国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

復(fù)合益生菌對(duì)超早期斷奶杜藏乳仔豬腸道微生物群落結(jié)構(gòu)的影響

2021-08-02 03:07劉韶娜郭飛張斌相德才趙智勇趙素梅趙彥光
關(guān)鍵詞:多樣性

劉韶娜 郭飛 張斌 相德才 趙智勇 趙素梅 趙彥光

劉韶娜(1983-),副研究員,畢業(yè)于浙江大學(xué)動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)專業(yè),主要從事動(dòng)物營(yíng)養(yǎng)與腸道微生物學(xué)研究工作。先后主持或作為主要成員參與云南省重點(diǎn)研發(fā)項(xiàng)目“云南省地方豬選育開(kāi)發(fā)利用及糞便資源化利用示范”、 國(guó)家自然科學(xué)基金地區(qū)科學(xué)基金項(xiàng)目“冷凍豬GV期卵母細(xì)胞體外成熟后蛋白質(zhì)組差異及調(diào)控策略研究”、云南省畜牧獸醫(yī)科學(xué)院基礎(chǔ)研究項(xiàng)目“芽孢桿菌和益生菌對(duì)迪慶藏豬腸道菌群結(jié)構(gòu)與功能的影響機(jī)制研究”及云南省畜禽種質(zhì)創(chuàng)新及標(biāo)準(zhǔn)化養(yǎng)殖技術(shù)推廣專項(xiàng)等科研項(xiàng)目10余項(xiàng);制定地方標(biāo)準(zhǔn)2項(xiàng),參編專著2本,獲授權(quán)國(guó)家發(fā)明專利1項(xiàng);在《Theriogenology》《動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)》《微生物學(xué)通報(bào)》《南方農(nóng)業(yè)學(xué)報(bào)》等學(xué)術(shù)期刊上發(fā)表科技論文20余篇。

摘要:【目的】探究復(fù)合益生菌對(duì)超早期斷奶(7 d)杜藏乳仔豬腸道微生物多樣性及物種豐度的影響,以減輕乳仔豬斷奶應(yīng)激,為微生物飼料添加劑的研發(fā)提供科學(xué)依據(jù)?!痉椒ā窟x取7日齡杜藏乳仔豬30頭,隨機(jī)分為3組,每組10頭。對(duì)照組(ZM組)隨母豬哺乳,試驗(yàn)I組(ZD組)哺喂代乳粉,試驗(yàn)II組(ZY組)哺喂代乳粉+復(fù)合益生菌,試驗(yàn)周期21 d。試驗(yàn)結(jié)束當(dāng)天(28日齡)收集乳仔豬糞便,采用Illumina高通量測(cè)序分析糞便樣品的菌群結(jié)構(gòu)組成?!窘Y(jié)果】Illumina高通量測(cè)序獲得ZM組、ZY組和ZD組杜藏乳仔豬糞便樣品共有OTU為327個(gè),ZM組的特有OTU為247個(gè),ZD組的特有OTU為84個(gè),ZY組的特有OTU為96個(gè)。在門(mén)分類水平上,ZM組杜藏乳仔豬糞便樣品中相對(duì)豐度最高的菌門(mén)為厚壁菌門(mén),ZY組和ZD組為擬桿菌門(mén);ZY組和ZD組的厚壁菌門(mén)/擬桿菌門(mén)比值分別為0.77和0.92,較ZM組(1.76)分別下降56.25%和47.73%。在屬分類水平上,ZD組和ZY組杜藏乳仔豬糞便樣品中的優(yōu)勢(shì)菌屬為普氏菌屬_9,ZM組則為乳桿菌屬;ZD組杜藏乳仔豬糞便中布勞特氏菌屬、腸球菌屬和吉氏副擬桿菌屬的相對(duì)豐度較其他2個(gè)處理組顯著上升(P<0.05,下同);而ZY組杜藏乳仔豬糞便中普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、厭氧弧菌屬、罕見(jiàn)小球菌屬、瘤胃菌科_NK4A214群、瘤胃菌科_UCG-005、未明確普雷沃氏菌科及Family_XIII_AD3011_group的相對(duì)豐度顯著高于ZD組?!窘Y(jié)論】在杜藏超早期斷奶仔豬代乳粉中添加復(fù)合益生菌能有效提高其腸道菌群結(jié)構(gòu)多樣性,同時(shí)提高與碳水化合物代謝和產(chǎn)短鏈脂肪酸相關(guān)菌群的相對(duì)豐度,即復(fù)合益生菌具有潛在促進(jìn)營(yíng)養(yǎng)物質(zhì)代謝和抗炎癥的功能,可縮短消化道微生物區(qū)系由哺乳型向飼料型的轉(zhuǎn)變歷程。

關(guān)鍵詞: 杜藏乳仔豬;超早期斷奶;代乳粉;復(fù)合益生菌;腸道微生物;多樣性

中圖分類號(hào): S816.73? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)03-0547-12

Effects of the probiotic combinations on intestinal microbiota in ultra-early weaned piglets of Duroc×Diqing Tibetan pig

LIU Shao-na1, GUO Fei2, ZHANG Bin1, XIANG De-cai1, ZHAO Zhi-yong1,

ZHAO Su-mei2*, ZHAO Yan-guang1*

(1Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming? 650224, China; 2Key Laboratory

of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming? 650201, China)

Abstract:【Objective】The study aimed to explore the effects of the probiotic combinations on the intestinal microbiota diversity and species abundance of ultra-early weaned(7 d) piglets of Duroc×Diqing Tibetan pig. Then released the stress of weaned piglets, and provided scientific basis for the development of microbial feed additives. 【Method】A total of 30 piglets of Duroc×Diqing Tibetan pig, aged 7-day-old were divided into 3 groups with 10 piglets in each group. The piglets of control group(group ZM) were fed with breast milk,the piglets of experimental group I (group ZD) were fed with milk replacer and the piglets of experimental group II (group ZY) were fed with milk replacer and probiotic combinations. The experimental period was 21 d. Collected the faeces samples of the piglets in the last day of the experiment(28-day-old),then analyzed the samples fecal microbiota in structure with IIIumina high throughput sequencing technology. 【Result】The IIIumina high throughput sequencing data showed that there were 327 common OTUs in the three groups, while there were 247 unique OTUs in the group ZM, 84 unique OTUs in the group ZD and 96 unique OTUs in the group ZY, respectively. At the phylum level,the relative abundance of Firmicutes in group ZM was the highest one,while that was Bacteroidetes in group ZD and group ZY. The Firmicutes/Bacteroidetes ratios were 0.77 and 0.92 of the group ZY and ZD,respectively. Compared with group ZM(1.76), they were decreased by 56.25% and 47.73%, respectively. At the genus level,the dominant genus of group ZD and ZY was Prevotella_9 in the faeces samples of the Duroc×Diqing Tibetan Pig,while that of group ZM was Lactobacillus. The relative abundance of Blautia, Enterococcus and Subdoligranulum in group ZD was significantly higher than the other two groups(P<0.05, the same below). The relative abundance of Prevotellaceae_NK3B31_group, Prevotellaceae_UCG-003, Anaerovibrio, Subdoligranulum, Ruminococcaceae_NK4A214_ group, Ruminococcaceae_UCG-005, norank_f_Prevotellaceae and Family_XIII_AD3011_group in group ZY were signi-ficantly higher than the group ZD. 【Conclusion】In conclusion,after feeding the milk replacer with adding the probiotic combinations, the diversity of structure of intestinal flora are increased,? and the relative abundance of the microflora which is related to metabolism of carbohydrate and producing short chain fatty acids in ultra-early weaned piglets of Duroc×Diqing Tibetan pig were increased. The potential functions of the probiotic combinations which can promote nutrient metabolism and anti-inflammation can shorten the transformation process of digestive tract microflora from lactation type to feed type.

Key words: Duro×Diqing Tibetan pig; ultra-early weaned piglets; milk replacer; probiotic combinations; intestinal microbe; diversity

Foundation item:Key Research and Development Project of Yunnan(2018BB003);Yunnan Provincial Financial Breeding and Technology Promotion Project(20151105560055); Basic Research Project of Yunnan Academy of Animal Husbandry and Veterinary Sciences(2019RW014)

0 引言

【研究意義】抗生素濫用已造成細(xì)菌耐藥性增強(qiáng)及藥物殘留超標(biāo)(李威等,2020;李昕等,2020),且擾亂動(dòng)物腸道屏障功能和改變腸道菌群結(jié)構(gòu),進(jìn)而導(dǎo)致動(dòng)物機(jī)體對(duì)某些病原菌更具感染性(Pamer,2016;Derosa et al.,2020;Hou et al.,2020),同時(shí)誘導(dǎo)腸道菌群代謝通路發(fā)生改變(色氨酸代謝和脂代謝失調(diào)),或影響某些基因正常表達(dá)(Sun et al.,2020;Teichman et al.,2020),嚴(yán)重制約了畜禽養(yǎng)殖業(yè)的持續(xù)健康發(fā)展。因此,尋找或研發(fā)抗生素替代型飼料添加劑是當(dāng)前畜禽養(yǎng)殖生產(chǎn)中亟待解決的首要問(wèn)題,也是目前畜牧學(xué)科中的研究熱點(diǎn)之一?!厩叭搜芯窟M(jìn)展】益生菌(Probiotic)是一類能改變宿主菌群組成且對(duì)宿主有益的活性微生物,在促進(jìn)生長(zhǎng)(李雪莉等,2017)、營(yíng)養(yǎng)消化(夏耀耀等,2017;詹明曄等,2019)、降低發(fā)病率(謝全喜等,2017;Singer et al.,2019)及促進(jìn)神經(jīng)功能(Patil et al.,2017)和腸道器官發(fā)育(馮程程等,2019;吳敏等,2019)等方面發(fā)揮重要作用。在實(shí)際生產(chǎn)中,添加益生菌可通過(guò)直接(王曉丹等,2019)或間接(田時(shí)祎等,2018;Tian et al.,2018;Hu et al.,2019)促進(jìn)腸道微生物代謝作用,從而發(fā)揮益生作用,促使腸道常駐菌與宿主的微空間結(jié)構(gòu)間形成一個(gè)相互依賴又相互作用的微生態(tài)系統(tǒng),在腸道內(nèi)構(gòu)成一個(gè)對(duì)抗病原體的重要保護(hù)屏障,以抵抗外來(lái)菌微生物的定殖。目前,常用的益生菌有芽孢桿菌、酵母菌、乳酸菌及梭菌等(楊虹等,2019;關(guān)嘉琦等,2020)。其中,枯草芽孢桿菌能提高斷奶仔豬腸道菌群多樣性,提高厚壁菌門(mén)相對(duì)豐度及短鏈脂肪酸、脫氧膽酸和石膽酸濃度(He et al.,2017);乳酸菌能顯著提高老年鼠的腸道菌多樣性,抑制炎癥因子表達(dá),減輕腸漏現(xiàn)象(Ahmadi et al.,2020);乳桿菌具有提高有益菌并降低有害菌相對(duì)豐度,增強(qiáng)菌群磷酸鹽代謝、氨基酸轉(zhuǎn)運(yùn)系統(tǒng)和異亮氨酸生物合成,以及降低脂多糖生物合成的功能(Toscano et al.,2017;Hou et al.,2020)?!颈狙芯壳腥朦c(diǎn)】至今,有關(guān)益生菌在斷奶仔豬和育肥豬上的應(yīng)用已有較多研究報(bào)道,但主要是單一或少數(shù)幾種菌株復(fù)合使用(Latham et al.,2018;He et al.,2019;Zhang et al.,2020;Zheng et al.,2020),而針對(duì)復(fù)合益生菌的研究較少?!緮M解決的關(guān)鍵問(wèn)題】杜藏仔豬是以杜洛克為父本、迪慶藏豬為母本的雜交品種,具有耐高寒、耐低氧、耐粗飼和強(qiáng)抗病性的特點(diǎn),通過(guò)選育及營(yíng)養(yǎng)調(diào)控等措施已將其產(chǎn)仔數(shù)提高至9~12頭,但母豬乳頭數(shù)量少,不能滿足其哺乳需求。故選擇杜藏仔豬為試驗(yàn)動(dòng)物,給予外源性復(fù)合益生菌,探究復(fù)合益生菌對(duì)超早期斷奶(7 d)杜藏乳仔豬腸道微生物多樣性及物種豐度的影響,旨在減輕乳仔豬斷奶應(yīng)激,同時(shí)為微生物飼料添加劑的研發(fā)提供科學(xué)依據(jù)。

1 材料與方法

1. 1 試驗(yàn)材料

從10窩杜藏仔豬中隨機(jī)挑選初生體重和日齡接近的乳仔豬,每窩挑選3頭,共計(jì)30頭。按照血緣和體重隨機(jī)分為3個(gè)處理組,每組2個(gè)重復(fù),每個(gè)重復(fù)5頭,每個(gè)重復(fù)同圈飼養(yǎng)。從初生7日齡開(kāi)始試驗(yàn),對(duì)照組(ZM組)杜藏乳仔豬隨母豬哺乳至28日齡,2個(gè)試驗(yàn)組的杜藏乳仔豬則在7日齡斷奶,試驗(yàn)周期21 d[預(yù)飼期7 d,正試期(飼喂對(duì)應(yīng)的飼糧)14 d]。試驗(yàn) I組(ZD組)哺喂代乳粉,試驗(yàn)II組(ZY組)哺喂代乳粉+復(fù)合益生菌。代乳粉是利用VF123參照國(guó)標(biāo)NY/T 65—2004《豬飼養(yǎng)標(biāo)準(zhǔn)》的肉脂型地方豬3~8 kg計(jì)算配制的粉狀配合飼料,其組成和營(yíng)養(yǎng)成分見(jiàn)表1。代乳粉需用50~65 ℃溫開(kāi)水按1∶6比例沖調(diào),冷卻至38 ℃左右再進(jìn)行飼喂。復(fù)合益生菌制劑(表2)包含類腸膜魏斯氏菌、植物乳桿菌、戊糖片球菌、貝萊斯芽孢桿菌、枯草芽孢桿菌和賴氨酸芽孢桿菌,均由云南省畜牧獸醫(yī)科學(xué)院從迪慶藏豬腸道內(nèi)容物及其糞便中分離獲得(劉韶娜,2019a,2019b),添加量參考Kim和Isaacson(2015)、謝全喜等(2017)、Piuske等(2018)的研究結(jié)果。

1. 2 飼養(yǎng)管理

按照正常免疫程序?qū)υ囼?yàn)仔豬進(jìn)行常規(guī)免疫,對(duì)豬舍進(jìn)行清潔和消毒。對(duì)照組杜藏乳仔豬隨母豬哺乳;試驗(yàn)組杜藏乳仔豬哺喂相對(duì)應(yīng)的試驗(yàn)飼糧,試驗(yàn)周期內(nèi)每天哺喂6次,從早晨8:00開(kāi)始,每隔3 h哺喂1次,自由飲水。于28日齡(試驗(yàn)結(jié)束)當(dāng)天收集剛排泄的糞便,取中間部分樣品置于液氮中速凍,-80 ℃冰箱保存,用于高通量測(cè)序分析。

1. 3 16S rRNA序列PCR擴(kuò)增

使用DNA提取試劑盒(OMEGA Bio-tek,Norcross,GA,U.S.)對(duì)杜藏乳仔豬糞便樣品進(jìn)行總DNA抽提,利用NanoDrop 2000檢測(cè)DNA濃度和純度,并以1.0%瓊脂糖凝膠電泳檢測(cè)DNA質(zhì)量;采用引物對(duì)338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3')擴(kuò)增16S rRNA序列V3~V4可變區(qū),PCR反應(yīng)體系20.0 ?L:5×Buffer 4.0 ?L,dNTPs(2.5 mmol/L)2.0 ?L,引物338F和806R(5 ?mol/L)各0.8 ?L,2×FastPfu聚合酶0.4 ?L,BSA 0.2 ?L,DNA模板10 ng,ddH2O補(bǔ)足至20.0 ?L。擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 45 s,進(jìn)行27個(gè)循環(huán);72 ℃延伸10 min?;厥誔CR擴(kuò)增產(chǎn)物并進(jìn)行純化,以Tris-HCl洗脫后進(jìn)行瓊脂糖凝膠電泳檢測(cè);并利用QuantiFluorTM-ST(Promega,USA)進(jìn)行定量分析。

1. 4 高通量測(cè)序分析

使用Trimmomatic軟件對(duì)原始測(cè)序結(jié)果進(jìn)行序列質(zhì)控,以FLASH進(jìn)行拼接。利用Illumina MiSeq平臺(tái)構(gòu)建PE300的文庫(kù),根據(jù)97%相似度對(duì)序列進(jìn)行OTU聚類,并去除單序列和嵌合體,在I-Sanger云平臺(tái)對(duì)每條序列進(jìn)行物種分類注釋分析。采用SPSS 17.0進(jìn)行單因素方差分析(One-way ANOVA)和Duncans多重比較。

2 結(jié)果與分析

2. 1 復(fù)合益生菌對(duì)杜藏乳仔豬腸道菌群結(jié)構(gòu)的影響

2. 1. 1 OTU聚類分析結(jié)果 采用Illumina高通量測(cè)序獲得樣本數(shù)據(jù)后,經(jīng)數(shù)據(jù)過(guò)濾、拼接及質(zhì)控,平均每個(gè)糞便樣品獲得53810條高質(zhì)量序列,平均長(zhǎng)度為463.62 nt,將相似性達(dá)97%的序列聚類成1個(gè)OTU,12個(gè)糞便樣品共獲得1049個(gè)OTUs。杜藏乳仔豬糞便樣品菌群物種的稀疏曲線見(jiàn)圖1,當(dāng)測(cè)序數(shù)據(jù)量在20000以上時(shí),稀釋曲線趨于平穩(wěn),說(shuō)明測(cè)序的深度和數(shù)據(jù)量足夠,即Illumina高通量測(cè)序數(shù)據(jù)合理,能基本反映樣品中細(xì)菌的組成和種類。

由圖2可知,ZM組、ZY組和ZD組杜藏乳仔豬糞便樣品共有OTU為327個(gè),ZM組的特有OTU為247個(gè),ZD組的特有OTU為84個(gè),ZY組的特有OTU為96個(gè)。ZM組的OTU總數(shù)為730個(gè),ZD組的OTU總數(shù)為599個(gè),兩組的共有OTU為376個(gè),可能是與迪慶藏豬母乳相比,代乳粉成分較單一,杜藏豬乳仔豬采食代乳粉后其腸道細(xì)菌物種隨之發(fā)生變化,細(xì)菌種類下降。ZY組的OTU總數(shù)為669個(gè),與ZM組的共有OTU為434個(gè),與ZD組的共有OTU為466個(gè)。

2. 1. 2 Alpha多樣性分析結(jié)果 Alpha多樣性指數(shù)是反映樣品物種多樣性的指標(biāo)之一,包括Shannon指數(shù)、ACE指數(shù)、Chao1指數(shù)和Simpson指數(shù)等。本研究結(jié)果表明,3個(gè)處理組杜藏乳仔豬糞便樣品的Coverage指數(shù)均在0.9995以上,說(shuō)明測(cè)序的深度和廣度符合試驗(yàn)要求,試驗(yàn)數(shù)據(jù)合理。從表3可看出,ZY 組和ZM組杜藏乳仔豬糞便樣品的Shannon指數(shù)、ACE指數(shù)和Chao1指數(shù)均高于ZD組,ZM組的Simpson指數(shù)則低于ZD組,但差異均不顯著(P>0.05,下同)。其中,ZM組和ZY組的ACE指數(shù)及Chao1指數(shù)均顯著高于ZD組(P?0.05,下同),說(shuō)明在代乳粉中添加復(fù)合益生菌后能顯著提高杜藏乳仔豬腸道菌群Alpha多樣性。

2. 1. 3 Beta多樣性分析結(jié)果 Beta多樣性分析是對(duì)不同微生物群落間的物種多樣性進(jìn)行組間比較,以明確不同樣品組間的群落組成相似性或差異性。在基于Weighted Unifrac加權(quán)距離的PCoA分析和基于Unweighted Unifrac加權(quán)距離的PCoA分析中,橫坐標(biāo)表示第一主成分(PC1),縱坐標(biāo)表示第二主成分(PC2)。PCoA分析結(jié)果(圖3和圖4)表明,PC1和PC2對(duì)樣品差異的貢獻(xiàn)值分別為47.62%和15.54%、38.65%和13.97%。3個(gè)處理組12個(gè)杜藏乳仔豬糞便樣品明顯分開(kāi),但組內(nèi)樣品聚集在一起。其中,ZY組和ZD組樣品在同一區(qū)域,與ZM組樣品明顯分開(kāi),說(shuō)明ZY組和ZD組樣品間差異較小,杜藏乳仔豬腸道菌群組成相似,但與ZM組間差異顯著,即樣品中的菌群組成差異顯著。

2. 2 物種相對(duì)豐度影響分析結(jié)果

2. 2. 1 門(mén)分類水平上的優(yōu)勢(shì)菌群分析結(jié)果 在門(mén)分類水平上,3個(gè)處理組杜藏乳仔豬糞便樣品中均以厚壁菌門(mén)(Firmicutes)、擬桿菌門(mén)(Bacteroidetes)、螺旋菌門(mén)(Spirochaetes)和放線菌門(mén)(Actinobacteria)占據(jù)絕對(duì)優(yōu)勢(shì)(圖5)。其中,厚壁菌門(mén)和擬桿菌門(mén)的相對(duì)豐度最高,其總和占樣品中細(xì)菌總數(shù)的90%以上。ZM組的優(yōu)勢(shì)菌門(mén)為厚壁菌門(mén),ZY組和ZD組的優(yōu)勢(shì)菌門(mén)為擬桿菌門(mén)。ZY組和ZD組的厚壁菌門(mén)/擬桿菌門(mén)比值分別為0.77和0.92,較ZM組(1.76)分別下降56.25%和47.73%??梢?jiàn),采食代乳粉后杜藏乳仔豬糞便中擬桿菌門(mén)的相對(duì)豐度升高,在代乳粉中添加復(fù)合益生菌能進(jìn)一步提高擬桿菌門(mén)的相對(duì)豐度,從而降低厚壁菌門(mén)/擬桿菌門(mén)比值。

2. 2. 2 屬分類水平上的優(yōu)勢(shì)菌群分析結(jié)果 在屬分類水平上,3個(gè)處理組杜藏乳仔豬糞便菌群主要分布在34個(gè)菌屬,其相對(duì)豐度排名前10的菌屬(圖6)分別是普氏菌屬_9(Prevotella_9)、norank_f_Muribaculaceae、乳桿菌屬(Lactobacillus)、布勞特氏菌屬(Blautia)、擬桿菌屬(Bacteroides)、考拉桿菌屬(Phascolarctobacterium)、普雷沃氏菌科_NK3B31群(Prevotellaceae_NK3B31_group)、毛螺菌科_NK4A136群(Lachnospiraceae_NK4A136_group)、密螺旋體屬_2(Treponema_2)和毛螺菌科_AC2044群(Lachnospiraceae_AC2044_group)。其中,布勞特氏菌屬、考拉桿菌屬、乳桿菌屬及毛螺菌科(Lachnospiraceae)等屬于厚壁菌門(mén),擬桿菌屬、普氏菌屬(Prevotella)、norank_f_Muribaculaceae及普雷沃氏菌科(Prevotellaceae)屬于擬桿菌門(mén),密螺旋體屬屬于螺旋體門(mén)。ZD組和ZY組的優(yōu)勢(shì)菌屬為普氏菌屬_9,ZM組則為乳桿菌屬。此外,ZD組和ZY組的普氏菌屬_9、norank_f_Muribaculaceae、布勞特氏菌屬和考拉桿菌屬均呈上升趨勢(shì),乳桿菌屬、普雷沃氏菌科_NK3B31群、毛螺菌科_AC2044群、毛螺菌科_ NK4A136群和密螺旋體屬_2則呈下降趨勢(shì)。

2. 3 物種豐度聚類分析結(jié)果

不同處理組杜藏乳仔豬糞便樣品物種豐度聚類分析結(jié)果如圖7所示,ZD組和ZY組首先聚類在一起,然后與ZM組聚類在一起,說(shuō)明試驗(yàn)組和對(duì)照組的杜藏乳仔豬糞便物種豐度明顯分開(kāi),也表明2個(gè)試驗(yàn)組的杜藏乳仔豬糞便物種組成及相對(duì)豐度更接近。

2. 4 組間差異分析結(jié)果

由圖8可知,ZD組和ZY組杜藏乳仔豬糞便中的布勞特氏菌屬、罕見(jiàn)小球菌屬(Subdoligranulum)、腸球菌屬(Enterococcus)、未明確普雷沃氏菌科(norank_ f_Prevotellaceae)及瘤胃菌科(Ruminococcaceae)較ZM組均呈上升趨勢(shì),密螺旋體屬_2、毛螺菌科_ AC2044群、普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、瘤胃菌科_NK4A214群、瘤胃菌科_ UCG-005及Family_XIII_AD3011_group則呈下降趨勢(shì)。ZD組杜藏仔豬糞便中布勞特氏菌屬、腸球菌屬和吉氏副擬桿菌屬(Parabacteriodes)的相對(duì)豐度較其他2個(gè)處理組呈顯著上升趨勢(shì);而ZY組杜藏乳仔豬糞便中普雷沃氏菌科_NK3B31群、普雷沃氏菌科_UCG-003、厭氧弧菌屬(Anaerovibrio)、罕見(jiàn)小球菌屬、瘤胃菌科_NK4A214群、瘤胃菌科_UCG-005、未明確普雷沃氏菌科及Family_XIII_AD3011_group的相對(duì)豐度顯著高于ZD組,說(shuō)明在代乳粉中添加復(fù)合益生菌能改變杜藏乳仔豬腸道菌群結(jié)構(gòu),有利于普雷沃氏菌科、瘤胃菌科、厭氧弧菌屬和罕見(jiàn)小球菌屬等菌群的生長(zhǎng)。

3 討論

機(jī)體腸道內(nèi)環(huán)境復(fù)雜,且受年齡、遺傳、營(yíng)養(yǎng)及生存環(huán)境等因素的影響,腸道內(nèi)的菌群結(jié)構(gòu)復(fù)雜且呈多樣性的特點(diǎn)(Zhao et al.,2015;李永洙等,2019;劉晗璐等,2019;詹明曄等,2019)。日糧是影響機(jī)體腸道微生物多樣性的主要因素(Claesson et al.,2012;Gudi et al.,2019)。李永洙等(2018)通過(guò)研究代乳粉對(duì)沂蒙黑山羊瘤胃微生物區(qū)系的影響,發(fā)現(xiàn)其腸道菌群Alpha多樣性降低,隨著日齡的增加,母乳組和代乳粉組沂蒙黑山羊瘤胃內(nèi)微生物區(qū)系均達(dá)到一個(gè)動(dòng)態(tài)平衡,且差異越來(lái)越小。在本研究中,ZD組杜藏乳仔豬糞便微生物多樣性指標(biāo)Chao1指數(shù)、ACE指數(shù)和Shannon指數(shù)均低于ZM組,Simpson指數(shù)則高于ZM組,說(shuō)明采食代乳粉后糞便中微生物多樣性降低,與李永洙等(2018)的研究結(jié)果一致。此外,ZD組的Chao1指數(shù)和ACE指數(shù)顯著低于ZY組,說(shuō)明在代乳粉中添加復(fù)合益生菌可有效提高杜藏乳仔豬腸道菌群結(jié)構(gòu)多樣性。

機(jī)體腸道內(nèi)細(xì)菌種類繁多,形成一個(gè)錯(cuò)綜復(fù)雜的微生物體系,促進(jìn)個(gè)體發(fā)育并參與養(yǎng)分代謝。厚壁菌門(mén)細(xì)菌參與能量的吸收,促進(jìn)機(jī)體從飼料中吸收能量,從而滿足機(jī)體生長(zhǎng)需求(Davis,2017;馬燕等,2019)。擬桿菌門(mén)細(xì)菌參與碳水化合物、膽汁酸和類固醇的代謝,能提高營(yíng)養(yǎng)物質(zhì)的利用率,與腸黏膜修復(fù)、免疫發(fā)育及腸道微生態(tài)平衡等密切相關(guān)(Turnbaugh and Gordon,2010;馬燕等,2019),擁有與碳水化合物利用降解和轉(zhuǎn)運(yùn)有關(guān)的多糖利用基因座,可根據(jù)碳水化合物種類和濃度的不同,針對(duì)性合成利用底物的碳水化合物活性酶(Turnbaugh et al.,2006;金磊等,2019)。本研究中,代乳粉中添加有葡萄糖等碳水化合物,可能是導(dǎo)致杜藏乳仔豬腸道菌群結(jié)構(gòu)改變的原因之一。芽孢桿菌能產(chǎn)生大量脂肽類物質(zhì),而抑制病原菌生長(zhǎng)及促進(jìn)營(yíng)養(yǎng)物質(zhì)消化吸收(曹護(hù)群等,2019;王曉丹等,2019)。在ZY組代乳粉中添加含有芽孢桿菌和乳桿菌的復(fù)合益生菌,對(duì)杜藏乳仔豬的生長(zhǎng)發(fā)育具有潛在促進(jìn)作用,結(jié)果顯示其糞便樣品中芽孢桿菌和乳桿菌的相對(duì)豐度略有提高,但差異不顯著,說(shuō)明低劑量的益生菌并不能顯著提高添加益生菌的相對(duì)豐度,也進(jìn)一步證實(shí)飼糧才是影響腸道微生物的主要因素。厚壁菌門(mén)/擬桿菌門(mén)比值與熱量和脂肪的貯存呈正相關(guān)(Turnbaugh et al.,2006;金磊等,2019),同時(shí)調(diào)控脂代謝相關(guān)基因表達(dá)與脂肪貯存和代謝,如厭氧弧菌屬、普雷沃氏菌屬與肌肉中甘油三酯的含量呈顯著負(fù)相關(guān)(嚴(yán)鴻林,2018)。本研究結(jié)果顯示,代乳粉中添加復(fù)合益生菌后能降低厚壁菌門(mén)/擬桿菌門(mén)比值,同時(shí)提高擬桿菌門(mén)、厭氧弧菌屬和普雷沃氏菌屬的相對(duì)豐度,說(shuō)明添加復(fù)合益生菌具有提高碳水化合物、類固醇膽汁酸等營(yíng)養(yǎng)物質(zhì)利用率相關(guān)菌群相對(duì)豐度的趨勢(shì),進(jìn)而提高與腸道黏膜修復(fù)和降低機(jī)體脂肪貯存的潛能。厚壁菌門(mén)和擬桿菌門(mén)是杜藏乳仔豬腸道內(nèi)最主要的微生物,與王一冰等(2013)、劉晗璐等(2019)的研究結(jié)果一致。本研究觀察到ZD組和ZY組杜藏乳仔豬腸道的優(yōu)勢(shì)菌為擬桿菌門(mén)和普氏菌屬,ZM組為厚壁菌門(mén)和乳桿菌屬,究其原因可能與飼糧的成分不同有關(guān)(王一冰等,2013;李永洙等,2019;劉晗璐等,2019;劉萍等,2019),腸道菌群結(jié)構(gòu)的改變有利于仔豬適應(yīng)斷奶帶來(lái)的飼糧成分變化及腸道黏膜損傷等應(yīng)激反應(yīng)。普氏菌屬是腸道內(nèi)的優(yōu)勢(shì)菌,其相對(duì)豐度與飼糧中的纖維含量呈正比,與飼糧中蛋白和脂肪的含量呈反比(姜濤等,2019),與碳水化合物的代謝密切相關(guān)(Murtaza et al.,2019)。說(shuō)明分離于成年豬消化道的復(fù)合益生菌具有提高杜藏乳仔豬體內(nèi)與碳水化合物代謝相關(guān)菌群的潛在功能,同時(shí)菌群結(jié)構(gòu)發(fā)生改變,脂肪沉積型菌群的相對(duì)豐度降低,而促進(jìn)斷奶仔豬腸道內(nèi)的菌群結(jié)構(gòu)由哺乳型向碳水化合物等營(yíng)養(yǎng)代謝型轉(zhuǎn)變。說(shuō)明復(fù)合益生菌的添加原則應(yīng)以提高腸道微生物穩(wěn)定性、多樣性及環(huán)境適應(yīng)性為前提,而不是以提高添加菌的相對(duì)豐度為目標(biāo)。

短鏈脂肪酸是食物在機(jī)體腸道內(nèi)被微生物發(fā)酵而獲得的一種物質(zhì),其合成主要與布勞特氏菌、梭菌屬、瘤胃球菌屬、糞桿菌屬、罕見(jiàn)小球菌屬、羅斯氏菌屬、糞球菌屬、毛螺菌科、普氏棲糞菌屬、擬桿菌屬及考拉桿菌屬相關(guān)(Zhang et al.,2015;Kang et al.,2018)。短鏈脂肪酸能增強(qiáng)腸黏膜免疫屏障作用,而降低腸道炎癥反應(yīng),與動(dòng)物的健康有密切聯(lián)系。布勞特氏菌屬是一種具有潛在保護(hù)作用的菌群,與腸道健康相關(guān)(Bai et al.,2018),能抵御碳青霉烯耐藥型銅綠假單胞菌等致病菌的入侵(Pettigrew et al.,2019)。本研究結(jié)果顯示,添加復(fù)合益生菌后,ZY組的毛螺菌科、罕見(jiàn)小球菌屬和布勞特氏菌屬相對(duì)豐度顯著提高,表明復(fù)合益生菌能有效提高與短鏈脂肪酸產(chǎn)生有關(guān)及具有潛在抗菌作用菌群的相對(duì)豐度,對(duì)動(dòng)物體抵抗腸道炎癥具有潛在功能,但其作用機(jī)理尚需進(jìn)一步探究。

復(fù)合益生菌的作用并非完全依靠其數(shù)量的增加,還需通過(guò)調(diào)節(jié)腸道內(nèi)微生物菌群的種類和數(shù)量,才能發(fā)揮益生作用。本研究通過(guò)對(duì)比ZD組和ZY組發(fā)現(xiàn),在代乳粉中添加益生菌后,杜藏乳仔豬糞便中的菌群多樣性升高,尤其是與碳水化合物等代謝和短鏈脂肪酸產(chǎn)生相關(guān)的菌群(擬桿菌門(mén)、普雷沃氏菌屬、罕見(jiàn)小球菌屬、布勞特氏菌屬、厭氧弧菌屬及毛螺菌科等)相對(duì)豐度顯著升高,說(shuō)明添加分離自同種源成年豬消化道的益生菌具有潛在促進(jìn)營(yíng)養(yǎng)物質(zhì)代謝和抗腸道炎癥的功能,故推測(cè)復(fù)合益生菌的添加可縮短消化道微生物區(qū)系由哺乳型向飼料型的轉(zhuǎn)變歷程。

4 結(jié)論

在杜藏超早期斷奶仔豬代乳粉中添加復(fù)合益生菌能有效提高其腸道菌群結(jié)構(gòu)多樣性,同時(shí)提高與碳水化合物代謝和產(chǎn)短鏈脂肪酸相關(guān)菌群的相對(duì)豐度,即復(fù)合益生菌具有潛在促進(jìn)營(yíng)養(yǎng)物質(zhì)代謝和抗炎癥的功能,可縮短消化道微生物區(qū)系由哺乳型向飼料型的轉(zhuǎn)變歷程。

參考文獻(xiàn):

曹護(hù)群,賀濛初,舒迎霜,夏曉東,馮士彬,李玉,王希春,吳金節(jié). 2019. 犬源復(fù)合益生菌對(duì)脾氣虛犬盲腸菌群的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(8):3810-3820. doi:10.3969/j.issn. 1006-267x.2019.08.043. [Cao H Q,He M C,Shu Y S,Xia X D,F(xiàn)eng S B,Li Y,Wang X C,Wu J J. 2019. Effects of canine derived compound probiotics on cecal microflora in splenic qi asthenia canines[J]. Chinese Journal of Animal Nutrition,31(8):3810-3820.]

馮程程,白凱文,王安諳,葛曉可,張莉莉,王恬. 2019. 日糧添加二甲基甘氨酸鈉對(duì)宮內(nèi)發(fā)育遲緩斷奶仔豬肝臟抗氧化能力及免疫指標(biāo)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),42(2):336-344. doi:10.7685/jnau.201806011. [Feng C C,Bai K W,Wang A A,Ge X K,Zhang L L,Wang T. 2019. Effect of N,N-dimethylglycine sodium salt supplementation on hepatic antioxidant capacity and immune indices in intrauterine growth retardation weanling piglets[J]. Journal of Nanjing Agricultural University,42(2):336-344.]

關(guān)嘉琦,李柏良,焦雯姝,李慧臻,岳瑩雪,李娜,史佳鷺,趙莉,霍貴成. 2020. 益生菌對(duì)促進(jìn)腸道發(fā)育作用的研究進(jìn)展[J]. 食品科學(xué),41(21):278-285. doi:10.7506/spkx1002- 6630-20191015-132. [Guan J Q,Li B L,Jiao W S,Li H Z,Yue Y X,Li N,Shi J L,Zhao L,Huo G C. 2020. Recent advances in understanding the role of probiotics in promoting intestinal development[J]. Food Science,41(21):278-285.]

姜濤,王雯磊,張明和,張軍. 2019. 普雷沃菌和飲食及糖代謝關(guān)系的研究進(jìn)展[J]. 中華糖尿病雜志,11(4):296-298. doi:10.3760/cma.j.issn.1674-5809.2019.04.015. [Jiang T,Wang W L,Zhang M H,Zhang J. 2019. Research pro-gress of the relationship between Prevotella copri,diet and glucose metabolism[J]. Chinese Journal of Diabetes Me-llitus,11(4):296-298.]

金磊,王立志,王之盛,薛白,彭全輝. 2019. 基于高通量測(cè)序技術(shù)對(duì)山羊盲腸細(xì)菌多樣性的分析[J]. 微生物學(xué)通報(bào),46(6):1423-1433. doi:10.13344/j.microbiol.china.180599. [Jin L,Wang L Z,Wang Z S,Xue B,Peng Q H. 2019. Analysis of cecum bacterial diversity of goat based on Illumina MiSeq sequencing[J]. Microbiology China,46(6):1423-1433.]

李威,李佳熙,李吉平,呂寶玲,張銀龍. 2020. 我國(guó)不同環(huán)境介質(zhì)中的抗生素污染特征研究進(jìn)展[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),44(1):205-214. doi:10.3969/j.issn. 1000-2006.201902002. [Li W,Li J X,Li J P,Lü B L,Zhang Y L. 2020. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University(Natural Science Edition),44(1):205-214.]

李昕,曾潔,王岱,薛云新,趙西林. 2020. 細(xì)菌耐藥耐受性機(jī)制的最新研究進(jìn)展[J]. 中國(guó)抗生素雜志,45(2):113-121. doi:10.13461/j.cnki.cja.006866. [Li X,Zeng J,Wang D,Xue Y X,Zhao X L. 2020. Recent advances in the mecha-nism of bacterial resistance and tolerance[J]. Chinese Journal of Antibiotics,45(2):113-121.]

李雪莉,王超,虞德夫,丁立人,朱偉云,杭蘇琴. 2017. 微生態(tài)制劑對(duì)斷奶仔豬生長(zhǎng)性能、器官重及其胃腸道發(fā)育的影響[J]. 草業(yè)學(xué)報(bào),26(8):192-199. doi:10.11686/cyxb2016438. [Li X L,Wang C,Yu D F,Ding L R,Zhu W Y,Hang S Q. 2017. Effects of probiotics on the growth performance,organ relative weight,and intestine development of weaned piglets[J]. Acta Prataculturae Sinica,26(8):192-199.]

李永洙,金太花,韓照清,夏春峰,晁洪雨,張乃鋒,王世琴,刁其玉. 2018. 代乳粉對(duì)早期斷奶沂蒙黑山羊羔小腸發(fā)育、菌群多樣性及葡萄糖轉(zhuǎn)運(yùn)載體基因表達(dá)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),51(11):2193-2205. doi:10.3864/j.issn.0578-1752.2018.11.016. [Li Y Z,Jin T H,Han Z Q,Xia C F,Chao H Y,Zhang N F,Wang S Q,Diao Q Y. 2018. Effects of the milk replacer on the development of intestine,the flora diversity and the relative expression of glucose transporter gene of early weaned Yimeng black goat lambs[J]. Scientia Agricultura Sinica,51(11):2193-2205.]

李永洙,韓照清,金太花,夏春峰,晁洪雨,張乃鋒,王世琴,刁其玉. 2019. 代乳粉對(duì)沂蒙黑山羊羔羊早期生長(zhǎng)性能及其瘤胃微生物區(qū)系的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(8):3600-3611. doi:10.3969/j.issn.1006-267x.2019.08.021. [Li Y Z,Han Z Q,Jin T H,Xia C F,Chao H Y,Zhang N F,Wang S Q,Diao Q Y. 2019. Effects of milk replacer on growth performance and rumen microflora in early wea-ning Yimeng black lambs[J]. Chinese Journal of Animal Nutrition,31(8):3600-3611.]

劉晗璐,鐘偉,司華哲,李志鵬,李光玉. 2019. 鮮飼料與混合飼糧對(duì)咖啡貂(Mustela iutreola)腸道微生物多樣性的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(1):226-235. doi:10.3969/j.issn. 1006-267x.2019.01.028. [Liu H L,Zhong W,Si H Z,Li Z P,Li G Y. 2019. Effects of fresh feed and mixed diets on gut microbiota diversity in European mink(Mustela iutreola)[J]. Chinese Journal of Animal Nutrition,31(1):226-235.]

劉萍,趙金標(biāo),耿正穎,王軍軍,劉嶺,王春林,郭娉婷,吳怡,張剛,黃冰冰. 2019. 日糧添加褐藻糖膠對(duì)斷奶仔豬抗炎能力和腸道微生物多樣性的影響[J]. 微生物學(xué)報(bào),59(4):700-710. [Liu P,Zhao J B,Geng Z Y,Wang J J,Liu L,Wang C L,Guo P T,Wu Y,Zhang G,Huang B B. 2019. Influence of dietary fucoidan on inflammatory response and intestinal microbial diversity in weaned pigs[J]. Acta Microbiology Sinica,59(4):700-710.]

劉韶娜,張斌,相德才,趙智勇,趙彥光. 2019a. 芽孢桿菌B13的分離鑒定及其抑菌作用研究[J]. 中國(guó)畜牧獸醫(yī),46(2):573-581. doi:10.16431/j.cnki.1671-7236.2019.02.029. [Liu S N,Zhang B,Xiang D C,Zhao Z Y,Zhao Y G. 2019a. Isolatiog,identification and study of a Bacillus sp. B13 with high antibiotic character[J]. China Animal Husbandry & Veterinary Medicine,46(2):573-581.]

劉韶娜,張斌,相德才,趙智勇,趙彥光. 2019b. 一株植物乳桿菌的分離、鑒定及其特性研究[J]. 飼料研究,(9):73-77. doi:10.13557/j.cnki.issn.1002-2813.2019.09.018. [Liu S N,Zhang B,Xiang D C,Zhao Z Y,Zhao Y G. 2019b. Isola-ting,identification and characteristic research of a Lactobacillus plantarum[J]. Feed Research,(9):73-77.]

馬燕,馬爽,尚春香,格日力. 2019. 低氧暴露對(duì)大鼠腸道微生物群落的影響[J]. 微生物學(xué)通報(bào),46(1):120-129. doi:10.13344/j.microbiol.china.180306. [Ma Y,Ma S,Shang C X,Ge R L. 2019. Effects of hypoxic exposure on rats? gut microbiota[J]. Microbiology China,46(1):120-129.]

田時(shí)祎,王玨,汪晶,朱偉云. 2018. 早期低聚半乳糖干預(yù)對(duì)哺乳仔豬回腸形態(tài)、功能發(fā)育相關(guān)基因及回腸菌群的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),41(5):917-924. doi:10.7685/jnau.201711031. [Tian S Y,Wang J,Wang J,Zhu W Y. 2018. The effect of early intervention with galacto-oligosaccharides on the morphological structure,functional development,and microbial community in ileum of suckling piglets[J]. Journal of Nanjing Agricultural University,41(5):917-924.]

王曉丹,孔祥峰,趙越,章文明,王占彬. 2019. 枯草芽孢桿菌對(duì)斷奶仔豬生長(zhǎng)性能和血漿生化參數(shù)的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(2):605-611. doi:10.3969/j.issn.1006-267x. 2019.02.016. [Wang X D,Kong X F,Zhao Y,Zhang W M,Wang Z B. 2019. Effects of Bacillus subtilis on growth performance and plasma biochemical parameters of weaned piglets[J]. Chinese Journal of Animal Nutrition,31(2):605-611.]

王一冰,張小平,黃怡,李衛(wèi)芬. 2013. 運(yùn)用454焦磷酸測(cè)序技術(shù)對(duì)斷奶前后仔豬腸道菌群的分析[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 25(10):2440-2446. doi:10.3969/j.issn.1006-267x.2013.10. 028. [Wang Y B,Zhang X P,Huang Y,Li W F. 2013. Intestinal microflora analysis of pre-and post-weaning piglets using by 454 pyrosequencing technology[J]. Chinese Journal of Animal Nutrition,25(10):2440-2446.]

吳敏,劉作華,齊仁立. 2019. 腸道微生物調(diào)控動(dòng)物肌肉的生長(zhǎng)和發(fā)育[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(9):3976-3982. doi:10. 3969/j.issn.1006-267x.2019.09.008. [Wu M,Liu Z H,Qi R L. 2019. Growth and development of muscle in animals controlled by intestinal microbes[J]. Chinese Journal of Animal Nutrition,31(9):3976-3982.]

夏耀耀,任文凱,黃瑞林,曾本華,魏泓,印遇龍. 2017. 仔豬腸道微生物研究進(jìn)展[J]. 中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào),25(6):681-688. doi:10.3969/j.issn.1005-4847.2017.06.018. [Xia Y Y,Ren W K,Huang R L,Zeng B H,Wei H,Yin Y L. 2017. Current understanding of the intestinal microbiota of piglets[J]. Acta Laboratorium Animalis Scientia Sinica,25(6):681-688.]

謝全喜,亓秀曄,陳振,于佳民,徐海燕,谷巍. 2017. 復(fù)合微生態(tài)制劑對(duì)斷奶仔豬生長(zhǎng)性能、腹瀉率、免疫性能和腸道菌群的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),29(3):850-858. doi:10. 3969/j.issn.1006-267x.2017.03.015. [Xie Q X,Qi X Y,Chen Z,Yu J M,Xu H Y,Gu W. 2017. Effects of compound probiotics on growth performance,diarrhea rate,immunity performance and intestinal microflora of weaned piglets[J]. Chinese Journal of Animal Nutrition,29(3):850-858.]

嚴(yán)鴻林. 2018. 腸道微生物及其與營(yíng)養(yǎng)互作對(duì)豬骨骼肌表型及代謝的調(diào)控[D]. 雅安:四川農(nóng)業(yè)大學(xué). [Yan H L. 2018. Regulation of porcine skeletal muscle-phenotyoes and metabolism by gut microbita and its interaction with nutition[D]. Yaan:Sichuan Agriculture University.]

楊虹,謝明寶,于輝,農(nóng)興新,楊文豪,楊映. 2019. 2種微生態(tài)制劑對(duì)烏鱧生長(zhǎng)性能、腸道形態(tài)及免疫功能的影響[J]. 河南農(nóng)業(yè)科學(xué),48(1):134-140. doi:10.15933/j.cnki. 1004-3268.2019.01.022. [Yang H,Xie M B,Yu H,Nong X X,Yang W H,Yang Y. 2019. Effects of microecological preparations on growth performance,intestinal morphology and immune function of Channa argus[J]. Journal of Henan Agricultural Sciences,48(1):134-140.]

詹明曄,付小花,張姝,張?chǎng)危瑮詈5?,俞錦華,王愛(ài)善,王磊. 2019. 不同地區(qū)成體大熊貓腸道微生物結(jié)構(gòu)差異性及其與纖維素消化能力的相關(guān)性[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),25(3):736-742. doi:10.19675/j.cnki.1006-687x.2018.080-12. [Zhan M Y,F(xiàn)u X H,Zhang S,Zhang X,Yang H D,Yu J H,Wang A S,Wang L. 2019. Differences of the intestinal microbial structure of adult giant panda in diffe-rent regions and its correlation with the digestibility of cellulose[J]. Chinese Journal of Applied & Environmental Biology,25(3):736-742.]

Ahmadi S,Wang S H,Nagpal R,Wang B,Jain S L,Razazan A,Mishra S P,Zhu X W,Wang Z,Kavanagh K,Yadav H. 2020. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating microbiota/taurine/tight junction axis[J]. JCI Insight,5(9):e132055. doi:10.1172/jci.insight.132055.

Bai J,Zhu Y,Dong Y. 2018. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats[J]. Journal of Functional Foods,41:127-134. doi:10.1016/j.jff.2017.12.050.

Claesson M J,Jeffery I B,Conde S,Power S E,O?Connor E M,Cusack S,Harris H M B,Coakley M,Lakshmina-rayanan B,OSullivan O,F(xiàn)itzgerald G F,Deane J,OConnor M,Harnedy N,OConnor K,OMahony D,van Sinderen D,Wallace M,Brennan L,Stanton C,Marchesi J R,F(xiàn)itzgerald A P,Shanahan F,Hill C,Ross R P,O?Toole P W. 2012. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature,488(7410):178-184. doi:10.1038/nature11319.

Davis H C. 2017. Can the gastrointestinal microbiota be modu-lated by dietary fibre to treat obesity?[J]. Irish Journal of Medical Science,187(1):393-402. doi:10.1007/s11845-017-1686-9.

Derosa L,Routy B,F(xiàn)idelle M,Iebba V,Alla L,Pasolli E,Segata N,Desnoyer A,Pietrantonio F,F(xiàn)errere G,F(xiàn)ahrner J E,Le Chatellier E,Pons N,Galleron N,Roume H,Duong C P M,Mondragón L,Iribarren K,Bonvalet M,Terrisse S,Rauber C,Goubet A G,Daillère R,Lemaitre F,Reni A,Casu B,Alou M T,Silva C A C,Raoult D,F(xiàn)izazi K,Escudier B,Kroemer G,Albiges L,Zitvogel L. 2020. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients[J]. European Urology,78(2):195-206. doi:10.1016/j.eururo.04. 044.

Gudi R,Perez N,Johnson B M,Sofi M H,Brown R,Quan S H,Karumuthil-Melethil S,Vasu C. 2019. Complex die-tary polysaccharide modulates gut immune function and microbiota,and promotes protection from autoimmune dia-betes[J]. Immunology,157(1):70-85. doi:10.1111/imm. 13048.

He B K,Hoang T K,Tian X J,Taylor C M,Blanchard E,Luo M,Bhattacharjee M B,F(xiàn)reeborn J,Park S,Couturier J,Lindsey J W,Tran D Q,Rhoads J M,Liu Y Y. 2019. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota[J]. Frontiers in Immunology,10:385. doi:10. 3389/fimmu.2019.00385.

He Y Y,Mao C X,Wen H,Chen Z Y,Lai T,Li L Y,Lu W,Wu H D. 2017. Influence of ad libitum feeding of piglets with Bacillus subtilis fermented Liquid Feed on gut flora,luminal contents and health[J]. Scientific Reports,7:44553. doi:10.1038/srep44553.

Hou Q C,Zhao F Y,Liu W J,Lü R R,Khine W W T,Han J,Sun Z H,Lee Y K,Zhang H P. 2020. Probiotic-directed modulation of gut microbiota is basal microbiome dependent[J]. Gut Microbes,12(1):1736974. doi:10.1080/19490976.2020.1736974.

Hu P,Zhao F Z,Zhu W Y,Wang J. 2019. Effects of early-life lactoferrin intervention on growth performance,small intestinal function and gut microbiota in suckling piglets[J]. Food & Function,10(9):5361-5373. doi:10.1039/c9fo00676a.

Kang Y F,Guan G,Zhang S M,Ross C F,Zhu M J. 2018. Goji berry modulates gut microbiota and alleviates colitis in IL-10-deficient mice[J]. Molecular Nutrition & Food Research,62(22):e1800535. doi:10.1002/mnfr.201800 535.

Kim H B,Isaacson R E. 2015. The pig gut microbial diversity:Understanding the pig gut microbial ecology through the next generation high throughput sequencing[J]. Vete-rinary Microbiology,177(3-4):242-251. doi:10.1016/j.vetmic.2015.03.014.

Latham E A,Pinchak W E,Trachsel J,Allen H K,Callaway T R,Nisbet D J,Anderson R C. 2018. Isolation,characte-rization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation,nitrate/nitrite detoxification and food safety[J]. Bioresource Technology,263:358-364. doi:10.1016/j.biortech. 2018.04.116.

Murtaza N,Burke L M,Vlahovich N,Charlesson B,O'Neill H,Ross M L,Campbell K L,Krause L,Morrison M. 2019. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers[J]. Nutrients,11(2):261. doi:10.3390/nu11020261.

Pamer E G. 2016. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens[J]. Sience,352(6285):535-538. doi:10.1126/science.aad9382.

Patil Y,Gooneratne R,Ju X H. 2019. Interactions between host and gut microbiota in domestic pigs:A review[J]. Gut Microbes,11(3):310-334. doi:10.1080/19490976. 2019.1690363.

Pettigrew M M,Gent J F,Kong Y,Halpin A L,Pineles L,Harris A D,Johnson J K. 2019. Gastrointestinal microbiota disruption and risk of colonization with carbapenem-resistant Pseudomonas aeruginosa in intensive care unit patients[J]. Clinical Infectious Diseases,69(4):604-613. doi:10.1093/cid/ciy936.

Piuske J R,Turpin D L,Kim J C. 2018. Gastrointestinal tract (gut) health in the young pig[J]. Animal Nutrition,4(2):187-196. doi:10.1016/j.aninu.2017.12.004.

Singer J R,Blosser E G,Zindl C L,Silberger D J,Conlan S,Laufer V A,DiToro D,Deming C,Kumar R,Morrow C D,Segre J A,Gray M J,Randolph D A,Weaver C T. 2019. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis[J]. Nature medicine,25(11):1772-1782. doi:10.1038/s41591-019-0640-y.

Sun J,Liao X P,D'Souza A W,Boolchandani M,Li S H,Cheng K,Martínez J L,Li L,F(xiàn)eng Y J,F(xiàn)ang L X,Huang T,Xia J,Yu Y,Zhou Y F,Sun Y X,Deng X B,Zeng Z L,Jiang H X,F(xiàn)ang B H,Tang Y Z,Lian X L,Zhang R M,F(xiàn)ang Z W,Yan Q L,Dantas G,Liu Y H. 2020. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms[J]. Nature Communications,11(1):1427. doi:10.1038/s41467-020-15222-y.

Teichman E M,O'Riordan K J,Gahan C G M,Dinan T G,Cryan J F. 2020. When rhythms meet the blues:Circa-dian interactions with the microbiota-gut-brain axis[J]. Cell Metabolism,31(3):448-471. doi:10.1016/j.cmet.2020. 02.008.

Tian S Y,Wang J,Yu H,Wang J,Zhu W Y. 2018. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets[J]. Journal of Animal Science and Biotechnology,9:75. doi:10.1186/s40104-018-0290-9.

Toscano M,Grandi R D,Stronati L,de Vecchi E,Drago L. 2017. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level:A preliminary study[J]. World Journal of Gastroenterology,23(15):2696-2704. doi:10.3748/wjg.v23.i15.2696.

Turnbaugh P J,Gordon J I. 2010. The core gut microbiome,energy balance and obesity[J]. The Journal of Physiology,587(17):4153-4158. doi:10.1113/jphysiol.2009.174136.

Turnbaugh P J,Ley R E,Mahowald M A,Magrini V,Mardis E R,Gordon J I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,444(7122):1027-1031. doi:10.1038/nature05414.

Zhang J C,Guo Z,Xue Z S,Sun Z H,Zhang M H,Wang L F,Wang G Y,Wang F,Xu J,Cao H F,Xu H Y,Lü Q,Zhong Z,Chen Y F,Qimuge S,Menghe B,Zheng Y,Zhao L P,Chen W,Zhang H P. 2015. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles,geography and ethnicities[J]. The ISME Journal,9(9):1979-1990. doi:10.1038/ismej.2015.11.

Zhang M L,Li M,Sheng Y,Tan F,Chen L Q,Cann I,Du Z Y,Rawls J F. 2020. Citrobacter species increase energy harvest by modulating intestinal microbiota in fish:Nondominant species play important functions[J]. mSystems,5(3):e00303. doi:10.1128/mSystems.00303-20.

Zhao W J,Wang Y P,Liu S Y,Huang J J,Zhai Z X,He C,Ding J M,Wang J,Wang H J,F(xiàn)an W B,Zhao J G,Meng H. 2015. The dynamic distribution of porcine microbiotaacross different ages and gastrointestinal tract segments[J]. PLoS One,10(2):e0117441. doi:10.1371/journal.pone.0117441.

Zheng D W,Pan P,Chen K W,F(xiàn)an J X,Li C X,Cheng H,Zhang X Z. 2020. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure[J]. Nature Biomedical Enginee-ring,4:852-862. doi:10.1038/s41551-020-0582-1.

(責(zé)任編輯 蘭宗寶)

猜你喜歡
多樣性
淺議單元導(dǎo)語(yǔ)教學(xué)策略
試論初中體育教學(xué)方法多樣性研究
論遵循社會(huì)規(guī)律與堅(jiān)持包容性發(fā)展的內(nèi)在邏輯
淺談小學(xué)數(shù)學(xué)作業(yè)設(shè)計(jì)的有效性
淺析阿拉伯語(yǔ)初級(jí)階段聽(tīng)力教學(xué)材料的選擇
利用網(wǎng)絡(luò)教學(xué)多樣性 開(kāi)展有效教學(xué)
由古典戲曲看“代言體”在中國(guó)的前世今生
淺談新時(shí)期群文輔導(dǎo)工作的特征
舞蹈表演的表現(xiàn)形式多樣性研究
水磨地區(qū)蕨類植物多樣性調(diào)查分析
商城县| 喀什市| 慈溪市| 崇仁县| 新巴尔虎左旗| 九江县| 双城市| 兰州市| 七台河市| 武安市| 平远县| 黄骅市| 安仁县| 钟山县| 黄大仙区| 海安县| 三门峡市| 任丘市| 泊头市| 长海县| 锦州市| 克什克腾旗| 逊克县| 多伦县| 封丘县| 拜泉县| 张家川| 东港市| 九龙城区| 班玛县| 潢川县| 平谷区| 宝坻区| 大英县| 黔西| 荆门市| 乌审旗| 广汉市| 开鲁县| 郎溪县| 郯城县|