胡亞猛 林崇
摘要: ?針對(duì)網(wǎng)絡(luò)系統(tǒng)中存在的阻礙網(wǎng)絡(luò)通信問題,本文基于觀測(cè)器,研究了一類非線性網(wǎng)絡(luò)控制系統(tǒng)在非周期拒絕服務(wù)(denial of service,DOS)攻擊下的控制問題。設(shè)計(jì)了一種彈性事件觸發(fā)方案,并充分考慮非周期DOS攻擊和事件觸發(fā)方案的影響,基于TS模糊模型,建立了一種切換系統(tǒng)模型。通過構(gòu)造LyapunovKrasovskii泛函,并基于線性矩陣不等式方法,分析了系統(tǒng)的漸近穩(wěn)定性,提出了一種控制器和觀測(cè)器的協(xié)同設(shè)計(jì)方法。最后,以文獻(xiàn)[13]中的卡車拖車系統(tǒng)為例,通過Matlab的LMI工具箱進(jìn)行仿真驗(yàn)證。仿真結(jié)果表明,切換系統(tǒng)在非周期的DOS攻擊下是漸進(jìn)穩(wěn)定的,驗(yàn)證了所得結(jié)果的有效性。該研究對(duì)非線性網(wǎng)絡(luò)控制系統(tǒng)抵抗外部攻擊具有重要意義。
關(guān)鍵詞: ?DOS攻擊; 網(wǎng)絡(luò)控制系統(tǒng); LyapunovKrasovskii泛函; 事件觸發(fā)方案; 控制器
中圖分類號(hào): TP271.62 ?文獻(xiàn)標(biāo)識(shí)碼: A
4 結(jié)束語
本文結(jié)合文獻(xiàn)[13]提出的網(wǎng)絡(luò)化TS模糊系統(tǒng)基于觀測(cè)器的控制器設(shè)計(jì)方法,引入了非周期的DOS干擾攻擊下,將文獻(xiàn)[15]中線性網(wǎng)絡(luò)系統(tǒng)在周期性DOS攻擊下基于觀測(cè)器的控制器設(shè)計(jì)問題推廣至非線性系統(tǒng)。為了應(yīng)對(duì)非周期性的DOS干擾攻擊,提出了一種動(dòng)態(tài)事件觸發(fā)方案,并且充分考慮了事件觸發(fā)方案和DOS干擾攻擊對(duì)原系統(tǒng)前提變量和隸屬度函數(shù)的影響,建立了基于TS模糊模型的切換系統(tǒng)模型。在此基礎(chǔ)上,提出了觀測(cè)器、控制器和事件觸發(fā)方案的協(xié)同設(shè)計(jì)方法,并通過仿真實(shí)例,驗(yàn)證了本文所提出設(shè)計(jì)方法的有效性。下一步將考慮存在的外部干擾情況或考慮其他攻擊方式,例如欺詐攻擊和混合攻擊。
參考文獻(xiàn):
[1] Zhang X M, Han Q L, Ge X H, et al. Networked control systems: ?a survey of trends and techniques[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(1): 117.
[2] Liu D, Yang G H, Er M J. Eventtriggered control for TS fuzzy systems under asynchronous network communications[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(2): 390399.
[3] Zhang L X, Gao H J, Kaynak O. Networkinduced constraints in networked control systemsa survey[J]. Industrial Informatics IEEE Transactions on Industrial Informatics, 2013, 9(1): 403416.
[4] Tabuada P. Eventtriggered realtime scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 16801685.
[5] You X, Hua C C, Guan X P. Selftriggered leaderfollowing consensus for highorder nonlinear multiagent systems via dynamic output feedback control[J]. IEEE Transactions on Cybernetics, 2019, 49(6): ?20022010.
[6] Zhang J H, Feng G. Eventdriven observerbased output feedback control for linear systems[J]. Automatica, 2014, 50(7): 18521859.
[7] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. Readings in Fuzzy Sets for Intelligent Systems, 1993, 15(1): 387403.
[8] Lam H K. A review on stability analysis of continuoustime fuzzymodelbased control systems: ?From membershipfunctionindependent to membershipfunctiondependent analysis[J]. Engineering Applications of Artificial Intelligence, 2018, 67: 390408.
[9] Ye D, Diao N N, Zhao X G. Faulttolerant controller design for general polynomialfuzzymodelbased systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 10461051.
[10] Dong J X, Yang G H. Stability analysis of TS fuzzy control systems by using set theory[J]. IEEE Transactions on Fuzzy Systems, 2014, 23(4): 827841.
[11] Li H Y, Pan Y N, Shi P, et al. Switched fuzzy output feedback control and its application to massspringdamping system[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(6): ?12591269.
[12] Zhang K, Jiang B, Shi P, et al. Analysis and design of robust H∞ fault estimation observer with finitefrequency specifications for discretetime fuzzy systems[J]. IEEE Transactions on Cybernetics, 2015, 45(7): 12251235.
[13] Peng C, Ma S D, Xie X P. Observerbased nonPDC control for networked TS fuzzy systems with an eventtriggered communication[J]. IEEE Transactions on Cybernetics, 2017, 47(8): ?22792287.
[14] Zhao X, Lin C, Chen B, et al. Adaptive eventtriggered fuzzy H∞ filter design for nonlinear networked systems[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(12): 33023314.
[15] Hu S L, Yue D, Han Q L, et al. Observerbased eventtriggered control for networked linear systems subject to denialofservice attacks[J]. IEEE Transactions on Cybernetics, 2020, 50(5): ?19521964.
[16] Gu Z, Zhou X H, Zhang T, et al. Eventtriggered filter design for nonlinear cyberphysical systems subject to deception attacks.[J]. ISA Transactions, 2019, 104: 130137.
[17] De Persis C, Tesi P. Inputtostate stabilizing control under denialofservice[J]. IEEE Transactions on Automatic Control, 2015, 60(11): 29302944.
[18] Seuret A, Frederic G. Wirtingerbased integral inequality: ?Application to timedelay systems[J]. Automatica, 2013, 49(9): 28602866.
[19] Zhang X M, Han Q L, Seuret A, et al. An improved reciprocally convex inequality and an augmented LyapunovKrasovskii functional for stability of linear systems with timevarying delay[J]. Automatica, 2017, 84: 221226.