劉 偉 嵬,王 怡 文,王 灝,唐 梓 玨,張 昭
(1.大連理工大學 機械工程學院,遼寧 大連 116024;2.大連理工大學 工程力學系,遼寧 大連 116024 )
激光熔化沉積(laser melting deposition,LMD)是金屬3D打印的一個重要分支[1],其以高能量的激光束作為能量源,通過輻射基體和粉末使其同時熔化并快速凝固,在基體表面形成沉積層.目前激光熔化沉積技術主要用于零部件直接成形、特殊功能涂層熔覆和高端零部件修復等[2],廣泛應用于汽車、航天、國防等工業(yè)領域[3].
激光熔化沉積工藝中激光模式分為連續(xù)波(continuous-wave,CW)和脈沖波(pulse-wave,PW),不同激光模式下得到的沉積件質量不同,一些學者對連續(xù)激光和脈沖激光加工進行了對比研究.Pinkerton等[4]研究發(fā)現(xiàn)與連續(xù)激光加工相比,脈沖束可以降低激光熔化沉積的孔隙率,但較低的脈沖頻率會得到更為粗糙的表面.Shah等[5]研究發(fā)現(xiàn)激光脈沖對熔池的干擾更大,并且熔池平均表面波動與零件表面粗糙度成反比關系,但其并未指出熔池上表面的波動幅度規(guī)律.
Song等[6]研究發(fā)現(xiàn)熔池從開始形成到準穩(wěn)態(tài)這一過程需要50 ms,同時激光熔化沉積所產(chǎn)生的熔池尺寸一般在0.5~3.0 mm.由于熔池規(guī)模小,形成時間短暫,幾乎不可能通過傳感器實現(xiàn)對熔池瞬時演變的實時監(jiān)測.因此,數(shù)值模擬已成為研究瞬態(tài)熔池的一種理想工具,許多學者已經(jīng)進行了相關研究.Liu等[7]采用生死單元技術,研究了在CW-LMD過程中熔池的溫度場演變,但其忽略了熔池流體的流動.Manvatkar等[8]通過研究建立三維傳熱和流動模型,發(fā)現(xiàn)熔池尺寸隨激光功率的增大而增大,但其忽略了熔池表面形貌.Tian等[9]利用拉格朗日-歐拉法(ALE)建立沉積層頂面形貌,發(fā)現(xiàn)受流體流動的影響,熔池底部的邊界由淺弧形逐漸變?yōu)椴ɡ诵?,最終變?yōu)樯罨⌒危@些有限元模型假定熔池位于平面[7-8]或實驗測量的形狀[9]內,限制了它們用于分析熔池運動和上表面波動,尤其是在PW-LMD過程中.
為了跟蹤液-氣界面,Lee等[10]采用了流體體積法(volume of fluid,VOF),Li和Wei等[11-12]采用了水平集法.Lee等[10]預測了CW增材制造過程中的溫度和流體速度分布、熔池流體邊界形狀,發(fā)現(xiàn)熔池具有凸形底部形狀.Li等[11]研究發(fā)現(xiàn)脈沖激光增材制造的熔池是圓形的,并且熔池動態(tài)溫度呈周期性變化.Wei等[12]在研究激光熱絲沉積過程中捕捉到自由表面的微小波動(0.03 mm),得到熔池內的最高溫度和速度分別為1 911 K和0.114 m/s.可見,文獻[8-10]的學者研究出關于熔池底面的形貌變化,文獻[12]雖然指出CW模式表面波動,但其未給出具體分析.目前對LMD工藝中的熔池具體演變過程以及上表面波動規(guī)律的研究較少,特別是脈沖激光下熔池流動的規(guī)律尚不清楚,而熔池的演變往往決定了沉積層的質量.
為更好地對比CW和PW兩種激光模式熔池形成演變過程,研究其熔池表面波動的變化規(guī)律,本文基于Fluent二次開發(fā)UDF(user define function),模擬熔池瞬態(tài)運動、傳熱和流體流動過程,通過VOF模型引入相的體積分數(shù)[12]求解連續(xù)方程,實現(xiàn)相界面的追蹤,分析熔池的演變過程、熔池上表面波動幅度及部分特征變化,為后續(xù)的CW-LMD和PW-LMD工藝參數(shù)優(yōu)化選擇當中,建立沉積層表面質量和脈沖頻率產(chǎn)生的波動之間的關系提供數(shù)值模型基礎.
本文所用的激光熔化沉積系統(tǒng)如圖1(a)~(d)所示,其由半導體激光器(LDF 4000-100)、6軸機器人(KUKA KR30HA)、激光頭(YC52)和送粉器(RC-PF-01B-2)組成,該系統(tǒng)半導體激光器最高可產(chǎn)生4 400 W大小的激光功率,具有連續(xù)、脈沖、外部及編程4種模式.激光頭的工作距離為15 mm.送粉器的送粉粒度為74~149 μm,送粉量為3~150 g·min-1.熔池表面溫度用雙色高溫計(Sensortherm Metis M322)測量,其測量溫度范圍為1 273~3 573 K,測量范圍直徑為1 mm.實驗采用兩種激光模式.在CW模式下,激光功率保持在1 400 W不變.在PW模式下,1 400 W的激光功率由占空比為1∶1、頻率為13.33 Hz的方波調制.激光掃描速度為6 mm·s-1,激光光斑半徑為1 mm,載氣流量為15 L·min-1,送粉量為9.15 g·min-1.本文構建的三維對稱數(shù)值模型計算域尺寸為10 mm×3 mm×3 mm,包含基體和空氣域(圖1(e)).激光掃描方向為x正方向.
(a)半導體激光器
LMD是一個復雜的瞬態(tài)過程,在滿足數(shù)值模擬結果準確性的前提下,本研究數(shù)學模型作以下假設:
(1)激光光束、粉末模型服從高斯分布;
(2)液態(tài)金屬是層流、不可壓縮的牛頓流體;
(3)流體的流動由熔池內浮力、表面張力驅動;
(4)熱傳導系數(shù)、比熱容隨溫度變化,其余熱物理參數(shù)為常數(shù).
本文所用基體及粉末材料均為316L不銹鋼,其參數(shù)如表1所示.
表1 316L不銹鋼參數(shù)[8]Tab.1 Parameters of 316L stainless steel[8]
激光表面熔化過程中316L不銹鋼的比熱容和熱導率是隨溫度變化的量.為防止表面氧化,激光熔化沉積過程中同步添加保護氣氬氣,氬氣的純度為99.999%,密度為0.974 kg·m-3,比熱容為520 J·kg-1·K-1,熱導率為2.641×10-2W·m-1·K-1(文獻[13]).
VOF模型是建立在固定網(wǎng)格下的表面跟蹤方法,以兩種或者多種流體(或者相)不相互混合為前提.基體上方環(huán)境視為氣相(第一相),基體為金屬相(第二相),其求解一相或者多相體積分數(shù)的連續(xù)性方程[12]:
(1)
式中:αq為第q相的流體體積分數(shù),v為流體速度,Smass為質量源項.
熔池的傳熱和流體流動由能量守恒和動量方程控制,表達式為[12]
(2)
(3)
式中:H為熱力學焓,t為時間,k為導熱系數(shù),hs為外部填充材料的焓增量,Se為能量源項,p為壓力,g為重力加速度,μ為黏度,Smom為動量源項.
質量源項為同步粉末添加源項,根據(jù)假設,粉末高斯分布的表達式為[14]
(4)
式中:ms為粉末質量流量;ω1為粉末高斯分布系數(shù),這里取值ω1=1;r為距光斑中心的距離;rb為激光光斑半徑.
能量源項包括激光熱源和粉末與激光在空中相遇所吸收的預熱熱源.激光熱源假設為高斯熱源,表達式為[14]
(5)
式中:P為激光功率;ω2為激光高斯分布系數(shù),根據(jù)文獻[14]取ω2=3;α為激光利用率.粉末顆粒在吸收激光能量時被加熱.粉末顆粒的溫升可通過以下熱平衡方程計算,表達式為[12]
(6)
式中:ρp為粉末密度;cp為粉末的比熱容;Qm為粉末流引起的激光功率強度衰減值;ηm為粉末激光吸收系數(shù);ΔT為粉末飛行中平均溫升;rp為粉末粒子的平均半徑;t為飛行時間,它取決于粒子的速度和激光材料的相互作用長度.
動量源項有3個來源:表面張力引起的體外力[15]、熔池溫度差引起的浮力[16]以及氣體和粉末作用于沉積表面的動量,分別表示為
(7)
Ff=ρpgβ(T-Tl)
(8)
FvΔt=M1vs+msvp
(9)
式中:σ0為參考溫度下的表面張力,?T為x-y平面內的溫度梯度,?γ/?T為表面張力溫度系數(shù);Tl為316L液相線溫度,β為熱膨脹系數(shù);M1為氣體載氣流量,vs為氣體流動過程中的平均速度;vp表示粉末飛行過程具有的平均速度,兩個速度數(shù)據(jù)值參考文獻[17]測算的速度數(shù)據(jù).
以上源項均以UDF編程模塊作用到Fluent模型當中.
圖2(a)為CW模式下單道沉積實驗與模擬橫斷面對比.可以看出實驗與模擬的沉積橫斷面的形貌相似,圖示數(shù)值模擬下的CW-LMD沉積層高度為0.73 mm、寬度為3.407 mm、滲透深度為0.186 mm,實驗測得沉積層高度為0.69 mm、寬度為3.080 mm、滲透深度為0.190 mm,相對誤差分別為5.80%、10.62%和2.11%.數(shù)值模型數(shù)據(jù)在合理的精度范圍內,則初始模型可以較好地代替實驗效果.圖2(b)則為PW模式下實驗與模擬橫斷面對比,可以看到數(shù)值模擬下PW模式的沉積層高度為0.651 mm、寬度為3.312 mm、滲透深度為0.147 mm,實驗測得沉積層高度為0.608 mm、寬度為2.896 mm、滲透深度為0.138 mm,相對誤差分別為7.07%、14.36%和6.52%.PW模式基體的滲透深度為0.147 mm;而CW模式下的基體滲透深度為0.186 mm,大約為PW模式的1.27倍.但兩種模式下的沉積層寬度相似.結果表明激光模式對沉積層高度和滲透深度有較大的影響,而對沉積層寬度的影響不大.分析是由于同步添加的粉末呈高斯分布,兩種模式下空間分布的半徑相同,從而沉積層寬度類似.而脈沖模式下激光關閉期間無法熔化粉末,影響粉末堆積,進而影響沉積層高度.
(a)CW-LMD實驗與模擬
圖3為兩種激光模式下沉積層表面固定位置的模擬溫度和實際高溫計測量溫度對比.高溫計測量的是沉積層表面1 mm范圍內的平均溫度,因此數(shù)值模擬也在沉積層表面求取平均溫度進行對比.可以看出,在CW模式下固定點溫度只經(jīng)歷一個周期的變化,而PW則經(jīng)歷多個振蕩周期變化,這是由于脈沖模式下激光關閉期間無熱量輸入,熔池溫度呈自然冷卻.CW與PW模式下實際測量溫度與模擬溫度的相對誤差范圍分別為0.07%~23.52%、0.42%~26.75%.在圖3(a)中的0~0.18 s和0.96~1.20 s和圖3(b)中0~0.08 s和0.75~1.20 s,數(shù)值模擬的溫度在固相線以下,定點模擬的平均溫度與實測值存在一定偏差,這可能是由于數(shù)值模擬熱源激光利用率取值不精確.此外,從圖3(b)可以看到,PW模式在某些周期激光關閉期間沉積層表面的平均溫度降至固相線以下,固定位置經(jīng)歷了多次快速升溫和冷卻的循環(huán),發(fā)生了多次熔化和凝固過程.
(a)1 400 W固定點CW-LMD
圖4為PW-LMD沿掃描方向(x正方向)剖切面的熔池演變過程,因為激光由x=0 mm坐標點出發(fā),此選取位置是以x=1.908 mm為起始,y=0 mm的平面.液態(tài)金屬的流速和流向用箭頭表示,箭頭長短代表流速大小.在激光打開期間選取4個時間點,如圖4(a)所示.由圖4(b)可以看到,在激光打開前期,A所指位置上表面與其他液-氣界面位置相比呈現(xiàn)凹陷狀態(tài),這是由于上一周期激光關閉期間,有部分未熔化的粉末堆積在沉積層上,這一周期溫度升高,粉末熔化吸收了熔池內部的能量使其收縮.并且熔池中部最先達到液相線,所以中部的粉末最先熔化,使得熔池中部凹陷較為明顯.此時熔池內部的流動呈細長的橢圓形,并且熔池內部最大流速為260 mm·s-1,熔池寬度和沉積層高度分別為0.96、0.36 mm.而后粉末熔化,激光熱源持續(xù)向熔池內部輸入能量,使得熔池內熱運動加劇,上表面凸起,如圖4(c)所示,最大流速為410 mm·s-1.此時熔池內部的流動形狀相比上一時刻更趨向于圓形.隨著激光熱源進一步的移動以及同步粉末的注入,熔池上表面中部再次凹陷,但相比圖4(b)其凹陷的程度更小,如圖4(d)所示,這是因為激光熱源溫度升高受脈沖周期的限制,此時熔池內部的溫度沒有升到最高,粉末熔化繼續(xù)吸收熔池內部的能量.熔池內部的圓形流動又向橢圓狀發(fā)展,熔池的流速相比之前要大,分析是由于熱量的持續(xù)輸入增大了熔池內溫度差,進而使流體驅動力增大,流速增大.
隨后由圖4(e)可見,熱源溫度圈擴大,熱量持續(xù)輸入,使得熔池內熱運動加強,上表面又恢復凸起狀態(tài),熔池內部細長的橢圓對流又趨向于圓形對流,此時熔池內最大流速為540 mm·s-1,熔池寬度和沉積層高度分別為0.99、0.38 mm.在激光關閉的37.5 ms期間,由于沒有外部激光作用,如圖4(f),熔池尺寸明顯縮小,熔池邊緣處溫度降低,表面張力與浮力也相應降低,熔池內部對流減弱.此時液態(tài)金屬沿等溫線向中部逐漸降溫凝固,熔池內部對流圈逐漸減小.隨著溫度降低,整個沉積層逐漸凝固.
(a)脈沖波
下一周期,激光重新打開,已經(jīng)凝固的沉積層再次熔化,熔池演變過程與上一周期相同,PW模式下會重復熔池形成過程.
圖5為CW-LMD過程中熔池的具體演變過程,此選取位置是以x=1.026 mm為起始,y=0 mm 的平面.圖5(b)中A所指表示熔池中部.對比圖4可以看到其演變過程與PW模式下類似,但又存在差異.從圖5(b)中可以看到熔池中部率先升溫,由于激光能量的輸入,熔池中部熱運動加劇,上表面凸起,此時熔池剛形成,內部流動不規(guī)律.粉末的注入、熔化,吸收了熔池內部的能量,使得中部凹陷,如圖5(c)所示,此時由于熔池中部的凹陷作用,內部流動形狀由圓形偏向橢圓,液態(tài)金屬流速增大.隨后溫度進一步升高,熔池中部相對上一步熔池中部呈凸起狀態(tài),如圖5(d)所示,此時內部呈現(xiàn)圓形對流.由圖5(e)可見熔池中部又發(fā)生凹陷,熔池內部的流動又從圓形趨于細長橢圓狀,內部最大流速在500 mm·s-1左右.由圖5(f)可見熔池上表面已經(jīng)較為平穩(wěn),內部呈現(xiàn)兩個圓形對流圈,最大流速達600 mm·s-1左右,之后隨著溫度升到最高,激光熱源能量達到最高并且輸入較為穩(wěn)定,熔池的流動也相對穩(wěn)定.同時從圖5(b)到圖5(f)熔池寬度和沉積層高度由1.07、0.34 mm變化到1.21、0.36 mm.
(a)連續(xù)波
隨著加工的進行,由于CW模式下激光熱源不間斷,相比PW模式,CW模式基體熔化的區(qū)域更大,基體的滲透深度加大.分析PW模式激光關閉時,溫度降低,限制了基體繼續(xù)向下滲透,導致滲透深度比CW模式?。谌鄢匮葑冞^程中,CW和PW模式熔池上表面都會經(jīng)歷凹陷-凸起-凹陷的波動過程,但明顯CW模式下熔池波動較小,熔池內部液態(tài)金屬的流動方向和流速較為穩(wěn)定.兩種激光模式下內部對流都有從圓形到橢圓再到圓形的趨勢.在連續(xù)波的情況下,熱源是恒定的,則熔池形成后內部的流動也相對恒定.隨著激光束的移動,熔池呈準穩(wěn)態(tài)演變.
圖6、7所示為旁軸相機監(jiān)測的連續(xù)與脈沖激光模式下沉積過程中熔池沿掃描方向的視圖,紅色圈出的大量白色光亮處為熔池所在,旁邊分散的小光斑為飛濺的金屬粉末.在圖6(a)監(jiān)測的結果中可以看到箭頭所指的A部分相比圖6(b)呈現(xiàn)凹陷的狀態(tài),而圖6(b)則呈凸起狀態(tài).同樣在圖7監(jiān)測的脈沖激光下熔池的表面也有一定的波動,圖7(a)中A所指的位置在圖7(b)中明顯凹陷.則熔池液-氣界面存在波動,模擬的結果與實驗監(jiān)測相對應.
進一步探討不同激光模式下熔池的上表面,即液-氣界面波動情況,圖8為兩種激光模式下的熔池上表面中部z坐標波動情況,水平軸分別為沉積時間和x坐標值.兩種激光模式下沉積層都有一個累積的過程.可以看到在CW模式下,波動幅度的數(shù)值先增大后穩(wěn)定,并呈現(xiàn)出周期性波動,如圖8(b)所示.而PW模式受周期性影響,波動間隔相對較大,但從圖8(a)可見隨著沉積的進行,熔池上表面的波動同樣呈現(xiàn)出規(guī)律性,每一周期有3次波動,第1次波動較小,因為此時熔池剛形成,熔池尺寸較小,加之熔池內部的熱量較少,則表面波動范圍受限制;第2次波動最大,此時熔池已經(jīng)達到一定尺寸,內部熱量達到一定程度,導致表面波動變大;而第3次波動處于激光關閉期間,此時沒有熱量輸入,波動為內部流動驅動的結果.對比看出PW模式下熔池上表面波動幅度更大,具體上表面z坐標差值Δz數(shù)值見表2.兩種激光模式下z坐標最大差值隨周期N的變化如圖9所示,CW模式下熔池上表面Δzmax增大至0.030 1 mm,而后下降直至穩(wěn)定在0.020 0 mm左右,分析是由于在熔池形成過程中,激光能量持續(xù)輸入,溫度逐漸升高,熔池內熱運動也隨之增大,進而帶動熔池表面波動增大;后期溫度升到最高,激光輸入的能量保持在一定的水平,熔池內流體驅動力穩(wěn)定,則表面波動也較為穩(wěn)定.而PW模式的波動幅度較CW更大,且一直在增加,后期的時候有所減緩,最后每一周期Δzmax穩(wěn)定在0.036 mm左右,約為CW模式穩(wěn)定下的1.8倍.結果表明脈沖激光使得熔池上表面的波動幅度變大,但具有一定的規(guī)律性.
(a)監(jiān)測圖1
(a)監(jiān)測圖1
(a)PW-LMD
表2 熔池上表面中部z坐標差值Δz數(shù)值表Tab.2 Value table of z coordinate difference Δz of middle upper surface of molten pool
圖9 每周期內z坐標最大差值ΔzmaxFig.9 Maximum difference Δzmax of z coordinate in each period
圖10為PW-LMD過程中0.649~0.651 ms內熔池熔渣的運動軌跡.隨著熔池內部流動以及表面的波動,一部分熔渣留在熔池邊緣,一部分熔渣則被分離出,飛濺到非沉積層區(qū)域,如圖10(a)和(c)中的熔渣A和B.還有一部分熔渣C隨著熔池的演化變小、變分散.最終脈沖激光形成的熔池熔渣較少且較小,如圖10(e)所示.圖11為兩種激光模式下沉積層表面對比,可以看到PW模式下熔化沉積表面呈現(xiàn)很明顯的魚鱗狀,同時其表面球形熔渣顆粒比CW模式少,則熔池的較大波動可以較好地平衡未熔化的熔渣顆粒.熔池波動是決定最終零件表面粗糙度的重要參數(shù).文獻[6]觀察到熔池平均表面波動與零件表面粗糙度成反比關系,并且熔池較大的表面波動可能有效地增強熔池中粉末顆粒的混合和熔化,防止部分同化顆粒.表明脈沖激光所帶來的大波動是有利的.
(a)軌跡1
(a)CW-LMD
圖12為兩種激光模式下熔池尺寸和最大流速及最高溫度對比.圖12(a)、(b)中5個節(jié)點選取于第5個脈沖周期,PW模式下的激光打開期間,熔池高度由0.622 0 mm增大到0.707 4 mm,熔池寬度由3.099 mm增大到3.312 mm;激光關閉后10 ms內,熔池高度減小到0.627 5 mm,寬度減小到3.190 mm.可以看到PW模式下,熔池高度和寬度變化趨勢相同.而CW模式下熔池高度最大為0.793 7 mm,最小為0.756 3 mm,基本穩(wěn)定在0.75~0.80 mm;熔池寬度最大為3.423 mm,最小為3.399 mm,同樣較為穩(wěn)定.這是因為CW模式熱源輸入較為穩(wěn)定,激光光源一直存在,使得其熔池尺寸變化不大;而PW模式下激光關閉期間無熱量輸入,沉積層溫度自然降低至固相線以下,熔池逐漸凝固直至消失.
(a)熔池高度
圖12(c)、(d)選取的是位于300~600 ms的4個脈沖周期.在圖12(c)中可以看到,由于PW模式下熱源間斷性輸入,熔池最大流速呈周期性變化,最大為568 mm·s-1,關閉期間流速降低至3 mm·s-1左右.由于PW模式下激光關閉期間無熱量輸入,其熔池熱累積較少,又流體驅動力與溫度有關,則PW模式流體驅動力相對較小,其內部流速無法達到CW模式下的水平.在CW模式下熔池內部流速最大為642 mm·s-1,最小為603 mm·s-1,基本穩(wěn)定在600 mm·s-1左右,與文獻[9]報告的數(shù)量級相同.圖12(d)為模擬的動態(tài)熔池內部最高溫度,可以看到PW模式下熔池內最高溫度呈周期性變化,同樣由于熱累積的問題,PW模式下的熔池最高溫度小于CW模式,而CW模式下最高溫度在2 200 ℃左右波動.由圖12可以得出,脈沖激光的周期性使得在LMD加工過程中的部分熔池特征呈周期性變化,又由于熱累積比CW模式少,使得熔池部分特征小于CW模式.
(1)模擬的幾何形狀和溫度變化與實驗結果基本一致.在PW模式下,模擬的沉積層高度比CW模式下低0.079 mm,滲透深度比CW模式下小0.039 mm,但兩者寬度大小相似.可見激光模式對沉積層高度和滲透深度有較大的影響,而對沉積層寬度的影響不大.此外PW模式下的溫度經(jīng)歷多個振蕩周期變化,無法一直處于固相線以上,使得金屬經(jīng)歷多次再熔再凝的循環(huán).
(2)兩種模式下熔池上表面中部都會經(jīng)歷凹陷-凸起-凹陷的波動過程,相對應的熔池內部流動圈呈現(xiàn)圓形到橢圓再到圓形的變化.CW模式后期熔池會呈準穩(wěn)態(tài)演變,其熔池上表面波動幅度在0.02 mm左右,并且內部液態(tài)金屬保持著相對平穩(wěn)的循環(huán)流動.而PW模式由于激光關閉期間沉積層凝固,每一周期都會重復熔池形成過程,熔池演變前期內部流動較為不穩(wěn)定.沉積后期的熔池上表面波動幅度也呈現(xiàn)出規(guī)律性變化,后期有所減緩,最后每一周期Δzmax穩(wěn)定在0.036 mm左右,是CW模式穩(wěn)定下的1.8倍.同時熔池的波動可以較好地平衡未熔化的熔渣顆粒,使得脈沖模式下沉積層表面球形熔渣顆粒比CW模式少.
(3)脈沖激光使其熔池內部最大流速及溫度呈周期性變化,其熱累積少,能達到的最大流速和最高溫度都低于CW模式.并且在一個周期內,熔池高度和寬度的變化趨勢相同.PW模式下溫度、流速、熔池尺寸等周期性的變化會影響冷卻速率,可能進一步影響LMD的組織結構,這里本文沒有進一步的研究,后續(xù)可以進行相關的微觀組織研究.