[8]。在一項隨機、雙盲、對照試驗中,48名超重或肥胖成年人(BMI>25 kg/m2)服用寡聚果糖21 g/d,為期12周,結(jié)果表明,機體質(zhì)量減少(1.0±0.4)kg,同時減少胃饑餓素分泌,增加循環(huán)胃腸肽類激素酪肽水平,減少熱量攝入,降低血糖和胰島素水平[62]。目前,部分研究結(jié)果表明,肥胖人群體內(nèi)的厚壁菌門/擬桿菌門比例高于瘦弱人群,厚壁菌可將多糖轉(zhuǎn)換為可吸收的單糖類和SAFCs,產(chǎn)生更多可吸收的能量,導(dǎo)致肥胖[23,30,63]。膳食纖維可增加擬桿菌門與厚壁菌門在腸道中的比例,從而避免肥胖的發(fā)生[64]。另外,膳食纖維及其在腸道菌群的發(fā)酵產(chǎn)物對改變肥胖相關(guān)基因的表達起著重要作用,膳食纖維可以通過控制基因表達預(yù)防肥胖[65]。
4 結(jié)論與展望
膳食纖維主要通過改變胃腸道內(nèi)容物性質(zhì)以及其他營養(yǎng)、化學(xué)物質(zhì)的吸收方式;經(jīng)腸道微生物發(fā)酵產(chǎn)生SAFCs調(diào)節(jié)腸道微生物的組成和比例,從而發(fā)揮預(yù)防糖尿病、降低血糖血壓、控制體質(zhì)量、提高免疫力、降低炎性因子表達水平和患心腦血管疾病等機體健康效應(yīng)作用。但膳食纖維、腸道微生物與機體健康的關(guān)系錯綜復(fù)雜,隨著對研究的不斷深入,明確膳食纖維的來源、加工方法和組成成分如何影響腸道微生物群;研發(fā)適宜的膳食纖維改性技術(shù),獲得理想的膳食纖維組成;創(chuàng)造與體內(nèi)更為相似的體外試驗條件,清晰闡明膳食纖維調(diào)節(jié)機體健康的作用機制,這可為預(yù)防和治療代謝性疾病提供新的思路。總體來說,膳食纖維作為一類人體必需的營養(yǎng)物質(zhì),具備良好的健康功能作用,具有廣闊的應(yīng)用前景。
參考文獻:
[1]Erkkil A T,Lichtenstein A H. Fiber and cardiovascular disease risk:how strong is the evidence ?[J]. The Journal of Cardiovascular Nursing,2006,21(1):3-8.
[2]Abdul-Hamid A,Luan Y S. Functional properties of dietary fibre prepared from defatted rice bran[J]. Food Chemistry,2000,68(1):15-19.
[3]Eastwood M,Kritchevsky D. Dietary fiber:how did we get where we are ?[J]. Annual Review of Nutrition,2005,25(1):1-8.
[4]Jonsson A L,Backhed F. Role of gut microbiota in atherosclerosis[J]. Nature Reviews Cardiology,2017,14(2):79-87.
[5]Scharlau D,Borowicki A,Habermann N,et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre[J]. Mutation Research,2009,682(1):39-53.
[6]Payne A,Zihler A,Chassard C,et al. Advances and perspectives in in vitro human gut fermentation modeling[J]. Trends in Biotechnology,2012,30(1):17-25.
[7]Verspreet J,Damen B,Broekaert W F,et al. A critical look at prebiotics within the dietary fiber concept[J]. Annual Review of Food Science and Technology,2016,7:167-190.
[8]Campos-Vega R,Dave Oomah B,Vergara-Castaeda H A. In vivo and in vitro studies on dietary fiber and gut health[M]//Hosseinian F,Dave Oomah B,Campos-Vega R. Dietary fiber functionality in food and nutraceuticals:from plant to gut. West Sussex:John Wiley & Sons Ltd,2017.
[9]Chuang S C,Norat T,Murphy N,et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort[J]. The American Journal of Clinical Nutrition,2012,96(1):164-174.
[10]Anderson J W,Baird P,Davis R J,et al. Health benefits of dietary fiber[J]. Nutrition Reviews,2009,67(4):188-205.
[11]Dhingra D,Michael M,Rajput H,et al. Dietary fibre in foods:a review[J]. Journal of Food Science and Technology-Mysore,2012,49(3):255-266.
[12]Wang L,Xu H G,Yuan F,et al. Physicochemical characterization of five types of citrus dietary fibers[J]. Biocatalysis and Agricultural Biotechnology,2015,4(2):250-258.
[13]Ajila C M,Bhat S G,Prasada R U. Valuable components of raw and ripe peels from two Indian mango varieties[J]. Food Chemistry,2007,102(4):1006-1011.
[14]Elleuch M,Bedigian D,Roiseux O,et al. Dietary fibre and fibre-rich by-products of food processing:characterisation,technological functionality and commercial applications:a review[J]. Food Chemistry,2011,124(2):411-421.
[15]蔡松鈴,劉 琳,戰(zhàn) 倩,等. 膳食纖維的黏度特性及其生理功能研究進展[J]. 食品科學(xué),2020,41(3):224-231.
[16]Theuwissen E,Mensink R P. Water-soluble dietary fibers and cardiovascular disease[J]. Physiology & Behavior,2008,94(2):285-292.
[17]Li H,Yang C H,Kim S H. Research on the facilitation of dietary fiber to body digestive function[J]. Advance Journal of Food Science and Technology,2015,9(1):48-51.
[18]Dongowski G,Huth M,Gebhardt E,et al. Dietary fiber-rich barley products beneficially affect the intestinal tract of rats[J]. The Journal of Nutrition,2002,132(12):3704-3714.
[19]Macfarlane S,Macfarlane G T,Cummings J H. Review article:prebiotics in the gastrointestinal tract[J]. Alimentary Pharmacology and Therapeutics,2006,24(5):701-714.
[20]Costello S P,Soo W,Bryant R V,et al. Systematic review with meta-analysis:faecal microbiota transplantation for the induction of remission for active ulcerative colitis[J]. Alimentary Pharmacology and Therapeutics,2017,46(3):213-224.
[21]Cui J,Lian Y,Zhao C,et al. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1514-1532.
[22]Shan M,Gentile M,Yeiser J R,et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J]. Science,2013,342(6157):447-453.
[23]Morowitz M J,di Caro V,Pang D,et al. Dietary supplementation with nonfermentable fiber alters the gut microbiota and confers protection in murine models of sepsis[J]. Critical Care Medicine,2017,45(5):516-523.
[24]Barker N. Adult intestinal stem cells:critical drivers of epithelial homeostasis and regeneration[J]. Nature Reviews Molecular Cell Biology,2014,15(1):19-33.
[25]Kelly C J,Zheng L,Campbell E L,et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host and Microbe,2015,17(5):662-671.
[26]Fu Z,Gilbert E R,Liu D M. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes[J]. Current Diabetes Reviews,2013,9(1):25-53.
[27]Delzenne N M,Cani P D,Everard A,et al. Gut microorganisms as promising targets for the management of type 2 diabetes[J]. Diabetologia,2015,58(10):2206-2217.
[28]Schulze M B,Liu S,Rimm E B,et al. Glycemic index,glycemic load,and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women[J]. The American Journal of Clinical Nutrition,2004,80(2):348-356.
[29]Mcrae M P. Dietary fiber intake and type 2 diabetes mellitus:an umbrella review of meta-analyses[J]. Journal of Chiropractic Medicine,2018,17(1):44-53.
[30]Davison K M,Temple N J. Cereal fiber,fruit fiber,and type 2 diabetes:explaining the paradox[J]. Journal of Diabetes and Its Complications,2018,32(2):240-245.
[31]Chambers E S,Viardot A,Psichas A,et al. Effects of targeted delivery of propionate to the human colon on appetite regulation,body weight maintenance and adiposity in overweight adults[J]. Gut,2015,64(11):1744-1754.
[32]Grasset E,Puel A,Charpentier J,et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism[J]. Cell metabolism,2017,25(5):1075-1090.
[33]Mandaliya D K,Seshadri S. Short chain fatty acids,pancreatic dysfunction and type 2 diabetes[J]. Pancreatology,2019,19(4):617-622.
[34]Lin H V,F(xiàn)rassetto A,Kowalik Jr E J,et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One,2012,7(4):e35240.
[35]Perfetti R,Hui H. The role of GLP-1 in the life and death of pancreatic beta cells[J]. Hormone and Metabolic Research,2004,36(11/12):804-810.
[36]Li Y Z,Cao X M,Li L X,et al. β-Cell Pdx1 expression is essential for the glucoregulatory,proliferative,and cytoprotective actions of glucagon-like peptide-1[J]. Diabetes,2005,54(2):482-491.
[37]Talchai C,Xuan S H,Lin H V,et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure[J]. Cell,2012,150(6):1223-1234.
[38]Kitamura T. The role of FOXO1 in β-cell failure and type 2 diabetes mellitus[J]. Nature Reviews Endocrinology,2013,9(10):615-623.
[39]Li L,Ren L L,Qi H,et al. Combination of GLP-1 and sodium butyrate promote differentiation of pancreatic progenitor cells into insulin-producing cells[J]. Tissue and Cell,2008,40(6):437-445.
[40]Goicoa S,Alvarez S,Ricordi C,et al. Sodium butyrate activates genes of early pancreatic development in embryonic stem cells[J]. Cloning and Stem Cells,2006,8(3):140-149.
[41]Pedersen H K,Gudmundsdottir V,Nielsen H B,et al. Human gut microbes impact host serum metabolome and insulin sensitivity[J]. Nature,2016,535(7612):376.
[42]Hooper O V,Littman D R,Macpherson A J. Interactions between the microbiota and the immune system[J]. Science,2012,336(6086):1268-1273.
[43]Vogt L,Ramasamy U,Meyer D,et al. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent[J]. PLoS One,2013,8(7):e68367.
[44]Albers R,Bourdet-Sicard R,Braun D,et al. Monitoring immune modulation by nutrition in the general population:identifying and substantiating effects on human health[J]. The British Journal of Nutrition,2013,110 (Suppl 2):1-30.
[45]Chawla R,Patil G R. Soluble dietary fiber[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(2):178-196.
[46]Vinolo M R,Rodrigues H G,Nachbar R T,et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients,2011,3(10):858-876.
[47]Macia L,Tan J,Vieira A T,et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nature communications,2015,6:6734.
[48]Meijer K,de Vos P,Priebe M G. Butyrate and other short-chain fatty acids as modulators of immunity:what relevance for health ?[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2010,13(6):715-721.
[49]Singh N,Gurav A,Sivaprakasam S,et al. Activation of Gpr109a,receptor for niacin and the commensal metabolite butyrate,suppresses colonic inflammation and carcinogenesis[J]. Immunity,2014,40(1):128-139.
[50]Kalala G,Kambashi B,Everaert N,et al. Characterization of fructans and dietary fibre profiles in raw and steamed vegetables[J]. International Journal of Food Sciences and Nutrition,2018,69(6):682-689.
[51]Raso G M,Simeoli R,Russo R A,et al. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet[J]. PLoS One,2013,8(7):e68626.
[52]Morrison D J,Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes,2016,7(3):189-200.
[53]胡盛壽,高潤霖,劉力生,等. 《中國心血管病報告2018》概要[J]. 中國循環(huán)雜志,2019,34(3):209-220.
[54]Natarajan N,Hori D,F(xiàn)lavahan S,et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiological Genomics,2016,48(11):826-834.
[55]Sender R,F(xiàn)uchs S,Milo R. Are we really vastly outnumbered ? revisiting the ratio of bacterial to host cells in humans[J]. Cell,2016,164(3):337-340.
[56]Montandon S,Jornayvaz F R. Effects of antidiabetic drugs on gut microbiota composition[J]. Genes,2017,8(10):250.
[57]OHara A M,Shanahan F. The gut flora as a forgotten organ[J]. EMBO Reports,2006,7(1):688-693.
[58]Weickert M,Pfeiffer A F. Metabolic effects of dietary fiber consumption and prevention of diabetes[J]. The Journal of Nutrition,2008,138(3):439-442.
[59]Wu G D,Compher C,Chen E Z,et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production[J]. Gut,2016,65(1):63-72.
[60]Kovatcheva-Datchary P,Nilsson A,Akrami R,et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella[J]. Cell Metabolism,2015,22(6):971-982.
[61]Sato J,Kanazawa A,Ikeda F,et al. Gut dysbiosis and detection of “l(fā)ive gut bacteria” in blood of Japanese patients with type 2 diabetes[J]. Diabetes Care,2014,37(8):2343-2350.
[62]Canfora E E,Jocken J W,Blaak E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology,2015,11(10):577-591.
[63]Zou J,Chassaing B,Singh V,et al. Fiber-Mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health[J]. Cell Host & Microbe,2018,23(1):41-53.
[64]Walker A W,Ince J,Duncan S H,et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota[J]. The ISME Journal,2011,5(2):220-230.
[65]Drew J E,Reichardt N,Williams L M,et al. Dietary fibers inhibit obesity in mice,but host responses in the cecum and liver appear unrelated to fiber-specific changes in cecal bacterial taxonomic composition[J]. Scientific reports,2018,8(1):1-11.