国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2種昆蟲(chóng)病原真菌對(duì)草地貪夜蛾體表侵染模式的掃描電鏡觀察

2021-08-02 18:49雷妍圓官昭瑛ShoaibFreedSyedMuhammadZakaAbidHussin章玉蘋(píng)
關(guān)鍵詞:掃描電鏡草地貪夜蛾

雷妍圓 官昭瑛 Shoaib Freed Syed Muhammad Zaka Abid Hussin 章玉蘋(píng)

摘要:【目的】在前期篩選獲得對(duì)草地貪夜蛾高效致病真菌球孢白僵菌(Beauveria bassiana)菌株GZSL-1和玫煙色蟲(chóng)草(Cordyceps fumosorosea)菌株IFCF01的基礎(chǔ)上,進(jìn)一步明確2株菌株在草地貪夜蛾體表的侵染模式,為闡明菌株致病機(jī)理,提高昆蟲(chóng)病原真菌對(duì)草地貪夜蛾的防效提供理論依據(jù)。【方法】利用掃描電鏡觀察草地貪夜蛾2齡幼蟲(chóng)分別接種菌株GZSL-1和IFCF01(孢子懸浮液濃度為1.0×107孢子/mL)后分生孢子在幼蟲(chóng)體表附著、萌發(fā)、穿透和增殖的過(guò)程?!窘Y(jié)果】菌株GZSL-1和IFCF01萌發(fā)后均可形成附著胞,草地貪夜蛾幼蟲(chóng)體表結(jié)構(gòu)對(duì)2株菌株分生孢子萌發(fā)、附著和穿透芽管長(zhǎng)度有不同程度的影響。2株菌株在各結(jié)構(gòu)區(qū)均有較高的萌發(fā)率(>90.00%)和附著胞率(>80.00%),在平緩結(jié)構(gòu)區(qū)比瘤狀突起結(jié)構(gòu)區(qū)觀察到更短的穿透芽管。在各結(jié)構(gòu)區(qū),菌株GZSL-1形成的穿透芽管長(zhǎng)度均短于菌株IFCF01相應(yīng)的芽管長(zhǎng)度,在平緩結(jié)構(gòu)區(qū),菌株GZSL-1的穿透芽管長(zhǎng)度顯著短于菌株IFCF01(P<0.05)。菌株GZSL-1和IFCF01分生孢子接種后分別在16和8 h內(nèi)萌發(fā),在24和32 h內(nèi)普遍出現(xiàn)穿透結(jié)構(gòu)穿透草地貪夜蛾幼蟲(chóng)體壁。2株菌株的初級(jí)和次級(jí)分生孢子分別在接種后72和96 h內(nèi)出現(xiàn)?!窘Y(jié)論】掃描電鏡觀察證實(shí)球孢白僵菌菌株GZSL-1和玫煙色蟲(chóng)草菌株IFCF01對(duì)草地貪夜蛾具有高致病性,揭示了病原真菌分生孢子在草地貪夜蛾蟲(chóng)體上的侵染過(guò)程,結(jié)果為后續(xù)2株菌株的改良及田間應(yīng)用打下理論基礎(chǔ)。

關(guān)鍵詞: 球孢白僵菌;玫煙色蟲(chóng)草;草地貪夜蛾;體表侵染;掃描電鏡

中圖分類(lèi)號(hào): S433.4;Q965.9? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)03-0578-11

Mode of infection on the cuticle of Spodoptera frugiperda (Lepidoptera: Noctuidae) by two entomopathogenic fungi species revealed by scanning electron microscopy

LEI Yan-yuan1, GUAN Zhao-ying2, Shoaib Freed3, Syed Muhammad Zaka3,

Abid Hussin4, ZHANG Yu-ping1*

(1 Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou? 510640, China; 2 Shenzhen Institute of Technology, Shenzhen, Guangdong? 518116, China; 3Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan? 60800, Pakistan; 4College of Agricultural and Food Sciences, King Faisal University, Hofuf? 31982, Saudi Arabia)

Abstract:【Objective】In this study,based on the previous screening of the high pathogenic Beauveria bassiana strain GZSL-1 and Cordyceps fumosorosea strain IFCF01 of Spodoptera frugiperda, the purpose of this study was to better understand the mode of action of these entomopathogenic fungi on the cuticle of S. frugiperda, and provide a theoretical basis for elucidating the pathogenicity mechanism of these two strains in order to achieve a constant and high control efficacy. 【Method】The attachment, germination, penetration and conidial reproduction of B. bassiana and C. fumosorosea to 2nd instar larvae of S. frugiperda infected with strains GZSL-1 and IFCF01(1.0×107 conidia/mL) were observed using scanning electron microscope(SEM). 【Result】Germinated conidia of both strains formed appressoria, and surface topography of S. frugiperda larvae affected germination of conidia, attachment and the length of penetrating germ tube. The two strains showed similarities in terms of high germination rate(>90.00%) and appressoria rate(>80.00%). There were shor-ter germ tubes grew before penetrating on gentle surface topography than on strumae surface topography. Strain IFCF01 exhibited longer penetrating germ tubes compared to GZSL-1 on all surface topographies. Besides, strain GZSL-1 exhibited significantly shorter penetrating germ tubes compared to strain IFCF01 on gentle surface topography(P<0.05). Strains GZSL-1 and IFCF01 began to germinate within 16 and 8 h, and penetrations were commonly observed within 24 and 32 h. After 72 and 96 h post inoculation, primary and secondary conidiophore emerged and the mycelial covered the entire cuticular surface. 【Conclusion】SEM observation reveals the infection process of the highly pathogenic B. bassiana strain GZSL-1 and C. fumosorosea strain IFCF01 against S. frugiperda, the results of this study will further provide the theoretical basis and reference for strain improvement and field application.

Key words: Beauveria bassiana; Cordyceps fumosorosea; Spodoptera frugiperda; cuticle infection; scanning electron microscopy

Foundation item: National Key Research and Development Program of China(2019YFD0300104); Science and Technology Planning Project of Guangdong(2020A1414010040); International Science and Technology Organization Cooperation Project of “One Belt And One Road” of Guangzhou Association for Science & Technology(G20210101005); Scientific Research Foundation of Shenzhen Institute of Technology(2111016)

0 引言

【研究意義】生物防治是害蟲(chóng)綜合治理(IPM)的基本策略,在各種常用的生物防治技術(shù)中,基于昆蟲(chóng)病原真菌的微生物防治有助于減輕化學(xué)農(nóng)藥對(duì)人、畜和天敵昆蟲(chóng)的毒害,促進(jìn)生態(tài)平衡的良性循環(huán),有利于綠色農(nóng)產(chǎn)品的生產(chǎn)及以出口創(chuàng)匯為目標(biāo)的農(nóng)業(yè)產(chǎn)業(yè)化(何恒果等,2004;楊普云等,2018;張?jiān)嫉龋?019;張志春等,2020)。病原真菌防治害蟲(chóng)的過(guò)程,是一種生命替代另一種生命的過(guò)程。不像其他病原微生物(如細(xì)菌、病毒)需要被寄主攝取,真菌通過(guò)主動(dòng)侵染控制蟲(chóng)體而不依賴寄主的生活習(xí)性。真菌接觸至寄主昆蟲(chóng)體表后,需要在一定的溫、濕度下經(jīng)一定時(shí)間侵入,因此,昆蟲(chóng)病原真菌侵染成功與否,與分生孢子在寄主體表的侵染過(guò)程密切相關(guān)(王音等,2005)。分生孢子對(duì)寄主表皮的非特異性附著是侵染過(guò)程的起始事件(Rangel et al.,2008;Chouvenc et al.,2009),隨后孢子萌發(fā)產(chǎn)生芽管或附著胞,生長(zhǎng)為菌絲(Amóra et al.,2010),依靠這些侵染構(gòu)造穿透寄主體壁進(jìn)入體腔,克服寄主細(xì)胞和體液免疫防御,吸取寄主體內(nèi)的養(yǎng)分而生長(zhǎng)、增殖,在適宜的環(huán)境條件下,菌體從寄主體內(nèi)穿出產(chǎn)生新的分生孢子并引起水平傳播(Khun et al.,2021)。昆蟲(chóng)表皮是抵御病原真菌侵染的第一道屏障(Butt et al.,1995),由于不同昆蟲(chóng)間表皮的物理結(jié)構(gòu)和化學(xué)組成存在差異,導(dǎo)致一種病原真菌對(duì)不同種類(lèi)昆蟲(chóng)或同種昆蟲(chóng)不同蟲(chóng)態(tài)、齡期的防效不同,表現(xiàn)為菌株對(duì)不同靶標(biāo)昆蟲(chóng)的致病力差異和寄主專(zhuān)化現(xiàn)象(蒲順昌等,2013)。草地貪夜蛾(Spodoptera frugiperda)是熱帶和亞熱帶許多國(guó)家的重大遷飛性害蟲(chóng),其具有寄主范圍廣泛、取食能力強(qiáng)和抗藥性嚴(yán)重等特點(diǎn),防控難度大(Casmuze et al.,2010;Early et al.,2018;Montezano et al.,2018;姜玉英等,2019;張磊等,2019)。自2019年我國(guó)首次發(fā)現(xiàn)草地貪夜蛾入侵,各?。▍^(qū)、市)、地級(jí)市的科研院所及有關(guān)部門(mén)加緊了對(duì)其應(yīng)急預(yù)案及防控工作長(zhǎng)效機(jī)制的構(gòu)建,利用昆蟲(chóng)病原真菌對(duì)該蟲(chóng)進(jìn)行微生物防治具有良好應(yīng)用前景,是當(dāng)前防控中的一個(gè)研究熱點(diǎn)?!厩叭搜芯窟M(jìn)展】球孢白僵菌(Beauveria bassiana)和玫煙色蟲(chóng)草(Cordyceps fumosorosea)是研究和應(yīng)用較為廣泛的昆蟲(chóng)病原真菌,全球先后有171個(gè)真菌殺蟲(chóng)劑產(chǎn)品問(wèn)世,其中以球孢白僵菌和玫煙色蟲(chóng)草為有效成分的制劑分別占33.9%和5.8%(de Faria and Wraight,2007;Hussain et al.,2014),在多種農(nóng)林害蟲(chóng)微生物防治中發(fā)揮了重要作用(蒲蟄龍和李增智,1996;Zimmermann,2008;Arthurs and Dara,2019)。關(guān)于球孢白僵菌和玫煙色蟲(chóng)草與草地貪夜蛾的互作,國(guó)外已有大量且系統(tǒng)的研究報(bào)道(Bouamama et al.,2010;Akutse et al.,2020;Corrêa et al.,2020;González et al.,2020;Russo et al.,2020),國(guó)內(nèi)相關(guān)研究才剛起步,特別是本地病原真菌與草地貪夜蛾互作體系中菌體侵染模式與寄主致病性的相關(guān)性尚無(wú)報(bào)道。在昆蟲(chóng)病原真菌常見(jiàn)侵染結(jié)構(gòu)中,金龜子綠僵菌(Metarhizium ani-sopliae)分生孢子通過(guò)形成附著胞結(jié)構(gòu)對(duì)西花薊馬(Frankiniella occidentalis)表皮進(jìn)行穿透,類(lèi)似的還有淡紫擬青霉(Paecilomyces lilacinu)對(duì)爪哇根結(jié)線蟲(chóng)(Meloidogyne javanica)(Holland et al.,2002)、兩型蠟蚧菌(Lecanicillium dimorphum)對(duì)棕櫚紅蚧(Phoenicococcus marlatti)(Asensio et al.,2005)和蠟蚧輪枝菌(L. lecanii)對(duì)擬褐圓蚧(Coccus hesperidum)(Liu et al.,2011)等。其他的諸如舞毒蛾噬蟲(chóng)霉(Entomophaga maimaiga)和球孢白僵菌,直接以菌絲或芽管通過(guò)表皮上的氣孔進(jìn)行穿透,而不需要形成附著胞(Hajek and Eastburn,2003;Asensio et al.,2005;Mauchline et al.,2011)。不同種類(lèi)病原真菌或同種病原真菌不同菌株在侵染速度上也存在差異。金龜子綠僵菌侵染小菜蛾(Plutella xylostella)約在接種后22 h以穿透釘侵入表皮(王音等,2005),侵染微小扇頭蜱(Rhipicephalus microplus)在接種后48 h觀察到以芽管從排泄孔直接穿透(Bernardo et al.,2018);玫煙色蟲(chóng)草侵染菜青蟲(chóng)(Pieris rapae)(張奐等,2007)和小菜蛾(Lei et al.,2021)均在接種后24 h以芽管穿透體壁進(jìn)入寄主血腔;球孢白僵菌接種玉米螟(Ostrinia nubilalis)后24 h可觀察到大量孢子萌發(fā)并以芽管或菌絲穿透體壁(劉忱和郭志紅,2019),而接種光肩星天牛(Anoplophora glabripennis)則需48 h才出現(xiàn)孢子萌發(fā)和穿透現(xiàn)象(鄧彩萍等,2012)?!颈狙芯壳腥朦c(diǎn)】本課題組通過(guò)前期對(duì)草地貪夜蛾昆蟲(chóng)病原真菌種類(lèi)及防治潛能的評(píng)估(雷妍圓等,2020a,2020b),鑒定出對(duì)草地貪夜蛾具有高致病性的病原真菌球孢白僵菌菌株GZSL-1和玫煙色蟲(chóng)草菌株IFCF01,其在1.0×107孢子/mL的孢子濃度下對(duì)草地貪夜蛾2齡幼蟲(chóng)的致死中時(shí)(LT50)分別為2.77和2.22 d,致死中濃度(LC50)分別為1.17×105和3.42×103孢子/mL,表現(xiàn)出極大的生防潛力,但關(guān)于這2種病原真菌在草地貪夜蛾體表侵染模式尚未開(kāi)展相關(guān)研究,不同菌株間孢子萌發(fā)行為、侵入方式的差異仍不清楚?!緮M解決的關(guān)鍵問(wèn)題】以球孢白僵菌菌株GZSL-1和玫煙色蟲(chóng)草菌株IFCF01為材料,利用掃描電鏡對(duì)球孢白僵菌和玫煙色蟲(chóng)草侵染草地貪夜蛾幼蟲(chóng)過(guò)程中侵染結(jié)構(gòu)的形成和表皮穿透過(guò)程進(jìn)行超微結(jié)構(gòu)研究,以明確高效菌株對(duì)草地貪夜蛾的侵染模式,探討寄主與病原真菌間的互作關(guān)系,為闡明昆蟲(chóng)病原真菌的生態(tài)適應(yīng)性和毒力進(jìn)化,提高昆蟲(chóng)病原真菌對(duì)草地貪夜蛾的防效提供理論依據(jù)。

1 材料與方法

1. 1 供試蟲(chóng)源和菌株培養(yǎng)

草地貪夜蛾幼蟲(chóng)采集自廣東省廣州市白云區(qū)鐘落潭鎮(zhèn)廣東省農(nóng)業(yè)科學(xué)院白云基地種植的粵甜28甜玉米(Zea mays L.)植株上,在實(shí)驗(yàn)室用玉米葉和果穗飼養(yǎng)至化蛹,待其羽化產(chǎn)卵后建立實(shí)驗(yàn)室種群作為供試蟲(chóng)源。室內(nèi)飼養(yǎng)條件為(26±1)℃,相對(duì)濕度60%~90% ,光周期L∶D=14 h∶10 h。

供試球孢白僵菌菌株GZSL-1和玫煙色蟲(chóng)草菌株IFCF01保存于廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,于-80 ℃下保藏。菌株接種于薩氏(SDAY)培養(yǎng)基(葡萄糖40 g/L,蛋白胨10 g/L,酵母膏10 g/L,瓊脂20 g/L),于溫度(28±1)℃,相對(duì)濕度(70±5)%,全黑暗的恒溫培養(yǎng)箱中培養(yǎng)20 d后供試。

1. 2 接種及取樣方法

用滅菌軟毛筆將SDAY培養(yǎng)基上的供試菌株分生孢子粉刷入裝有滅菌0.05%吐溫-80溶液的燒杯(50 mL)中,經(jīng)渦流振蕩,點(diǎn)樣血球計(jì)數(shù)板,配制濃度為1.0×107孢子/mL的孢子懸浮液,作為接種的菌液。每種菌株為1個(gè)處理,以滅菌0.05%吐溫-80溶液處理為對(duì)照。采用浸蟲(chóng)法處理草地貪夜蛾幼蟲(chóng),選取個(gè)體大小一致的草地貪夜蛾2齡幼蟲(chóng),放入不同菌株孢子懸浮液浸漬10 s后挑出,置于濾紙上吸去多余水分,移至皿底墊有濕潤(rùn)濾紙片的培養(yǎng)皿(d=7.5 cm)中集體飼養(yǎng)(5頭/皿)(王道通等,2020),皿內(nèi)放入新鮮玉米葉供其取食。每個(gè)處理25頭幼蟲(chóng),3次重復(fù),處理后的幼蟲(chóng)置于人工氣候箱中飼養(yǎng)[溫度(26±1)℃,相對(duì)濕度(80±5)%,光周期L∶D=14 h∶10 h],每天觀察幼蟲(chóng)存活情況及感染病蟲(chóng)的外部特征,將死亡幼蟲(chóng)保濕培養(yǎng),根據(jù)前期研究結(jié)果(雷妍圓等,2020a,2020b),分別于接種后第8、16、24、32、48、72和96 h依次取樣,將樣品置于2.5%戊二醛進(jìn)行前固定。

1. 3 掃描電鏡樣品制備及觀察

取1.2中收集和固定好的感菌草地貪夜蛾幼蟲(chóng),用0.1 mol/L磷酸緩沖液漂洗3次;1%鋨酸后固定,再次用0.1 mol/L磷酸緩沖液漂洗3次;然后以50%、70%、80%、90%、95%和100%的乙醇梯度脫水,以醋酸異戊酯過(guò)渡,最后將樣品置于臨界點(diǎn)干燥儀干燥,再將干燥好的樣品粘臺(tái),以離子濺射儀噴金鍍膜,在掃描電鏡(S-3400N,Hitachi)下觀察拍照。

1. 4 分生孢子生長(zhǎng)參數(shù)測(cè)量及數(shù)據(jù)處理

當(dāng)分生孢子的芽管長(zhǎng)度與分生孢子寬度相等時(shí),視為分生孢子已萌發(fā)(Safavi et al.,2007)。當(dāng)牙管末端膨大達(dá)芽管寬度的1.5倍以上時(shí),即視為形成附著胞。穿透芽管的長(zhǎng)度為從分生孢子萌發(fā)點(diǎn)到寄主表皮穿透點(diǎn)間的長(zhǎng)度。各菌株接種后16 h,分別在草地貪夜蛾幼蟲(chóng)體表不同結(jié)構(gòu)區(qū)統(tǒng)計(jì)萌發(fā)孢子數(shù)、附著胞形成數(shù)和孢子總數(shù),計(jì)算孢子萌發(fā)率和附著胞率,每個(gè)結(jié)構(gòu)區(qū)選取25個(gè)分生孢子,每株菌株處理重復(fù)3頭幼蟲(chóng)。接種后32 h,測(cè)量不同菌株處理的幼蟲(chóng)體表不同結(jié)構(gòu)區(qū)內(nèi)穿透芽管長(zhǎng)度,在電鏡視野下于蟲(chóng)體每種結(jié)構(gòu)區(qū)內(nèi)隨機(jī)測(cè)量5個(gè)分生孢子,同一種結(jié)構(gòu)區(qū)共計(jì)15個(gè),每種菌株處理重復(fù)3頭幼蟲(chóng)。

試驗(yàn)數(shù)據(jù)經(jīng)Excel 2013整理后,使用SPSS 20.0進(jìn)行處理分析,采用單因素方差分析(One-way ANOVA)進(jìn)行差異顯著性分析及Tukey HSD事后檢驗(yàn)(α=0.05)。

2 結(jié)果與分析

2. 1 草地貪夜蛾幼蟲(chóng)體表構(gòu)造特點(diǎn)

在電鏡視野下,草地貪夜蛾幼蟲(chóng)不同部位體表外形構(gòu)造存在較大差異,根據(jù)外形結(jié)構(gòu)特征,將其分為瘤狀突起結(jié)構(gòu)區(qū)和平緩結(jié)構(gòu)區(qū)2類(lèi)(圖1)。瘤狀突起結(jié)構(gòu)區(qū)包括體節(jié)背、腹面及靠近剛毛窩、氣門(mén)的區(qū)域,其特點(diǎn)是體表由許多排列較規(guī)則的瘤狀或刺瘤狀突起構(gòu)成,突起基部明顯分離,突起間存在短距離的平緩區(qū)域,平緩區(qū)域大小和瘤的長(zhǎng)度因具體部位而異(圖1-A)。平緩結(jié)構(gòu)區(qū)包括頭殼、背板、胸足、腹足、臀足、足節(jié)間膜、足末端、趾鉤、氣門(mén)、剛毛窩、剛毛表面和臀節(jié)等區(qū)域,其特點(diǎn)是表面平滑或僅有微小起伏(圖1-B)。

2. 2 球孢白僵菌和玫煙色蟲(chóng)草在草地貪夜蛾幼蟲(chóng)體表附著和萌發(fā)

電鏡視野下,2種病原真菌的分生孢子均能附著在草地貪夜蛾幼蟲(chóng)體表不同區(qū)域,包括剛毛(圖2-A)、剛毛窩(圖2-A)、氣門(mén)內(nèi)(圖2-B)及胸足(圖2-C)等部位。2株菌株表現(xiàn)出較為相似的孢子萌發(fā)行為。接種菌株GZSL-1和IFCF01后,孢子分別在16和8 h萌發(fā)(圖2-A)。孢子萌發(fā)過(guò)程中產(chǎn)生2種類(lèi)型的芽管。第1種,分生孢子的芽管頂端膨大產(chǎn)生附著胞結(jié)構(gòu)(圖2-D和圖2-G),緊緊固著在幼蟲(chóng)表皮上;芽管具有向幼蟲(chóng)體表定向生長(zhǎng)的能力,并進(jìn)一步發(fā)育形成單芽管(圖2-E和圖2-H)。第2種,孢子萌發(fā)后形成雙芽管(圖2-F和圖2-I),芽管沿著表皮生長(zhǎng)較長(zhǎng),且在菌株IFCF01的芽管上還觀察到進(jìn)一步出現(xiàn)分枝(圖2-I)。2種病原真菌的分生孢子和附著胞表面皆可見(jiàn)黏液層(圖2-D和圖2-G)。

2. 3 球孢白僵菌和玫煙色蟲(chóng)草在草地貪夜蛾幼蟲(chóng)體表的菌絲生長(zhǎng)及穿透過(guò)程

菌株GZSL-1和IFCF01均觀察到在草地貪夜蛾幼蟲(chóng)體表各結(jié)構(gòu)區(qū)上的穿透行為。如圖3所示,2種病原真菌分別在平緩結(jié)構(gòu)區(qū)(圖3-A和圖3-D)和瘤狀突起結(jié)構(gòu)區(qū)(圖3-B和圖3-E)以芽管直接穿透幼蟲(chóng)表皮,或芽管以原有直徑延伸較長(zhǎng)距離,形成菌絲并超過(guò)孢子縱軸長(zhǎng)度,經(jīng)幾次彎折沿幼蟲(chóng)體壁方向定向生長(zhǎng),當(dāng)?shù)竭_(dá)適合入侵位置時(shí),以菌絲直接穿透(圖3-C和圖3-F)。至接種后24 h,穿透行為普遍增多,在幼蟲(chóng)體表各區(qū)域包括剛毛和剛毛窩附近也觀察到菌絲纏繞和穿透現(xiàn)象,芽管端部與幼蟲(chóng)體壁接觸處可見(jiàn)黏液層(圖3-G)。隨著菌絲的生長(zhǎng),至接種后32 h,菌絲形成次級(jí)分枝進(jìn)行穿透,穿透點(diǎn)可見(jiàn)穿透孔(圖3-H和圖3-I)。

2. 4 球孢白僵菌和玫煙色蟲(chóng)草在草地貪夜蛾幼蟲(chóng)體表的次級(jí)侵染

昆蟲(chóng)病原真菌穿透草地貪夜蛾幼蟲(chóng)表皮進(jìn)入體內(nèi),蟲(chóng)體內(nèi)部提供的營(yíng)養(yǎng)被大量消耗,菌體從幼蟲(chóng)體內(nèi)穿出,在體外繼續(xù)生長(zhǎng)。至接種后48 h,2種病原真菌的菌絲體幾乎包圍了整個(gè)蟲(chóng)體(圖4-A和圖4-D);接種后72 h,可見(jiàn)初級(jí)分生孢子形成(圖4-B和圖4-E)。菌株GZSL-1分生孢子梗著生于營(yíng)養(yǎng)菌絲上,產(chǎn)孢細(xì)胞在菌絲上簇生,基部為球形、近球形,產(chǎn)孢軸較長(zhǎng),軸上具小齒突,呈“之”字形彎曲(圖4-B)。菌株IFCF01的菌絲分隔,光滑;分生孢子梗直立,產(chǎn)生于菌絲上;瓶梗規(guī)則著生在分生孢子梗上,呈梭形,基部橢圓形膨大,向上逐漸變細(xì)形成一個(gè)細(xì)的頸部(圖4-E)。接種后96 h,新產(chǎn)生的分生孢子聚集成簇,此時(shí)2株菌株均出現(xiàn)二級(jí)至多級(jí)產(chǎn)孢。菌株GZSL-1分生孢子透明、光滑,球形或近球形,大小為1.94 ?m×1.62 ?m(圖4-C),菌株IFCF01分生孢子表面光滑,長(zhǎng)橢圓形,大小為3.69 μm×1.20 μm(圖4-F)。

2. 5 球孢白僵菌和玫煙色蟲(chóng)草在草地貪夜蛾幼蟲(chóng)體表的生長(zhǎng)指標(biāo)

由圖5可知,2種昆蟲(chóng)病原真菌在草地貪夜蛾幼蟲(chóng)表皮各結(jié)構(gòu)區(qū)均有較高的分生孢子萌發(fā)率(>90.00%),且菌株間無(wú)顯著差異(P>0.05,下同)(圖5-A)。與菌株GZSL-1相比,菌株IFCF01的附著胞率稍高,菌株GZSL-1和IFCF01在瘤狀突起結(jié)構(gòu)區(qū)及平緩結(jié)構(gòu)區(qū)的附著胞率分別為(85.33±2.31)%、(82.67±4.62)%和(92.00±6.93)%、(88.00±4.00)%,但2株菌株及各結(jié)構(gòu)區(qū)間無(wú)顯著差異,均高于80.00% (圖5-B)。對(duì)不同結(jié)構(gòu)區(qū)分生孢子萌發(fā)后形成的芽管穿透幼蟲(chóng)體壁時(shí)的長(zhǎng)度進(jìn)行測(cè)量,結(jié)果表明2株菌株的穿透長(zhǎng)度均以瘤狀突起結(jié)構(gòu)區(qū)最長(zhǎng),平緩結(jié)構(gòu)區(qū)的芽管最短。同時(shí),菌株GZSL-1在各結(jié)構(gòu)區(qū)形成的穿透芽管長(zhǎng)度均短于菌株IFCF01相應(yīng)的芽管長(zhǎng)度,特別是在平緩結(jié)構(gòu)區(qū)的芽管長(zhǎng)度差異最大,顯著短于菌株IFCF01(P<0.05)(圖5-C)。

3 討論

昆蟲(chóng)病原真菌侵染與寄主防御在恒定的相互選擇壓力下進(jìn)行,兩者的相互作用有可能引起菌株變異、寄主范圍變化,以及(低毒)菌株經(jīng)由寄主“繼代”時(shí)出現(xiàn)毒力增強(qiáng)(即復(fù)壯)的現(xiàn)象。寄主表皮作為蟲(chóng)菌互作的第一個(gè)接觸點(diǎn)和屏障,對(duì)整個(gè)侵染過(guò)程起決定性作用,即最終決定菌體成功感染或寄主成功抵御真菌(Ortiz-Urquiza and Keyhani,2013)。前人研究表明,寄主表皮結(jié)構(gòu)對(duì)昆蟲(chóng)病原真菌的附著萌發(fā)和致病性有重要影響(Butt et al.,1995)。王音等(2005)報(bào)道金龜子綠僵菌入侵小菜蛾有利部位為表皮平緩結(jié)構(gòu)區(qū)的足部與頭殼部位,其分生孢子在頭殼萌發(fā)后芽管能立即膨大形成附著胞直接刺入,而在表皮起伏變化大的嵴狀突起結(jié)構(gòu)區(qū),芽管無(wú)法迅速發(fā)現(xiàn)合適的附著和穿透區(qū)域,需經(jīng)較長(zhǎng)時(shí)間定向生長(zhǎng)才會(huì)發(fā)生穿透或依表皮結(jié)構(gòu)形成附著胞后穿透,因而從該類(lèi)區(qū)域入侵時(shí)間較平緩區(qū)略為滯后。另有不同觀點(diǎn)認(rèn)為,昆蟲(chóng)的幼蟲(chóng)頭殼強(qiáng)烈骨骼化,該區(qū)域表皮結(jié)構(gòu)光滑且堅(jiān)硬,不利于分生孢子附著。幼蟲(chóng)蛻皮從頭部開(kāi)始,孢子如未能及時(shí)附著,即首先被脫去,因而頭殼并非入侵最有利的薄弱部位。而在表皮有突起的結(jié)構(gòu)區(qū),這些突起恰好成為卡住孢子的良好構(gòu)造,可在一定程度上防止孢子掉落,反而有利于分生孢子附著和侵染(Lei et al.,2021)。蛻皮作為昆蟲(chóng)的一種自我防御,可最大限度降低分生孢子在其表皮上定殖。作為回應(yīng),真菌必須快速萌發(fā)穿透,以逃避寄主的防御行為反應(yīng)。從本研究結(jié)果來(lái)看,2種昆蟲(chóng)病原真菌的分生孢子均觀察到高密度分布在草地貪夜蛾幼蟲(chóng)體表瘤狀突起結(jié)構(gòu)區(qū)和平緩結(jié)構(gòu)區(qū),說(shuō)明菌株對(duì)草地貪夜蛾幼蟲(chóng)體壁具有無(wú)差別性的迅速侵染能力,可攻擊的位點(diǎn)較多,很可能是2株菌株對(duì)草地貪夜蛾致病力較強(qiáng)且致病速度較快的原因之一(雷妍圓等,2020a,2020b)。

根據(jù)侵染過(guò)程的時(shí)間軸,分生孢子在寄主體表的附著和萌發(fā),是昆蟲(chóng)病原真菌成功侵染的先決條件。分生孢子萌發(fā)主要受3個(gè)因素影響:(1)較高的濕度(Liu and Stansly,2009);(2)遇到適合的寄主體壁,因?yàn)橹挥性谔禺愋约闹鞯捏w壁上才有刺激孢子萌發(fā)的物質(zhì)(Gillespie et al.,2002);(3)必須克服昆蟲(chóng)體壁上某些物質(zhì)如抗菌肽、脂肪酸等的抑菌作用(Latgé et al.,1987)。附著胞的產(chǎn)生是大部分昆蟲(chóng)病原真菌在寄主上定殖的前提,對(duì)于建立病原與寄主間的關(guān)系極其重要。有研究表明分生孢子在寄主表皮上的附著能力越強(qiáng),其致病力也越強(qiáng)(Altre et al.,1999)。也有研究認(rèn)為孢子對(duì)寄主的致病力與孢子的萌發(fā)率、附著數(shù)量和附著胞形成之間無(wú)相關(guān)性,而是取決于侵染速度(Ibrahim et al.,2002;Ment et al.,2010)。據(jù)報(bào)道,在煙粉虱(Bemisia tabaci)若蟲(chóng)不同表皮結(jié)構(gòu)區(qū)域觀察到球孢白僵菌分生孢子不同的萌發(fā)行為,在某些區(qū)域,孢子多為單向萌發(fā),而另一些區(qū)域則出現(xiàn)單、雙向萌發(fā),不同結(jié)構(gòu)區(qū)域表皮理化特性與分生孢子間的作用,導(dǎo)致這種不同的萌發(fā)反應(yīng)(Liu et al.,2010)。從本研究來(lái)看,2株菌株的分生孢子均能產(chǎn)生單芽管或雙芽管,均可形成附著胞結(jié)構(gòu),且單、雙芽管在各結(jié)構(gòu)區(qū)皆有分布,并無(wú)特定的選擇偏好性,亦表明附著胞的形成為非專(zhuān)化性,這是否可以認(rèn)為是菌株的一種高效侵染策略仍有待進(jìn)一步研究。還有研究表明,單向萌發(fā)的分生孢子能產(chǎn)生強(qiáng)壯的芽管,且大多發(fā)育為附著胞結(jié)構(gòu),而雙向萌發(fā)的分生孢子則更傾向于生長(zhǎng)為無(wú)穿透行為的菌絲,這種不同的萌發(fā)極性可作為致病力的一個(gè)指標(biāo)(Talaei-Hassanloui et al.,2007)。本研究觀察到的單附著胞現(xiàn)象與上述萌發(fā)方式較為吻合,也與Ghaffari等(2017)的報(bào)道一致,2株菌株均未出現(xiàn)雙附著胞,且單附著胞均由單向萌發(fā)的芽管形成,雙向萌發(fā)的芽管未出現(xiàn)穿透行為,而是通過(guò)芽管進(jìn)一步延長(zhǎng),在草地貪夜蛾幼蟲(chóng)表皮上形成菌絲網(wǎng)絡(luò)結(jié)構(gòu)。此外,電鏡視野下,2株菌株在草地貪夜蛾幼蟲(chóng)表皮附著部位的附著胞分泌黏液物質(zhì),提示寄主表皮的成分刺激了分生孢子活化,幫助其在體壁上附著,提供有利于胞外酶活動(dòng)的環(huán)境,在穿透寄主表皮過(guò)程中發(fā)揮活性(Safavi,2010;Khan et al.,2016)。

分生孢子在寄主體表穿透的速度及數(shù)量,是昆蟲(chóng)病原真菌在寄主體表成功定殖和致病寄主昆蟲(chóng)的關(guān)鍵環(huán)節(jié)(Lei et al.,2021)。綠僵菌分生孢子通常以附著胞結(jié)構(gòu)對(duì)寄主表皮進(jìn)行穿透(St. Leger et al.,1991;樊美珍和李增智,1994)。而本研究中2株菌株均可以附著胞、芽管或菌絲等形式直接穿透草地貪夜蛾幼蟲(chóng)表皮,其入侵形式較多,很可能是影響其致病效率的因素之一。草地貪夜蛾幼蟲(chóng)體表不同結(jié)構(gòu)區(qū)對(duì)附著胞的產(chǎn)生和穿透菌絲的長(zhǎng)度有一定影響。2株菌株在草地貪夜蛾幼蟲(chóng)體表各結(jié)構(gòu)區(qū)萌發(fā)后芽管末端很快膨大形成附著胞,或以芽管直接入侵,其萌發(fā)率和附著胞率均較高。該結(jié)果進(jìn)一步證實(shí)了Butt等(1995)報(bào)道的菌株致病力不僅取決于孢子的萌發(fā),還有分生孢子在體表上的附著力。但并不是所有的昆蟲(chóng)病原真菌都必須產(chǎn)生附著胞后才能侵染寄主昆蟲(chóng)。如金龜子綠僵菌在辣根猿葉甲(Phaedon cochleariae)和油菜金頭跳甲(Psylliodes chrysocephaIa)體表產(chǎn)生的附著胞比在桃蚜(Myzus persicae)和蘿卜蚜(Lipaphis erysimi)上的多,但在蚜蟲(chóng)上即便沒(méi)有附著胞產(chǎn)生,萌發(fā)的芽管同樣也能侵入蚜蟲(chóng)表皮(Butt et al.,1995);球孢白僵菌侵染馬鈴薯甲蟲(chóng)(Leptinotarsa decemlineata)時(shí)通過(guò)附著胞和芽管穿透(Duan et al.,2017),但在侵染棉鈴蟲(chóng)(Heliothis zea)時(shí)并沒(méi)有形成附著胞結(jié)構(gòu)(Pekrul and Grula,1979);玫煙色蟲(chóng)草可以附著胞、芽管或菌絲等多種形式侵染小菜蛾(Lei et al.,2021)。此外,本研究還觀察到菌株IFCF01分生孢子可經(jīng)由幼蟲(chóng)體壁上的氣門(mén)進(jìn)入。類(lèi)似現(xiàn)象在球孢白僵菌對(duì)棉鈴蟲(chóng)的侵染模式中也有報(bào)道(Pekrul and Grula,1979)。與之相反的是,關(guān)于球孢白僵菌對(duì)桑天牛(Apriona germari)的研究結(jié)果顯示氣門(mén)并非理想的突破口,因?yàn)闅忾T(mén)中的過(guò)濾結(jié)構(gòu)成為阻止孢子進(jìn)入的天然屏障(王曉紅等,2009)。

本研究的菌株GZSL-1和IFCF01在草地貪夜蛾2齡幼蟲(chóng)體表萌發(fā)起始時(shí)間稍有差別,菌株IFCF01最早觀察到萌發(fā)是在接種后8 h,菌株GZSL-1是在接種后16 h ,但菌株GZSL-1在接種后24 h已有較多穿透體壁的行為發(fā)生,活躍穿透期在24~32 h,且在平緩結(jié)構(gòu)區(qū)穿透表皮芽管長(zhǎng)度顯著短于菌株IFCF01。菌株IFCF01在接種后32 h 才出現(xiàn)較多穿透行為,活躍穿透期為32~48 h,在各結(jié)構(gòu)區(qū)穿透芽管長(zhǎng)度較前者長(zhǎng)。說(shuō)明菌株GZSL-1比菌株IFCF01對(duì)草地貪夜蛾2齡幼蟲(chóng)具有更快的侵染速度。此前關(guān)于2株菌株的生測(cè)結(jié)果(雷妍圓等,2020a,2020b)顯示,菌株GZSL-1對(duì)草地貪夜蛾2 齡幼蟲(chóng)的LT50比菌株IFCF01快0.55 d,與本研究的觀察結(jié)果相吻合。此外,對(duì)穿透寄主表皮的芽管長(zhǎng)度測(cè)量結(jié)果表明,2株菌株均以平緩結(jié)構(gòu)區(qū)的芽管最短,明顯短于瘤狀突起結(jié)構(gòu)區(qū),說(shuō)明在該部分區(qū)域入侵所用的時(shí)間最短,速度最快。菌株能快速侵入幼蟲(chóng)表皮平緩結(jié)構(gòu)區(qū)的頭殼,意味著可迅速損傷幼蟲(chóng)腦組織,破壞其神經(jīng)系統(tǒng),這有可能是2株菌株快速侵染寄主的策略之一

真菌對(duì)寄主的侵染主要有兩種機(jī)制,一種是穿透寄主表皮的機(jī)械壓力,如孢子萌發(fā)時(shí)芽管定向生長(zhǎng)產(chǎn)生的壓力(Fang et al.,2009);另一種是酶類(lèi)物質(zhì)對(duì)表皮的降解作用,如次級(jí)代謝物、胞外蛋白酶、幾丁質(zhì)酶和酯酶等(Zhang et al.,2008;Safavi,2010;Staats et al.,2013;Khan et al.,2016)。前者由昆蟲(chóng)病原真菌結(jié)構(gòu)發(fā)揮作用,如本研究掃描電鏡觀察到的附著胞結(jié)構(gòu),后者仍有待進(jìn)一步探究,以評(píng)估蟲(chóng)體誘導(dǎo)下菌株產(chǎn)生的次生代謝物和酶類(lèi)物質(zhì)在侵染過(guò)程中所發(fā)揮的作用。另外,真菌對(duì)昆蟲(chóng)控制能力強(qiáng)弱不僅體現(xiàn)在致病力上,其自然環(huán)境溫度、紫外線耐受性等因素均會(huì)影響田間防治效果??梢灶A(yù)期的是,昆蟲(chóng)病原真菌的生活環(huán)境相似,自然條件下能混雜發(fā)生,如果幾種病原真菌能夠?qū)ν簧硟?nèi)的害蟲(chóng)同時(shí)起控制作用,勢(shì)必在生物防治中起事半功倍的作用。

4 結(jié)論

本研究結(jié)果在室內(nèi)可控條件下獲得,2種病原真菌球孢白僵菌和玫煙色蟲(chóng)草在草地貪夜蛾體表侵染模式觀察證實(shí)了菌株的高致病性,基本闡明了設(shè)置條件下菌株分生孢子侵染草地貪夜蛾幼蟲(chóng)的表觀過(guò)程,為廣東本地的草地貪夜蛾生防真菌球孢白僵菌菌株GZSL-1和玫煙色蟲(chóng)草菌株IFCF01的改良和田間應(yīng)用打下理論基礎(chǔ)。

參考文獻(xiàn):

鄧彩萍,閆喜中,劉紅霞,郝赤,駱有慶. 2012. 球孢白僵菌侵染光肩星天牛幼蟲(chóng)的掃描電鏡及組織病理觀察[J]. 林業(yè)科學(xué),48(3):105-109. doi:10.11707/j.1001-7488.20120317. [Deng C P,Yan X Z,Liu H X,Hao C,Luo Y Q. 2012. Pathological observation of Anoplophora glabripennis larva infected by Beauveria bassiana by using SEM and light microscope[J]. Scientia Silvae Sinicae,48(3): 105-109.]

樊美珍,李增智. 1994. 營(yíng)養(yǎng)物和培養(yǎng)條件對(duì)蟲(chóng)生真菌附著胞形成的影響[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),21(2):123-130. [Fan M Z,Li Z Z. 1994. Impact of nutrients and culture conditions on appresorium formation of entomogenous fungi[J]. Journal of Anhui Agricultural University,21(2):123-130.]

何恒果,李正躍,陳斌,文良柱. 2004. 蟲(chóng)生真菌對(duì)害蟲(chóng)防治的研究與應(yīng)用[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào),19(2): 167-173. doi:10.16211/j.issn.1004-390x(n).2004.02.011. [He H G,Li Z Y,Chen B,Wen L Z. 2004. Current status in basic and applied research on entomopathogenic fungi for pest mana-gement[J]. Journal of Yunnan Agricultural University,19(2): 167-173.]

姜玉英,劉杰,朱曉明. 2019. 草地貪夜蛾侵入我國(guó)的發(fā)生動(dòng)態(tài)和未來(lái)趨勢(shì)分析[J]. 中國(guó)植保導(dǎo)刊,39(2): 33-35. doi:10.3969/j.issn.1672-6820.2019.02.006. [Jiang Y Y,Liu J,Zhu X M. 2019. Analysis on the occurrence dynamics of invasion and future trend of fall armyworm Spodoptera frugiperda in China[J]. China Plant Protection,39(2): 33-35.]

雷妍圓,呂利華,王裕華,王德森. 2020a. 一株玫煙色蟲(chóng)草對(duì)草地貪夜蛾的致病性研究[J]. 環(huán)境昆蟲(chóng)學(xué)報(bào),42(1): 68-75. doi:10.3969/j.issn.1674-0858.2020.01.9. [Lei Y Y,Lü L H,Wang Y H,Wang D S. 2020a. Pathogenicity study of a strain of Cordyceps fumosorosea to Spodoptera frugiperda(Lepidoptera: Noctuidae)[J]. Journal of Environmental Entomology,42(1): 68-75.]

雷妍圓,章玉蘋(píng),薛志洪,王裕華,黃少華,呂利華. 2020b. 一株球孢白僵菌的分離鑒定及其對(duì)草地貪夜蛾的致病性[J]. 環(huán)境昆蟲(chóng)學(xué)報(bào),42(3): 593-601. doi:10.3969/j.issn. 1674-0858.2020.03.10. [Lei Y Y,Zhang Y P,Xue Z H,Wang Y H,Huang S H,Lü L H. 2020b. Isolation and identification of a Beauveria bassiana isolate and its pathogenicity to Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Journal of Environmental Entomology,42(3): 593-601.]

劉忱,郭志紅. 2019. 球孢白僵菌侵染玉米螟的電鏡觀察[J]. 電子顯微學(xué)報(bào),38(2): 144-149. doi:10.3969/j.issn.1000-6281.2019.02.009. [Liu C,Guo Z H. 2019. Electron microscopic observations on Beauveria bassiana infecting Ostrinia nubilalis[J]. Journal of Chinese Electron Microscopy Society,38(2): 144-149.]

蒲順昌,秦麗,陳名君,蔡悅,黃勃. 2013. 馬尾松林中球孢白僵菌寄主轉(zhuǎn)移和專(zhuān)化性的SSR標(biāo)記分析[J]. 菌物學(xué)報(bào),32(4): 698-709. doi:10.13346/j.mycosystema.2013.04.004. [Pu S C,Qin L,Chen M J,Cai Y,Huang B. 2013. Host shift and host specificity analysis of Beauveria bassiana in Massons pine plantation based on SSR molecular marker[J]. Mycosystema,32(4): 698-709.]

蒲蟄龍,李增智. 1996. 昆蟲(chóng)真菌學(xué)[M]. 合肥: 安徽科學(xué)技術(shù)出版社. [Pu Z L,Li Z Z. 1996. Insect mycology[M]. Hefei: Anhui Science and Technology Press.]

王道通,張蕾,程云霞,江幸福. 2020. 草地貪夜蛾幼蟲(chóng)齡期對(duì)自相殘殺行為的影響[J]. 植物保護(hù),46(3): 94-98. doi:10. 16688/j.zwbh.2019589. [Wang D T,Zhang L,Cheng Y X,Jiang X F. 2020. Larval stage related cannibalism in the fall armyworm,Spodoptera frugiperda[J]. Plant Protection,46(3): 94-98.]

王曉紅,黃大莊,楊忠岐,李會(huì)平,鄭建偉. 2009. 白僵菌感染桑天牛幼蟲(chóng)致病過(guò)程的顯微觀察[J]. 蠶業(yè)科學(xué),35(2): 374-378. doi:10.3969/j.issn.0257-4799.2009.02.025. [Wang X H,Huang D Z,Yang Z Q,Li H P,Zheng J W. 2009. Microscopic observations of infection process of Beauveria bassiana on the cuticle of Apriona germari larvae[J]. Science of Sericulture,35(2): 374-378.]

王音,雷仲仁,張青文,問(wèn)錦曾. 2005. 綠僵菌侵染小菜蛾體表過(guò)程的顯微觀察[J]. 昆蟲(chóng)學(xué)報(bào),48(2):188-193. doi:10. 16380/j.kcxb.2005.02.007. [Wang Y,Lei Z R,Zhang Q W,Wen J Z. 2005. Microscopic observations of infection process of Metarhizium anisopliae on the cuticle of the diamondback moth,Plutella xylostella[J]. Acta Entomologica Sinica,48(2):188-193.]

楊普云,王凱,厲建萌,李文星,尹俊梅. 2018. 以農(nóng)藥減量控害助力農(nóng)業(yè)綠色發(fā)展[J]. 植物保護(hù),44(5): 95-100. doi:10.16688/j.zwbh.2018276. [Yang P Y,Wang K,Li J M,Li W X,Yin J M. 2018. Promoting green agricultural development through eliminating pesticide overuses in crop pest management[J]. Plant Protection,44(5): 95-100.]

張奐,張仙紅,張未仲,張亞麗. 2007. 玫煙色擬青霉對(duì)菜青蟲(chóng)的侵染及致病作用[J]. 植物保護(hù),33(2):64-67. doi:10. 3969/j.issn.0529-1542.2007.02.017. [Zhang H,Zhang X H,Zhang W Z,Zhang Y L. 2007. Histopathological chan-ges of the larvae of Pieris rapae infected by Paecilomyces fumosoroseus[J]. Plant Protection,33(2):64-67.]

張磊,靳明輝,張丹丹,姜玉英,劉杰,吳孔明,蕭玉濤. 2019. 入侵云南草地貪夜蛾的分子鑒定[J]. 植物保護(hù),45(2): 19-24. doi:10.16688/j.zwbh.2019121. [Zhang L,Jin M H,Zhang D D,Jiang Y Y,Liu J,Wu K M,Xiao Y T. 2019. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province[J]. Plant Protection,45(2): 19-24.]

張?jiān)?,蔡新,張?guó)強(qiáng),董麗麗,王景順. 2019. 黏蟲(chóng)溶菌酶基因Mswly的克隆與真核表達(dá)[J]. 河南農(nóng)業(yè)科學(xué),48(5):70-77. doi:10.15933/j.cnki.1004-3268.2019.05.011. [Zhang Y C,Cai X,Zhang G Q,Dong L L,Wang J S. 2019. Cloning and eukaryotic expression of Mswly in oriental army-worm, Mythimna separata[J]. Journal of Henan Agricultural Sciences,48(5):70-77.]

張志春,張怡,沈迎春,郭慧芳. 2020. 殺蟲(chóng)真菌爪哇棒束孢對(duì)非洲菊煙粉虱作用特點(diǎn)和控害效果[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),36(6):1398-1402. doi:10.3969/j.issn.1000-4440.2020.06. 007. [Zhang Z C,Zhang Y,Shen Y C,Guo H F. 2020. Characteristics and control effects of insecticidal fungus? Isaria javanica against Bemisia tabaci of Gerbera jameso-nii[J]. Jiangsu Journal of Agricultural Sciences,36(6):1398-1402.]

Akutse K S,Khamis F M,Ambele F C,Kimemia J W,Ekesi S,Subramanian S. 2020. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm,Spodoptera frugiperda(Lepidoptera:Noctuidae)[J]. Journal of Invertebrate Pathology,177: 107477. doi:10.1016/j.jip.2020.107477.

Altre J A,Vandenberg J D,Cantone F A. 1999. Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth,Plutella xylostella: Correlation with spore size,germination speed,and attachment to cuticle[J]. Journal of Invertebrate Pathology,73(3): 332-338. doi:10.1006/jipa. 1999.4844.

Amóra S S A,Bevilaqua C M L,Carneiro-Feijo F M,de Macedo Assuncao Pereira R H,Dutra Alves N,de Moráis Freiré F A,Kamimura M T,de Oliveira D M,Luna-Alves Lima E ?,Gadelha Rocha M F. 2010. The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomya longipalpis(Diptera: Psychodidae)[J]. Acta Tropica,113(3):214-220. doi:10.1016/j.actatropica.2009.10.018.

Arthurs S,Dara S K. 2019. Microbial biopesticides for invertebrate pests and their markets in the United States[J]. Journal of Invertebrate Pathology,165: 13-21. doi:10.1016/j.jip. 2018.01.008.

Asensio L,Lopez-Llorca L V,Lopez-Jimenez J A. 2005. Use of light,scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll.,1899)[J]. Micron,36(2): 169-175. doi:10.1016/j.micron.2004. 09.004.

Bernardo C C,Barreto L P,e Silva C D S,Luz C,Arruda W,F(xiàn)ernandes ? K. 2018. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.:Their development during the infection process and virulence against the tick Rhipicephalus microplus[J]. Ticks and Tick-borne Diseases,9(5): 1334-1342. doi:10.1016/j.ttbdis.2018.06. 001.

Bouamama N,Vidal C,F(xiàn)argues J. 2010. Effects of fluctuating moisture and temperature regimes on the persistence of quiescent conidia of Isaria fumosorosea[J]. Journal of Invertebrate Pathology,105(2): 139-144. doi:10.1016/j.jip. 2010.05.014.

Butt T M,Ibrathim L,Clark S J,Beckett A. 1995. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles[J]. Mycological Research,99(8):945-950. doi:10.1016/s0953-7562(09)80754-5.

Casmuze A,Juárez M L,Socías M G,Murúa M G,Prieto S,Medina S,Willink E,Gastaminza G. 2010. Revisión de los hospederos del gusano cogollero del maíz,Spodoptera frugiperda(Lepidoptera:Noctuidae)[J]. Revista de la Sociedad Entomológica Argentina,69(3-4): 209-231.

Chouvenc T,Su N Y,Robert A. 2009. Cellular encapsulation in the Eastern subterranean termite,Reticulitermes flavipes (Isoptera),against infection by the entomopathogenic fungus Metarhizium anisopliae[J]. Journal of Invertebrate Pathology,101(3): 234-241. doi:10.1016/j.jip.2009. 05.008.

Corrêa B,da Silveira Duarte V,Silva D M,Mascarin G M,Júnior I D. 2020. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests[J]. BioControl,65(3): 323-337. doi:10.1007/s10526-020-09999-6.

de Faria M R,Wraight S P. 2007. Mycoinsecticides and mycoa-caricides: A comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control,43(3): 237-256. doi:10.1016/j.bio-control.2007.08.001.

Duan Y L,Wu H,Ma Z Y,Yang L,Ma D Y. 2017. Scanning electron microscopy and histopathological observations of Beauveria bassiana infection of Colorado potato beetle larvae[J]. Microbial Pathogenesis,111: 435-439. doi:10.1016/j.micpath.2017.09.025.

Early R,Gonzalez-Moreno P,Murphy S T,Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda,the fall armyworm[J]. NeoBiota,40: 25-50. doi:10.3897/neobiota.40.28165.

Fang W G,Pava-Ripoll M,Wang S B,St. Leger R. 2009. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus,Metarhizium ani-sopliae[J]. Fungal Genetics and Biology,46(3): 277-285. doi: 10.1016/j.fgb.2008.12.001.

Ghaffari S,Karimi J,Kamali S,Moghadam E M. 2017. Biocontrol of Planococcus citri (Hemiptera: Pseudococcidae) by Lecanicillium longisporum and Lecanicillium lecanii under laboratory and greenhouse conditions[J]. Journal of Asia-Pacific Entomology,20(2): 605-612. doi:10.1016/j.aspen.2017.03.019.

Gillespie J P,Bailey A M,Cobb B,Vilcinskas A. 2002. Fungi as elicitors of insect immune responses[J]. Archives of Insect Biochemistry and Physiology,44(2):49-68. doi:10. 1002/1520-6327(200006)44:2<49::aid-arch1>3.0.co;2-f.

González Y R,Taibo A D,Jiménez J A,Portal O. 2020. Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda(J. E. Smith)(Lepidoptera: Noctui-dae) larvae[J]. Egyptian Journal of Biological Pest Control,30(1): 1-6. doi:10.1186/s41938-020-00223-2.

Hajek A E,Eastburn C C. 2003. Attachment and germination of Entomophaga maimaiga conidia on host and non-host larval cuticle[J]. Journal of Invertebrate Pathology,82(1): 12-22. doi:10.1016/s0022-2011(02)00198-2.

Holland R J,Gunasekera T S,Williams K L,Nevalainen K M H. 2002. Ultrastructure and properties of Paecilomyces lilacinus spores[J]. Canadian Journal of Microbiology,48(10): 879-885. doi:10.1139/w02-083.

Hussain A,Rizwan-ul-Haq M,Al-Ayedh H,Al-Jabr A M. 2014. Mycoinsecticides: Potential and future perspective[J]. Recent Patents on Food,Nutrition & Agriculture,6(1): 45-53. doi:10.2174/2212798406666140613113905.

Ibrahim L,Butt T M,Jenkinson P. 2002. Effect of artificial culture media on germination,growth,virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae[J]. Mycological Research,106(6): 705-715. doi:10.1017/s0953756202006044.

Khan S,Nadir S,Lihua G,Xu J C,Holmes K A,Dewen Q. 2016. Identification and characterization of an insect toxin protein,Bb70p,from the entomopathogenic fungus,Beauveria bassiana,using Galleria mellonella as a mo-del system[J]. Journal of Invertebrate Pathology,133: 87-94. doi:10.1016/j.jip.2015.11.010.

Khun K K,Ash G J,Stevens M M,Huwer R K,Wilson B A L. 2021. Transmission of Metarhizium anisopliae and Beauveria bassiana to adults of Kuschelorhynchus macadamiae(Coleoptera:Curculionidae) from infected adults and conidiated cadavers[J]. Scientific Reports,11(1): 2188. doi:10.1038/s41598-021-81647-0.

Latgé J P,Sampedro L,Brey P,Diaquin M. 1987. Aggressiveness of Conidiobolus obscurus against the pea aphid: Influence of cuticular extracts on ballistospore germination of aggressive and non-aggressive strains[J]. Microbiology,133(7): 1987-1997. doi:10.1099/00221287-133-7-1987.

Lei Y Y,Hussain A,Guan Z Y,Wang D S,Jaleel W,Lü L H,He Y R. 2021. Unraveling the mode of action of Cordyceps fumosorosea: Potential biocontrol agent against Plu-tella xylostella(Lepidoptera: Plutellidae)[J]. Insects,12(2): 179. doi: 10.3390/insects12020179.

Liu T X,Stansly P A. 2009. Effects of relative humidity on efficacy of BotaniGuardTM(Beauveria bassiana) on nym-phs of sweetpotato whitefly,Bemisia tabaci(Hemiptera: Aleyrodidae) on hibiscus in greenhouses[J]. Southwest Entomologist,34(2): 189-191. doi:10.3958/059.034.0209.

Liu W M,Xie Y P,Xue J L,Zhang Y F,Zhang X M. 2011. Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum(Hemiptera:Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypocreales)[J]. Micron,42(1):71-79. doi:10.1016/j.micron. 2010.07.011.

Liu Z,Lei Z R,Hua B Z,Wang H H,Liu T X. 2010. Germination behavior of Beauveria bassiana(Deuteromycotina: Hyphomycetes) on Bemisia tabaci(Hemiptera: Aleyrodidae) nymphs[J]. Journal of Entomological Science,45(4): 322-334. doi:10.18474/0749-8004-45.4.322.

Mauchline N,Hallet I,Hill G,Casonato S. 2011. Process of infection of armored scale insects (Diaspididae) by an entomopathogenic Cosmospora sp.[J]. Journal of Invertebrate Pathology,108(1): 46-51. doi:10.1016/j.jip.2011. 07.002.

Ment D,Gindin G,Rot A,Soroker V,Glazer I,Barel S,Samish M. 2010. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle[J]. Applied and Environmental Microbiology,76(11): 3521-3528. doi:10.1128/AEM.02596-09.

Montezano D G,Specht A,Sosa-Gómez D R,Roque-Specht V F,Sousa-Silva J C. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas[J]. African Entomology,26(2):286-300. doi:10.4001/003. 026.0286.

Ortiz-Urquiza A,Keyhani N O. 2013. Action on the surface: Entomopathogenic fungi versus the insect cuticle[J]. Insects,4(3): 357-374. doi:10.3390/insects4030357.

Pekrul S,Grula E A. 1979. Mode of infection of the corn earworm(Heliothis zea) by Beauveria bassiana as revealed by scanning electron microscopy[J]. Journal of Invertebrate Pathology,34(3): 238-247. doi:10.1016/0022-2011(79)90069-7.

Rangel D E N,Alston D G,Roberts D W. 2008. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed,adhesion to host cuticle,and virulence of Metarhizium anisopliae,an entomopathogenic fungus[J]. Mycological Research,112(11): 1355-1361. doi:10.1016/j.mycres.2008.04.011.

Russo M L,Jaber L R,Scorsetti A C,Vianna F,Cabello M N,Pelizza S A. 2020. Effect of entomopathogenic fungi introduced as corn endophytes on the development,reproduction,and food preference of the invasive fall armyworm Spodoptera frugiperda[J]. Journal of Pest Science. doi:10.1007/s10340-020-01302-x.

Safavi S. 2010. Isolation,identification and pathogenicity assessment of a new isolate of entomopathogenic fungus,Beauveria bassiana in Iran[J]. Journal of Plant Protection Research,50(2): 158-163. doi:10.2478/v10045-010-0027-z.

Safavi S A,Shah F A,Pakdel A K,Reza Rasoulian G,Bandani A R,Butt T M. 2007. Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana[J]. FEMS Microbiology Letters,270(1): 116-123. doi:10.1111/j.1574-6968.2007.00666.x.

St. Leger R J,Goettel M,Roberts D W,Staples R C. 1991. Prepenetration events during infection of host cuticle by Metarhizium anisopliae[J]. Journal of Invertebrate Patho-logy,58(2):168-179. doi:10.1016/0022-2011(91)90061-t.

Staats,C C,Kmetzsch L,Lubeck I,Junges A,Vainstein M H,Schrank A. 2013. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus[J]. Fungal Biology,117(2): 137-144. doi:10.1016/j.funbio.2012.12.006.

Talaei-Hassanloui R,Kharazi-pakdel A,Goettel M S,Little S,Mozaffari J. 2007. Germination polarity of Beauveria bassiana conidia and its possible correlation with virulence[J]. Journal of Invertebrate Pathology,94(2): 102-107. doi:10.1016/j.jip.2006.09.009.

Zhang Y J,Liu X Z,Wang M. 2008. Cloning,expression,and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis[J]. Research in Microbiology,159(6): 462-469. doi:10.1016/j.resmic.2008.04.004.

Zimmermann G. 2008. The entomopathogenic fungi Isaria farinosa(formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex(formerly Paecilomyces fumosoroseus): Biology,ecology and use in biological control[J]. Biocontrol Science and Technology,18(9): 865-901. doi:10.1080/09583150802471812.

(責(zé)任編輯 麻小燕)

猜你喜歡
掃描電鏡草地貪夜蛾
草地貪夜蛾對(duì)圣多美和普林西比玉米的危害和防治
新物種入侵—草地貪夜蛾的防治方法
永靖縣草地貪夜蛾監(jiān)測(cè)防控技術(shù)策略
不同農(nóng)藥防治甜玉米草地貪夜蛾的藥效對(duì)比試驗(yàn)
草地貪夜蛾對(duì)山東省玉米的危害風(fēng)險(xiǎn)及其監(jiān)測(cè)防控研究進(jìn)展
安徽省草地貪夜蛾入侵概況及其防治措施
掃描電鏡能譜法分析紙張的不均勻性
掃描電鏡能譜法分析紙張的不均勻性
超聲沖擊對(duì)AZ91D鎂合金耐磨性的影響
幾種典型掃描電鏡生物樣本制備
甘孜县| 兰坪| 黔江区| 南郑县| 前郭尔| 汉中市| 高雄县| 巫山县| 绍兴县| 沿河| 郑州市| 论坛| 白城市| 丰顺县| 延庆县| 阜宁县| 资中县| 渭源县| 平陆县| 建水县| 镇原县| 乌鲁木齐县| 南澳县| 澄江县| 盐池县| 余庆县| 广东省| 安丘市| 德安县| 白沙| 阳春市| 扶余县| 泽普县| 义马市| 高陵县| 宿州市| 普定县| 温宿县| 华亭县| 岳西县| 平舆县|