国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

巧用撲克牌做實驗

2021-06-28 00:58:49蘭衍局
關(guān)鍵詞:撲克項目學(xué)習(xí)

蘭衍局

[摘 要]抽屜原理是組合教學(xué)中的一個重要原理。依據(jù)“一個項目玩一節(jié)課”的理念,利用撲克牌作為實驗項目,讓學(xué)生在玩撲克的游戲中體會、理解“抽屜原理”的概念,從而發(fā)展能力,提升素養(yǎng)。

[關(guān)鍵詞]項目學(xué)習(xí);抽屜原理;撲克

[中圖分類號] G623.5[文獻(xiàn)標(biāo)識碼] A[文章編號] 1007-9068(2021)17-0010-04

【教學(xué)內(nèi)容】人教版教材六年級下冊“數(shù)學(xué)廣角——抽屜原理”

【教學(xué)目標(biāo)】

1.初步了解“抽屜原理”,會用“抽屜原理”解決一些簡單的實際問題。

2.通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律,滲透建模思想;經(jīng)歷從具體到抽象的探究過程,親歷知識的形成過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

3.提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,使學(xué)生感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

【項目背景與思考】

1.分析教材:教材并沒有直接給出“抽屜原理”的定義,而是在“你知道嗎”出現(xiàn)了這樣的描述:抽屜原理是組合教學(xué)中的一個重要原理,它最早由德國數(shù)學(xué)家狄利克雷提出并用于解決數(shù)論中的問題,所以該原理又稱“狄利克雷原理”。

面對教材,需要關(guān)注以下兩種不同的問題形式:問題一,把4個蘋果放在3個抽屜里,總有1個抽屜至少有2個蘋果。對嗎?問題二,把4個蘋果放在3個抽屜里,總有(? ? ?)個抽屜里面至少有(? ? ?)個蘋果。這兩種不同的問題形式,會導(dǎo)致學(xué)生解題出現(xiàn)差異。問題一指向的是假設(shè)法,即假設(shè)這句話是錯誤的,那么,每個抽屜最多只能放1個蘋果……問題二指向的是平均分法,即將蘋果平均分散在不同抽屜里面,會使得每個抽屜中蘋果的數(shù)量盡可能的少。在問題二的背景下,學(xué)生容易列出“蘋果數(shù)÷抽屜數(shù)=商……余數(shù)”這樣的算式。

2.學(xué)情分析:學(xué)生對于這一教學(xué)內(nèi)容的學(xué)習(xí)有以下困難:

(1)對抽屜原理中“至少”的理解存在障礙。抽屜原理在語言表述上具有精練、概括、抽象的特點,因此,學(xué)生很難理解 “總有一個抽屜里至少放入了多少個物體”這樣表述的意義,他們往往忽略前半句 “存在性 ”的前提,將“存在性”與“至少”割裂后思考,根據(jù)過去的經(jīng)驗把 “至少”理解為數(shù)量上的絕對少。如有學(xué)生認(rèn)為:這個問題根本不用多想, 最少的個數(shù)就是 0,因而不能很好理解抽屜原理的數(shù)學(xué)模型。(其實,這里有最值思想的滲透,如果讓學(xué)生體會到最多的那一個抽屜里最少可以放幾支筆,就可以了。)

(2)對“存在性”的理解存在障礙。抽屜原理研究的是物體數(shù)最多的一個抽屜里最少會有幾個物體,只研究是否存在這樣一種現(xiàn)象, 而并不需要指出具體是哪一個抽屜。正所謂:“松下問童子,言師采藥去。只在此山中,云深不知處?!边@種“不確定性”與學(xué)生過去的定量學(xué)習(xí)和習(xí)慣于“明確指向”的思維定式之間存在著矛盾,在一定程度上影響著學(xué)生對抽屜原理的理解和應(yīng)用。換句話說,對存在性定理的理解即對最差角度的體會,“至少有一個”的意思就是存在,滿足要求的抽屜可能有多個,但這里只需保證存在一個達(dá)到要求的抽屜就夠了。

(3)學(xué)生用準(zhǔn)確的數(shù)學(xué)語言描述數(shù)學(xué)知識的能力不強。鴿巢問題的表述本來就拗口,學(xué)生對“總有……至少……”的理解難度大,如果不讓學(xué)生從本質(zhì)上理解鴿巢原理,那學(xué)生是無法用準(zhǔn)確的語言來表達(dá)的。

為此,筆者依據(jù)“一個項目玩一節(jié)課”的理念,利用撲克作為實驗項目,讓學(xué)生在玩撲克的游戲中體會、理解抽屜原理的內(nèi)涵,從而發(fā)展能力,提升素養(yǎng)。

【項目實施過程】

一、課前談話

師:今天老師給大家?guī)砹藫淇伺?。你了解撲克牌嗎?誰能給大家介紹一下。

生:撲克牌有13個數(shù)字;撲克牌有4種花色和大小王。

師:用撲克牌可以干什么?

生1:賭博。

生2:玩游戲。

生3:用來學(xué)習(xí),比如算24點。

生4:變魔術(shù)。

二、 引入新課

1.體會“總有”“至少”

【活動一】從一副52張的撲克牌(去掉大小王)中隨意抽出5張牌,如果把抽到的花色次數(shù)統(tǒng)計出來,可能會有什么規(guī)律?

師;仔細(xì)觀察這組數(shù)據(jù),你發(fā)現(xiàn)了什么?

生1:每種花色的次數(shù)會變化,但是每組的總數(shù)都是5。

生2:每組中最少的數(shù)量是0或1,最多的數(shù)量有2、3、4。

師:同學(xué)們能從整體上觀察數(shù)據(jù),非常了不起。最多的花色次數(shù)還可能是幾?

生3:最多的花色次數(shù)是5,我剛才就抽到了5張“紅桃”的花色。但是,每組中總有一種花色至少會出現(xiàn)2次。

2.體會“至少”“總有”

師(板書“總有一種花色至少出現(xiàn)2次” ):你覺得這句話對嗎?

師:在第一次實驗結(jié)果中,紅桃出現(xiàn)了3張,不是2張。

生4:這里是說,至少2張,不是剛好2張。至少的意思是大于或等于2。

師:但是在第一次中,“方塊”沒有出現(xiàn)一次,沒有大于或等于2呀?

生5:我明白了,在觀察這些數(shù)據(jù)的時候,不能僅僅看1種花色的情況,要把4種花色都看一遍。雖然在第一次的數(shù)據(jù)中,“方塊”沒有出現(xiàn),但是,“黑桃”出現(xiàn)了3次。因此,總有一種花色出現(xiàn)2次是正確的。

(教師讓學(xué)生觀察、思考其他情況)

【設(shè)計意圖 :“總有”和“至少”這兩個關(guān)鍵詞,反映了學(xué)生對“存在性原理”的理解水平。由于抽屜原理研究的是物體數(shù)最多的一個抽屜里最少會有幾個物體,只研究它是否存在這樣一種現(xiàn)象,而并不需要指出具體是哪一個抽屜。這種“不確定性”與學(xué)生過去的定量學(xué)習(xí)和習(xí)慣于“明確指向”的思維定式之間存在著矛盾,在一定程度上影響著學(xué)生對抽屜原理的理解和應(yīng)用。因此,在教學(xué)開始,筆者便讓學(xué)生開展“抽取撲克牌,觀察花色數(shù)量”的活動。學(xué)生在討論中體會“至少”和“總有”這兩個關(guān)鍵詞,為后續(xù)研究掃清障礙。】

三、教學(xué)新課

1.初步感知抽屜原理

【活動二】把4張撲克牌放在3本書上,總有1本書上面至少有2張撲克牌。對嗎?

要求:? (1)獨立操作:找出3本書,利用4張撲克牌(背面朝上)做實驗:邊操作,邊記錄。

(2)同桌合作:向同桌介紹你的想法;請同桌“找茬”。

師:能讀懂題目的意思嗎?我們先做一個小實驗吧。老師手上就有4張牌,你覺得可以怎么放?(根據(jù)學(xué)生回答,教師隨意在第一本書上放3張牌,在第二本書上放1張牌)

生1:我覺得這樣放是不符合要求的,因為題目要求是“放在3本書上”,而第三本書上沒有放。因而,這樣放是不行的。

生2:我覺得沒有問題,“把4張撲克牌放在3本書上”并不是說“每本書上都要放撲克牌”。

……

師:如果這樣放,該怎么記錄呢?(板書:3,1,0)

師:這樣放置的結(jié)果,能判斷嗎?

生3:可以的,因為第一本書上面有3張牌,說明了這個結(jié)論是正確的。

師:這種情況下可以說明這個結(jié)論是正確的,那是不是所有的情況都符合呢?看來,我們還需要繼續(xù)做實驗。

(同桌兩人合作做實驗,一人摸牌,一人記錄,教師巡視指導(dǎo))

成果匯報:

(1)枚舉法1

生4:將4張撲克牌放在3本書上,羅列出所有的情況,有(4,0,0)(0,4,0)(0,0,4)(3,1,0)(3,0,1)(1,0,3)(1,3,0)(0,1,3)(0,3,1)(2,2,0)(2,0,2)(0,2,2)(2,1,1)(1,1,2)(1,2,1),共計15種。

生5:我們羅列了全部情況,共有15種。每種情況都證明了總有1本書上面至少有2張撲克牌。因此,我們認(rèn)為這句話是正確的。

師(展示學(xué)生作品):很多小組也想全部羅列出來,但是有些是14種,有些是16種。請大家認(rèn)真看看這15種,有沒有問題?

生6:我發(fā)現(xiàn),他們在記錄這些數(shù)據(jù)的時候,能“有序思考”,仔細(xì)比較,應(yīng)該只有15種情況。

師:像這樣把全部的結(jié)果都羅列出來的實驗方法,我們稱為“枚舉法”。請仔細(xì)觀察這里的每一種結(jié)果,再想一想是否可以證明這句話是正確的。

生7:是的。

(2)枚舉法2

生8:我們認(rèn)為不用這么多,只要研究這四種就可以了:(4,0,0),(3,1,0),(2,2,0),(2,1,1)。因為不管怎么放,只是順序變化了,而數(shù)量上沒有變化,對于總有2張撲克牌放在同一本書上這個命題沒有影響。

師(引導(dǎo)學(xué)生觀察剛才的15種):(4,0,0),(0,4,0),(0,0,4)這三種情況是不是像這位同學(xué)講的一樣,只是順序發(fā)生改變,本質(zhì)上都是說明了“總有1本書上至少有2張撲克牌”?

生(齊):是的。

生9:像這樣的情況,我們留下一種就可以了。這樣算下來,這15種可以分為4類,每類都留下一種情況,所以,只要研究4種就可以了。

師:同學(xué)們真了不起,能想到4種情況來代替15種。那么,有沒有比4種還簡單,但又能說明這個結(jié)論的方法呢?

(3)假設(shè)法1(最差角度)

生10:用(1,2,1)這一種情況就能說明這個結(jié)論是成立的。因為這個問題是讓我們判斷“總有1本書上會出現(xiàn)2張撲克牌”,我就從最差角度來思考:能不能讓每本書上都不出現(xiàn)2張或2張以上呢?于是,我在每本書上只放1張牌(教師讓學(xué)生到講臺前動手操作)。這樣,我分掉了3張牌??墒?,還有1張牌,不管怎么放,總會出現(xiàn)在其中的一本書上。(板書:1×3=3? ?3<4)

(4)假設(shè)法2(反證法)

生11:我也是用(1,2,1)這種情況就能說明這個結(jié)論是成立的。但是,思考方法和生10不同,我假設(shè)這句話是錯誤的。那么,每本書上多只能放1張或0張牌(學(xué)生動手操作)。這樣,我分掉了3張牌??墒?,還有1張牌,不管怎么放,總會出現(xiàn)在其中的一本書上。

【設(shè)計意圖:從枚舉出來的15種方法,到不考慮位置順序的4種方法,進(jìn)而到(1,2,1)這樣只用一種方法來證明的思維發(fā)展進(jìn)程中,學(xué)生經(jīng)歷了數(shù)學(xué)建模的全過程,觸摸到了“抽屜原理”的本質(zhì)屬性,即從“最差角度”來思考問題,體會到了“抽屜原理”的優(yōu)越性。】

2.建構(gòu)抽屜模型

(1)1+1的模型書上

師:我們在“將4張撲克牌放在3本書上”發(fā)現(xiàn)了規(guī)律。如果把撲克牌數(shù)和書本數(shù)都增加相同的數(shù)量,這個規(guī)律還存在嗎?(課件依次出示各種數(shù)量變化的情況)

A.將5張牌放到4本書上。

B.將6張牌放到5本書上。

C.將10張牌放到9本書上。

D.將100張牌放到99本書上。

[不管怎么放,總有1本書上面至少有2張牌。對嗎? ]

師:請你挑選一個例子向同桌說一說原因。

師:你還發(fā)現(xiàn)了什么規(guī)律?

生12:撲克牌數(shù)比書本數(shù)多1的時候,這個命題都成立。

(2)商+1的模型

①余數(shù)為2

師:如果撲克牌數(shù)與書本數(shù)發(fā)生其他變化時,還是這樣的嗎?

師: 5張牌放在3本書上,總有1本書上會出現(xiàn)2張牌對嗎?

生13:從最差的角度來思考,我先在每本書上放1張牌,這樣我的手上還有2張牌。不管怎么放,總會有1本書上會出現(xiàn)2張牌或3張牌。

生14:我反對,如果你把這2張牌放在同一本書上,本身就已經(jīng)給出了結(jié)論,那就不是從“最差角度”來思考了。應(yīng)該把2張牌分開放,雖然分開放了,但是每本書上還是有2張牌,才能說明結(jié)論是正確的。

……

②余數(shù)為0

師:如果把6張牌放在3本書上……你會怎么放呢?

生15:我首先在每本書上放1張牌,這時候手上還有3張牌,于是,繼續(xù)在每本書上放1張牌……

生16:我不會這樣放。6張牌放在3本書上,就是我們以前學(xué)習(xí)過的除法平均分,所以,我先口算6÷3=2,然后,直接在每本書上放2張牌。

師:真了不起!你發(fā)現(xiàn)了“抽屜原理”和以前學(xué)習(xí)的“除法平均分”是相同的,這是一種思考問題的好方法。

師:除法平均分的方法和剛才的方法有沒有相同的地方?

生17:除法平均分就是把撲克牌數(shù)“分散”了,也就是每本書上面都最少了。

生18:哦!除法平均分的方法也就是從“最差角度”來思考的方法。

……

【設(shè)計意圖 :“最差角度”與“除法平均分角度”看似無關(guān),實則本質(zhì)相同,用“除法平均分”證明結(jié)論的方法,就為“抽屜模型”的建構(gòu)做了很好的鋪墊?!?/p>

(3)破解“商+1”的模型,溝通平均分

【活動三】

A.將7張牌放到3本書上,有1本書上至少有3張牌。對嗎?

B.將8張牌放到3本書上,總有1本書上至少會出現(xiàn)( 3 )張牌。

C.將(? ? )張牌放到(? ? )本書上,總有1本書上至少會出現(xiàn)(? ? )張牌。

師:將7張牌放在3本書上,總有1本書上至少有3張牌。你是怎么判斷的?

生19:我用假設(shè)法,在每本書上只放2張牌,但是我的手上還有1張牌,所以這個結(jié)論是成立的。

生20:我用的是平均分的方法,我的算式是7÷3=2……1,2+1=3。我將7張牌盡量平均分在3本書上,但是,只能分掉了6張牌。還有1張牌多余……

【設(shè)計意圖:同樣的一道判斷題,學(xué)生從不同的角度給出了解釋??梢?,學(xué)生已經(jīng)理解了抽屜原理的實際含義?!?/p>

師:把8張牌放在3本書上,總有1本書上至少會出現(xiàn)幾張牌呢?

生21:這不是判斷題,這是填空題了,我覺得用假設(shè)法好像不太好。

生22:我們可以用平均分的方法來思考。8÷3=2……2,2+2=4。

生23:不對,應(yīng)該是2+1=3。要把多余的2張再“平均分”。

……

師:你們剛才發(fā)現(xiàn)和分析的就是著名的數(shù)學(xué)家狄利克雷發(fā)現(xiàn)的“鴿巢問題”,也叫作狄利克雷原理,同時叫作抽屜原理。

師:我們常常用蘋果和抽屜來表示需要研究的元素……

【設(shè)計意圖:把判斷題改為填空題,讓學(xué)生發(fā)現(xiàn)“平均分”這種方法的普適性,學(xué)生就能“觸摸”到抽屜原理的本質(zhì)屬性?!?/p>

(責(zé)編 金 鈴)

猜你喜歡
撲克項目學(xué)習(xí)
小撲克打出大品牌
華人時刊(2022年15期)2022-10-27 09:06:08
玩撲克學(xué)數(shù)學(xué)
項目學(xué)習(xí)在學(xué)校體育教學(xué)中的運用
考試周刊(2016年97期)2016-12-26 18:00:57
淺析項目學(xué)習(xí)在英語語言學(xué)教學(xué)中的應(yīng)用
青春歲月(2016年22期)2016-12-23 09:12:29
廣挖資源深度整合巧用技術(shù)
成熟的教與學(xué)
大學(xué)英語教學(xué)中項目學(xué)習(xí)的應(yīng)用探討
最環(huán)保的撲克版空氣加濕器
撲克英雄傳
探索歷史(2013年9期)2013-12-12 03:59:38
花樣撲克
班戈县| 镇原县| 上虞市| 黑龙江省| 巴塘县| 仪征市| 广平县| 遂平县| 黄陵县| 武平县| 湘西| 石林| 沈阳市| 贞丰县| 甘谷县| 邢台县| 邯郸县| 航空| 元江| 安宁市| 琼海市| 陆河县| 阳东县| 五大连池市| 吴川市| 无为县| 交城县| 云龙县| 浮梁县| 新疆| 怀化市| 阜阳市| 周至县| 建瓯市| 吐鲁番市| 万载县| 华蓥市| 南木林县| 周至县| 钟山县| 武汉市|