譚鈉丹, 李旭, 吳婷, 列志旸, 劉旭軍, 劉世忠, 陳平, 劉菊秀
增溫對(duì)鼎湖山混交林中4種優(yōu)勢(shì)樹種生物量分配和養(yǎng)分積累的影響
譚鈉丹1,2, 李旭1, 吳婷1, 列志旸1, 劉旭軍1, 劉世忠1, 陳平2, 劉菊秀1*
(1. 中國(guó)科學(xué)院華南植物園退化生態(tài)系統(tǒng)植被恢復(fù)與管理重點(diǎn)實(shí)驗(yàn)室,廣州 510650;2. 仲愷農(nóng)業(yè)工程學(xué)院,廣州 510225)
為了解未來全球變暖對(duì)南亞熱帶森林生態(tài)系統(tǒng)物種組成的影響,在廣東鼎湖山采用沿海拔梯度垂直移位的方法,研究了模擬增溫對(duì)木荷()、紅枝蒲桃()、紅錐()和馬尾松()等4種優(yōu)勢(shì)樹種的生物量分配模式和養(yǎng)分(氮和磷)積累的影響。結(jié)果表明,增溫使大氣平均溫度增加(1.28±0.60)℃,土壤平均溫度增加(1.04±0.30)℃;6 a長(zhǎng)期增溫使木荷和馬尾松的樹高增長(zhǎng)率分別顯著提高83.0%和52.1%,基徑增長(zhǎng)率分別顯著提高37.1%和76.9%,二者的莖質(zhì)比都顯著增加,根質(zhì)比、葉質(zhì)比和根冠比都顯著降低,養(yǎng)分積累量分別顯著增加100.3%和185.7%;但增溫對(duì)紅枝蒲桃和紅錐的樹高、基徑、生物量分配模式和養(yǎng)分積累無顯著影響。因此,6 a增溫對(duì)4種優(yōu)勢(shì)樹種生物量分配模式和養(yǎng)分積累的影響具有一定的種間差異,木荷和馬尾松由于生物量和養(yǎng)分積累量較高,所以在長(zhǎng)期增溫條件下可能具有較強(qiáng)的適應(yīng)性,這種差異可能會(huì)對(duì)我國(guó)南亞熱帶混交林中的群落結(jié)構(gòu)和功能帶來潛在影響。
移位增溫; 生物量分配格局; 植物養(yǎng)分積累;鼎湖山
隨著大量化石燃料的燃燒和土地使用的變化,溫室氣體的濃度急劇增加,導(dǎo)致大氣溫度顯著升高,全球氣溫較工業(yè)革命前已經(jīng)增加1℃[1–3]。其中熱帶和亞熱帶地區(qū)增溫幅度為1.3℃~5.0℃,顯著高于全球平均水平[4]。森林作為全球陸地生態(tài)系統(tǒng)的主體,具有分布廣、生產(chǎn)力高及固碳能力強(qiáng)等特點(diǎn),在陸地碳循環(huán)中發(fā)揮著重要作用。熱帶森林的碳儲(chǔ)量和凈初級(jí)生產(chǎn)力在陸地生態(tài)系統(tǒng)中的占比更是高達(dá)25%和33%,它們擁有豐富的生物多樣性,并提供廣泛的生態(tài)系統(tǒng)服務(wù)[5–6]。相比于高緯度森林,低緯度森林植被熱適應(yīng)的生態(tài)位相對(duì)狹窄,由于熱帶樹種可能更容易受到持續(xù)變暖的影響,因此對(duì)未來全球變暖的適應(yīng)能力可能遠(yuǎn)小于高緯度地區(qū)[7–8]。全球氣候變暖必然會(huì)對(duì)熱帶森林生態(tài)系統(tǒng)造成巨大威脅,因而亟需在熱帶及亞熱帶地區(qū)開展增溫試驗(yàn)[9–11]。
各器官之間的生物量分配模式,即葉質(zhì)比(LMR)、莖質(zhì)比(SMR)、根質(zhì)比(RMR)和根冠比(R/S)可以反映植物對(duì)資源獲取和利用之間的協(xié)調(diào)配比[12–13]。研究表明,增溫會(huì)改變森林土壤中養(yǎng)分有效性和植物光合速率,進(jìn)而影響植物生物量積累和植物對(duì)養(yǎng)分的吸收及分配[14–17]。Yasuaki等報(bào)道,當(dāng)溫度升高時(shí),植物的熱適應(yīng)能力和生物量分配模式的可塑性有助于維持其碳平衡[18]。有研究表明, 植物可通過改變生物量分配模式來提高獲取各種資源的能力,以滿足在增溫條件下增長(zhǎng)的生長(zhǎng)速率[19–20]。不同植物的生物量變化對(duì)增溫的響應(yīng)也不同,增溫顯著增加了山油麻()的樹高和生物量[21];曾貞等[22]報(bào)道增溫不改變桑樹()幼苗的生物量;也有研究表明,增溫會(huì)降低植物生物量[23]。增溫對(duì)植物生物量的影響還與增溫時(shí)間有關(guān),短期增溫和長(zhǎng)期增溫對(duì)植物生物量的影響不一致[24–27]。養(yǎng)分積累量與植物自身的生長(zhǎng)狀況緊密相關(guān),是植物生長(zhǎng)潛力的重要指標(biāo)[28–29]。由于氣候變暖而引起的植物生物量和養(yǎng)分吸收能力的變化將直接影響其養(yǎng)分積累量[30–32],從而進(jìn)一步影響植物生長(zhǎng)。目前有關(guān)植物養(yǎng)分積累量對(duì)增溫響應(yīng)機(jī)理的研究相對(duì)較少,且多數(shù)是基于中高緯度地區(qū)和農(nóng)田[33–35],給研究結(jié)果帶來很大的限制性,前期的研究結(jié)果能否應(yīng)用到低緯度森林中還無法驗(yàn)證。
我國(guó)亞熱帶森林被稱為“北回歸線荒漠帶上的綠洲”,分布著世界上現(xiàn)存面積最大、最典型的常綠闊葉林。針闊葉混交林是我國(guó)南亞熱帶針葉林向地帶性常綠闊葉林演替的中間林分類型,也是我國(guó)南亞熱帶地區(qū)主要林分類型,其中木荷()、紅枝蒲桃()、紅錐()和馬尾松()等為優(yōu)勢(shì)種。本文通過垂直移位增溫試驗(yàn)探究長(zhǎng)期增溫對(duì)這4種南亞熱帶優(yōu)勢(shì)樹種生物量分配和養(yǎng)分積累量變化的影響,并試圖揭示植物生物量分配與其養(yǎng)分積累量對(duì)增溫的響應(yīng)機(jī)制,為預(yù)測(cè)未來南亞熱帶混交林生產(chǎn)力及其群落結(jié)構(gòu)提供參考。
研究區(qū)位于廣東省中部鼎湖山森林生態(tài)系統(tǒng)定位研究站(112°30′39″~112°33′41″ E,23°09′21″~ 23°11′30″ N),為典型的亞熱帶季風(fēng)氣候。年平均氣溫為20.9℃。年降水量為1 927 mm, 降雨多集中于3-8月份。針闊葉混交林為鼎湖山海拔300 m處的主要林型。土壤主要類型為赤紅壤,土層厚40~80 cm, 土壤pH值為4.6,表土層有機(jī)質(zhì)含量為4.3%[36]。
我們選擇位于鼎湖山海拔300 m的五棵松樣地的針闊葉混交林為研究對(duì)象,2012年1月,在海拔300 m處的五棵松混交林中和30 m處的季風(fēng)林旁的苗圃地,分別選擇30 m×30 m區(qū)域,去除區(qū)域內(nèi)喬木層和灌木層,使該空曠地帶暴露于充足的陽光中。在2個(gè)海拔的空曠地上分別修建3個(gè)OTC (open-top chambers)(長(zhǎng)×寬×高=3 m×3 m×0.8 m)。OTC樣方地下部分四周及底部鋪上水泥和瓷磚,防止隔離樣方內(nèi)土壤與周圍土壤的水分和養(yǎng)分交換(圖1)。
圖1 樣方構(gòu)造示意圖
每個(gè)OTC的土壤分3層(5、20和40 cm層)觀測(cè)土壤溫度(109, Campbell Scientific, Lincoln, USA)和濕度(CS616, Campbell Scientific, Lincoln, USA)。在樣地旁的平整地上架設(shè)離地2 m高度的地面氣象觀測(cè)系統(tǒng),觀測(cè)大氣溫度和濕度(HMP155A, Vaisala, Helsinki, Finland)[37]。
2012年4月,從位于海拔約300 m的混交林中分別收集不同層次(0~20、20~40、40~70 cm)的土壤,分層混勻后填埋于海拔300和30 m的所有OTC內(nèi)。土壤填埋后,根據(jù)植物在混交林中的分布比例和范圍,選取1 a生, 基莖和樹高基本一致的6種混交林常見樹苗,包括木荷、紅枝蒲桃、紅錐、馬尾松、短序潤(rùn)楠()和山血丹(),每種植物選擇6株樹苗,先在混交林中的統(tǒng)一位置進(jìn)行馴化,再移植進(jìn)填埋了混交林的土壤OTC內(nèi),并且按照相同株行距隨機(jī)定植。由于短序潤(rùn)楠和山血丹生長(zhǎng)緩慢,葉片稀少,不足以達(dá)到葉片采樣的條件。故本研究只選用木荷、紅枝蒲桃、紅錐和馬尾松4種南亞熱帶混交林優(yōu)勢(shì)喬木樹種[38]。
2014年12月、2015年12月(3 a短期增溫)和2018年6月(6 a長(zhǎng)期增溫)分別測(cè)量每個(gè)OTC內(nèi)所有植株的基徑(mm)和高度(cm),每個(gè)OTC中采用全收割法, 每種植物隨機(jī)收割1棵,以減少樹種間的遮蔽和競(jìng)爭(zhēng),同一OTC中收割植物的位置基本一致,并將所有砍伐的植株分成根、莖和葉。將采集的植物器官樣品在65℃下烘干,測(cè)定干質(zhì)量,根據(jù)經(jīng)驗(yàn)公式=a(2)b估算每株幼苗的生物量,其中為生物量,為基徑,為樹高,a和b是回歸系數(shù)(表1)。
生物量分配的計(jì)算公式:根質(zhì)比(RMR)=根生物量/總生物量;莖質(zhì)比(SMR)=莖生物量/總生物量;葉質(zhì)比(LMR)=葉生物量/總生物量;根冠比(R/S)=根生物量/(葉生物量+莖生物量)。
用Kjeldahl[37]方法測(cè)量葉、莖和根的N濃度; 樣品用H2SO4-H2O2消煮后,用光度法測(cè)量葉、莖和根的P濃度。單株N積累量(g)=葉N濃度×葉生物量+莖N濃度×莖生物量+根N濃度×根生物量;單株P(guān)積累量(g)=葉P濃度×葉生物量+莖P濃度×莖生物量+根P濃度×根生物量。
用SPSS 20.0 (IBM)統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,采用Sigmaplot 12.5 (Systat Software Inc)軟件繪制圖表。采用多因素方差分析法(Multi-Way repeated measures ANOVA)分析數(shù)據(jù)間的差異顯著性;采用單因素方差分析法(One-Way ANOVA)分析增溫與對(duì)照間的差異。顯著性水平設(shè)定為=0.05。
表1 增溫處理植物的生物量估算方程
從圖2可見,2014年1月至2018年11月,增溫和對(duì)照樣地的大氣平均溫度分別為23.15℃和21.87℃,增溫樣地升高了(1.28±0.60)℃。增溫處理下3個(gè)層次的土壤平均溫度為22.35℃,對(duì)照土壤為21.31℃,增溫樣地升高了(1.04±0.30)℃。增溫樣地土壤平均濕度為17%,對(duì)照樣地為22%,增溫樣地下降了5%。
4種植物的基徑與株高受到增溫、物種、測(cè)定年份的影響,溫度對(duì)植物基徑與樹高的影響也與樹種有關(guān)(表2,<0.05)。3 a的短期增溫下,4種植物的基徑和樹高都增加,馬尾松基徑比對(duì)照顯著增加了87.0%和87.5%,樹高顯著增加65.7%和49.8%;木荷的基徑在增溫第2年顯著增加了33.3%,樹高在第2和3年顯著增加了61.1%和65.1%。在6 a長(zhǎng)期增溫下,與對(duì)照組相比,木荷的基徑和樹高分別顯著增加了37.1%和83.0%,馬尾松的基徑和樹高分別顯著增加了76.9%和52.1%;而紅錐的樹高和基徑都有減少的趨勢(shì),紅枝蒲桃的基徑也減少(表3)。
結(jié)果表明(表2),增溫、年份及其交互作用對(duì)植物的總生物量均產(chǎn)生顯著影響(<0.05)。從圖3可見,2014、2015和2018年木荷總生物量分別比對(duì)照顯著增加了93.8%、73.7%和100.7%;馬尾松分別顯著增加了395.2%、341.1%和277.3% (<0.05)。但增溫6 a的紅錐和紅枝蒲桃則分別下降了32.4%和18.9%。
圖2 樣地大氣溫度、土壤溫度和土壤濕度的動(dòng)態(tài)變化
增溫使植物各器官生物量分配模式發(fā)生顯著變化(表2,<0.05)。增溫2、3和6 a,木荷的根質(zhì)比分別顯著下降了7.4%、7.7%和12.5%,葉質(zhì)比顯著下降了15.6%、13.8%和27.1%,莖質(zhì)比顯著上升了17.1%、13.3%和15.7%;馬尾松的根質(zhì)比顯著下降了16.7%、18.8%和14.3%,葉質(zhì)比顯著下降了4.2%、4.3%和7.7%,莖質(zhì)比顯著上升了8.8%、8.3%和6.3% (圖4,<0.05);短期增溫,紅枝蒲桃與紅錐的根質(zhì)比和葉質(zhì)比都呈下降趨勢(shì),但增溫6 a, 紅錐的根質(zhì)比升高。
表2 增溫對(duì)植物生物量分配和養(yǎng)分積累量影響的多因素方差分析(P)
表3 增溫對(duì)植物基徑和樹高的影響
=6; D: 基徑; H: 樹高; 相同時(shí)間同行數(shù)據(jù)后不同字母表示差異顯著(<0.05)。下表同。
=6; D: Diameter; H: Height; Data followed different letters at the same line and time indicated significant difference at 0.05 level. The same is following Tables.
圖3 增溫對(duì)4種樹種生物量的影響。*: P<0.05; **:P<0.01; CK: 對(duì)照; W: 增溫。
根冠比受增溫、物種及其二者間的交互效應(yīng)影響,也與年份有關(guān)(表2,<0.05)。增溫2、3和6 a,木荷的根冠比分別顯著降低了10.8%、11.4%和12.9 %;馬尾松顯著降低了21.7%、23.8%和23.5% (圖4,<0.05);增溫6 a紅錐的根冠比有所增加。
圖4 增溫對(duì)4種樹種生物量分配的影響。1: 木荷; 2: 紅枝蒲桃; 3: 紅錐; 4: 馬尾松; *: P<0.05; **: P<0.01; CK: 對(duì)照; W: 增溫。下圖同。
4種植物的N和P濃度受增溫、年份及其交互作用的影響(表2,<0.05)。增溫處理2 a,木荷、紅枝蒲桃和紅錐的N濃度分別比對(duì)照顯著降低了21.3%、24.0%和28.7%,除木荷外,其他植物的P濃度都增加;增溫處理3 a,木荷、紅枝蒲桃和馬尾松的P濃度分別比對(duì)照顯著增加了41.8%、39.5%和26.0%;增溫處理6 a,木荷和紅枝蒲桃的N濃度都呈增加趨勢(shì),紅錐和馬尾松的下降;除馬尾松的P濃度下降外,其他3種植物都上升。
從圖5可見,增溫處理下,植物的總N積累量發(fā)生顯著變化(<0.05),增溫處理2、3和6 a, 木荷的N積累量分別比對(duì)照顯著增加了62.1%、84.4%和100.3%;馬尾松分別顯著增加了342.8%、324%和185.7% (<0.05)。然而,增溫處理6 a的紅錐和紅枝蒲桃總N積累量分別下降了36.8%和6.2%。
從圖5可見,與對(duì)照相比,增溫處理2、3和6 a使木荷P積累量分別顯著增加了74.3%、140.9%和142.3%,馬尾松分別顯著增加了409.7%、401.9%和201.4% (<0.05)。然而,在增溫處理6 a的紅錐和紅枝蒲桃P積累量分別減少了5.6%和3.3%。
本研究結(jié)果表明,增溫處理2~3 a提高了4種植物的總生物量,6 a長(zhǎng)期增溫使木荷和馬尾松的總生物量持續(xù)顯著增加,而紅枝蒲桃與紅錐的卻呈下降的趨勢(shì),其中紅錐的生長(zhǎng)受到一定程度抑制, 基徑和樹高均下降,這是因?yàn)樵鰷爻跗谔岣吡酥参锏墓夂夏芰退诌\(yùn)輸能力,同時(shí)增溫導(dǎo)致土壤礦化速率加快,促進(jìn)了植物對(duì)土壤養(yǎng)分的吸收,進(jìn)而加速了植物的生長(zhǎng)和總生物量的積累[39–43],這與Li等[44]的研究結(jié)果一致。馬尾松是一種原生裸子植物,在森林早期演替階段具有比其他共存種更高的競(jìng)爭(zhēng)能力和生長(zhǎng)速率[45]。增溫6 a出現(xiàn)種間差異可能與不同植物對(duì)當(dāng)?shù)赝寥浪謼l件的適應(yīng)性差異有關(guān)[46]。Bowman[47]的研究表明,增溫會(huì)降低水分利用率從而抑制植物生長(zhǎng)。也有研究表明,長(zhǎng)期增溫可能會(huì)造成熱帶植物水分脅迫,進(jìn)而導(dǎo)致地上生物量和碳儲(chǔ)量減少[48]。長(zhǎng)期增溫使紅枝蒲桃和紅錐的總生物量下降,可能是其相對(duì)較低的生長(zhǎng)速率和競(jìng)爭(zhēng)資源的能力,為應(yīng)對(duì)氣候變化而調(diào)整自身生長(zhǎng)策略。
表4 增溫對(duì)4種植物養(yǎng)分濃度的影響(n=3)
圖5 增溫對(duì)4種樹種養(yǎng)分積累量的影響
本研究結(jié)果表明,短期增溫能增加4種植物的莖質(zhì)比,但葉質(zhì)比、根質(zhì)比和根冠比下降。6 a長(zhǎng)期增溫使木荷和馬尾松的莖質(zhì)比顯著增加,葉質(zhì)比、根質(zhì)比和根冠比顯著下降,紅枝蒲桃和紅錐的根質(zhì)比和根冠比有所下降。在短期增溫下,4種植物均以降低根和葉的生物量為代價(jià),分配更多的生物量到莖,以木荷和馬尾松表現(xiàn)顯著。Lin等[49]分析了國(guó)內(nèi)5種不同森林類型的生物量數(shù)據(jù),認(rèn)為增溫顯著提高了亞熱帶馬尾松林中莖生物量的分配比例,這與本試驗(yàn)結(jié)果一致,葉旺敏等[50]的研究結(jié)果也支持這一觀點(diǎn)。由于植物在增溫前期快速生長(zhǎng),所以植物面臨在有限的空間內(nèi)獲取更多光源和養(yǎng)分的激烈競(jìng)爭(zhēng),已有研究證實(shí),植物為了獲取更充足的光源,通常會(huì)提高莖的生物量以便于向外擴(kuò)展生長(zhǎng)空間[51]。6 a增溫使生物量分配模式出現(xiàn)種間差異,可能是由于長(zhǎng)期增溫導(dǎo)致的土壤含水率下降,出現(xiàn)了土壤水分脅迫,其中木荷和馬尾松能更好地適應(yīng)這種水分條件的變化,如基徑和樹高持續(xù)顯著增加,因此能夠在樣方中占據(jù)優(yōu)勢(shì)地位。紅枝蒲桃和紅錐則需要通過調(diào)整自身的生物量分配來維持其正常生長(zhǎng),而紅錐可能對(duì)土壤水分的變化更敏感,所以將更多的生物量分配到根以尋找水資源[52–53]。這與植物最佳分配理論相吻合,即植物為了探索有限的環(huán)境資源,將在某種器官上投入更多比例[54]。紅錐增加對(duì)根的分配可以提高對(duì)水和養(yǎng)分的吸收,但是這種生物量分配策略上的變化同時(shí)也導(dǎo)致其生長(zhǎng)欠佳(如樹高和基徑的降低)。另外, 紅錐具有根系較發(fā)達(dá)等特性[55–56],這可能也是紅錐根質(zhì)比和根冠比上升的原因之一。
短期增溫增加了4種植物的N和P積累量,這與其生物量增加和土壤養(yǎng)分供應(yīng)有關(guān)。溫度升高可以促進(jìn)凋落物分解,使更多的養(yǎng)分釋放出來供植物生長(zhǎng)利用[57]。前期研究結(jié)果表明,增溫增加了南亞熱帶森林土壤中有效P的供應(yīng)和植物各器官的P濃度,但減少了南亞熱帶森林土壤中的N供應(yīng),4種植物各器官的N濃度也顯著下降[37,58]。短期增溫促進(jìn)了植物生物量累積,進(jìn)而促進(jìn)了植物P積累量的增加。而增溫條件下植物體內(nèi)N積累量的變化主要取決于其生物量的變化,這與郭建平等[59]的研究結(jié)果一致。同時(shí),增溫條件下,南亞熱帶地區(qū)土壤中的N供應(yīng)在一定程度上并不是限制加速植物生長(zhǎng)的主要因素[60]。
6 a的長(zhǎng)期增溫增加了木荷和馬尾松的N和P的積累量,而紅錐與紅枝蒲桃的N和P的積累量卻呈下降趨勢(shì),主要原因可能是紅錐與紅枝蒲桃在長(zhǎng)期增溫下生物量呈減少的趨勢(shì),這與長(zhǎng)期增溫造成紅錐和紅枝蒲桃根系吸收能力減弱,從而導(dǎo)致植物缺乏養(yǎng)分或者水分有關(guān)。前期研究結(jié)果表明,增溫加速了土壤蒸發(fā)和植物葉片蒸騰,植物可能通過土壤-植物-大氣連續(xù)性地流失水分[61]。隨著增溫時(shí)間的延長(zhǎng),其蒸發(fā)需求也增加,進(jìn)一步加重了森林生態(tài)系統(tǒng)的有效干旱[62–63]。張浩瑋等[64]的研究表明水分脅迫顯著降低了野生草地早熟禾整株及地上部分的N和P積累量。這也從一定程度上證明了水分脅迫會(huì)抑制植物N和P積累量,進(jìn)而迫使植物通過改變N和P的分配與利用方式,以應(yīng)對(duì)水分供應(yīng)不足的環(huán)境做出適應(yīng)性反映。4種植物的養(yǎng)分積累變化趨勢(shì)表明,在全球變暖背景下,鼎湖山混交林中的紅枝蒲桃和紅錐對(duì)氣候變化的適應(yīng)幅度和競(jìng)爭(zhēng)力要低于木荷和馬尾松。王從容等[65]的研究也表明,在我國(guó)亞熱帶森林中,馬尾松和木荷具有更強(qiáng)的生態(tài)適應(yīng)性和競(jìng)爭(zhēng)力。由此可見,長(zhǎng)期增溫對(duì)植物生長(zhǎng)的影響是存在種間差異性的[66],而這種差異可能會(huì)進(jìn)一步影響我國(guó)南亞熱帶混交林群落的物種組成。
增溫對(duì)我國(guó)鼎湖山混交林中4種優(yōu)勢(shì)樹種的生物量分配和養(yǎng)分積累都有顯著的影響,但主要取決于植物種類。在6 a增溫過程中,木荷和馬尾松的生長(zhǎng)、總生物量、N和P的積累量顯著增加,莖質(zhì)比顯著增加,葉質(zhì)比、根質(zhì)比和根冠比顯著下降, 這是由于木荷和馬尾松將生物量更多投入到莖上供植物地上部分快速生長(zhǎng);而長(zhǎng)期增溫使紅枝蒲桃和紅錐總生物量、N和P的積累量相對(duì)減少,生物量更多投入到地下部分,根冠比有所上升,這是因?yàn)榧t枝蒲桃和紅錐對(duì)土壤水分的適應(yīng)范圍更為狹窄, 競(jìng)爭(zhēng)養(yǎng)分的能力較弱,因此需要調(diào)整其生物量分配策略來獲取自身所需要的養(yǎng)分和水分。Schipper等[67]報(bào)道,溫度升高對(duì)熱帶雨林樹木的莖生物量產(chǎn)生顯著的負(fù)面影響。而Gennaretti等[68]的研究表明,增溫顯著提高了北方森林植物的莖生物量。這種不同的生物量分配策略可以重新建立匯-庫(kù)關(guān)系,并且可能對(duì)當(dāng)?shù)丨h(huán)境適應(yīng)幅度廣泛的樹種更有益。由此可見,長(zhǎng)期增溫下,木荷和馬尾松可能相比于紅枝蒲桃和紅錐更具有生長(zhǎng)優(yōu)勢(shì)。在未來全球變暖的大背景下,植物的生物量分配模式和養(yǎng)分積累存在種間差異性,這種差異可能會(huì)給南亞熱帶混交林未來的群落物種組成帶來潛在的影響。
[1] IPCC. Climate Change 2018: Special Report on Global Warming of 1.5℃ [M]. Cambridge: Cambridge University Press, 2018: 32.
[2] ZHAO X Q, HUANG J, LU J, et al. Study on the influence of soil micro- bial community on the long-term heavy metal pollution of different land use types and depth layers in mine [J]. Ecotoxicol Environ Saf, 2019, 170: 218–226. doi: 10.1016/j.ecoenv.2018.11.136.
[3] ZHAO J X, LUO T X, WEI H X, et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respi- ration in a Tibetan alpine steppe [J]. Agric For Meteorol, 2019, 279: 107761. doi: 10.1016/j.agrformet.2019.107761.
[4] CHEN F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus addi- tions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age [J]. Tree Physiol, 2015, 35(10): 1106–1117. doi: 10.1093/treephys/tpv076.
[5] Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333(6045): 988– 993. doi: 10.1126/science.1201609.
[6] Cleveland C C, Townsend A R, Taylor P, et al. Relation- ships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis [J]. Ecol Lett, 2011, 14(9): 939–947. doi: 10.1111/j.1461-0248.2011.01658.x.
[7] Dusenge M E, Way D A. Warming puts the squeeze on photo- synthesis-lessons from tropical trees [J]. J Exp Bot, 2017, 68(9): 2073– 2077. doi: 10.1093/jxb/erx114.
[8] Mau A C, Reed S C, Wood T E, et al. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis [J]. Forests, 2018, 9(1): 47. doi: 10.3390/f9010047.
[9] Allen C D, Breshears D D, McDowell N G. On undere- stimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene [J]. Ecosphere, 2015, 6(8): 1– 55. doi: 10.1890/ES15-00203.1.
[10] Duan H L, Huang G M, Zhou S X, et al. Dry mass production, allocation patterns and water use efficiency of two conifers with different water use strategies under elevated [CO2], warming and drought con- ditions [J]. Eur J For Res, 2018, 137(5): 605–618. doi: 10.1007/s103 42-018-1128-x.
[11] Cavaleri M A, Reed S C, Smith W K, et al. Urgent need for warming experiments in tropical forests [J]. Glob Change Biol, 2015, 21(6): 2111–2121. doi: 10.1111/gcb.12860.
[12] Wu T, Liu S Z, Lie Z Y, et al. Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species [J]. For Ecol Manag, 2020, 461: 117952. doi: 10.1016/j.foreco.2020.117952.
[13] Qi Y L, Wei W, Chen C G, et al. Plant root-shoot biomass allocation over diverse biomes: A global synthesis [J]. Glob Ecol Conserv, 2019, 18: e00606. doi: 10.1016/j.gecco.2019.e00606.
[14] Kasurinen A, Koikkalainen K, Anttonen M J, et al. Root morphology, mycorrhizal roots and extramatrical mycelium growth in silver birch (Roth) genotypes exposed to experimental warming and soil moisture manipulations [J]. Plant Soil, 2016, 407: 341–353. doi: 10.1007/s11104-016-2891-4.
[15] Wang P, Heijmans M M P D, Mommer L J, et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature [J]. Environ Res Lett, 2016, 11: 055003. doi: 10.1088/ 1748-9326/11/5/055003.
[16] Yu L, Song M Y, Xia Z C, et al. Elevated temperature differently affects growth, photosynthetic capacity, nutrient absorption and leaf ultrastructure ofandunder intra- and interspecific competition [J]. Tree Physiol, 2019, 39(8): 1342–1357. doi: 10.1093/treephys/tpz044.
[17] Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 2001, 126: 543–562. doi: 10.1007/s004420000544.
[18] AKAJI Y, Inoue T, Tomimatsu H, et al. Photosynthesis, respi- ration, and growth patterns ofseedlings in relation to growth temperature [J]. Trees, 2019, 33: 1041–1049. doi: 10.1007/ s00468-019-01840-7.
[19] Wang L, Niu K C, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: Evidence from individual-level observations [J]. Sci China Life Sci, 2010, 53(7): 851– 857. doi: 10.1007/s11427-010-4027-z.
王亮, ??瞬? 楊元合, 等. 中國(guó)草地生物量地上-地下分配格局: 基于個(gè)體水平的研究[J]. 中國(guó)科學(xué): 生命科學(xué), 2010, 40(7): 642–649.
[20] Ruiz-Vera U M, Siebers M, Gray S B, et al. Global warming can negate the expected CO2stimulation in photosynthesis and produc- tivity for soybean grown in the midwestern United States [J]. Plant Biol, 2013, 162: 410–423. doi: 10.1104/pp.112.211938.
[21] Li X J, Liu X F, Lin C F, et al. Effects of experimental soil warming on plant biomass allocation during the early stages of succession in a subtropical forest in China [J]. Acta Ecol Sin, 2017, 37(1): 25–34. doi: 10.5846/stxb201607261529.
李曉杰, 劉小飛, 林成芳, 等. 土壤增溫調(diào)節(jié)中亞熱帶森林更新初期植物生物量分配格局 [J]. 生態(tài)學(xué)報(bào), 2017, 37(1): 25–34. doi: 10. 5846/stxb201607261529.
[22] Zeng Z, Huan H H, Liu G, et al. Effects of elevated temperature and CO2concentration on growth and leaf quality ofseedlings [J]. Chin J Appl Ecol, 2016, 27(8): 2445–2451. doi: 10.13287/ j.1001-9332.201608.022.
曾貞, 郇慧慧, 劉剛, 等. 增溫和升高CO2濃度對(duì)桑樹幼苗的生長(zhǎng)和葉片品質(zhì)的影響 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(8): 2445–2451. doi: 10.13287/j.1001-9332.201608.022.
[23] Zhang J W, Dong S T, Wang K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize [J]. Chin J Appl Ecol, 2008, 19(1): 81–86.
張吉旺, 董樹亭, 王空軍, 等. 大田增溫對(duì)夏玉米光合特性的影響 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(1): 81–86.
[24] Xu Z F, Hu T X, Zhang L, et al. Short-term gas exchange responses ofto simulated global warming in a timber-line ecotone, eastern Tibetan Plateau, China [J]. Chin J Plant Ecol, 2010, 34(3): 263– 270. doi: 10.3773/j.issn.1005-264x.2010.03.003.
徐振鋒, 胡庭興, 張力, 等. 青藏高原東緣林線交錯(cuò)帶糙皮樺幼苗光合特性對(duì)模擬增溫的短期響應(yīng) [J]. 植物生態(tài)學(xué)報(bào), 2010, 34(3): 263–270. doi: 10.3773/j.issn.1005-264x.2010.03.003.
[25] Xu M H, Liu M, Zhai D T, et al. Dynamic changes in biomass and its relationship with environmental factors in an alpine meadow on the Qinghai-Tibetan Plateau, based on simulated warming experiments [J]. Acta Ecol Sin, 2016, 36(18): 5759–5767. doi: 10.5846/stxb20150417 0794.
徐滿厚, 劉敏, 翟大彤, 等. 青藏高原高寒草甸生物量動(dòng)態(tài)變化及與環(huán)境因子的關(guān)系——基于模擬增溫實(shí)驗(yàn) [J]. 生態(tài)學(xué)報(bào), 2016, 36(18): 5759–5767. doi: 10.5846/stxb201504170794.
[26] Kudo G, Suzuki S. Warming effects on growth, production, and vegetation structure of alpine shrubs: A five-year experiment in northern Japan [J]. Oecologia, 2003, 135: 280–287. doi: 10.1007/s00442-003- 1179-6.
[27] Li J R, Liu Z H. High-cold meadow plants respond to long-term warming [J]. Qinghai Pratacult, 2017, 26(3): 13–18,24. doi: 10.3969/j. issn.1008-1445.2017.03.003.
李京蓉, 劉澤華. 高寒草甸植物對(duì)長(zhǎng)期增溫的響應(yīng) [J]. 青海草業(yè), 2017, 26(3): 13–18,24. doi: 10.3969/j.issn.1008-1445.2017.03.003.
[28] de Boer H C, Deru J G C, Hoekstra N J, et al. Strategic timing of nitrogen fertilization to increase root biomass and nitrogen-use efficiency ofL. [J]. Plant Soil, 2016, 407: 81–90. doi: 10.1007/s11104-016-2917-y.
[29] Rogers C W, Dari B, HU G S, et al. Dry matter production, nutrient accumulation, and nutrient partitioning of barley [J]. J Plant Nutri Soil Sci, 2019, 182(3): 367–373. doi: 10.1002/jpln.201800336.
[30] Kuster T M, Schleppi P, Hu B, et al. Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils [J]. Plant Biol, 2013, 15(S1): 220–229. doi: 10.1111/j. 1438-8677.2012.00686.x.
[31] Zhao S C, Xu X P, Wei D, et al. Soybean yield, nutrient uptake and stoichiometry under different climate regions of northeast China [J]. Sci Rep, 2020, 10(1): 8431. doi: 10.1038/s41598-020-65447-6.
[32] NISHITANI S, ISHIDA A, NAKAMURA T, et al. Functional differ- rences in seasonally absorbed nitrogen in a winter-green perennial herb [J]. Roy Soc Open Sci, 2020, 7(1): 190034. doi: 10.1098/rsos.190034.
[33] Dawes M A, Schleppi P, H?ttenschwiler S, et al. Soil warming opens the nitrogen cycle at the alpine treeline [J]. Glob Change Biol, 2017, 23(1): 421–434. doi: 10.1111/gcb.13365.
[34] Hou Y, Wang K Y, Zhang C. Effects of elevated CO2concen- tration and temperature on nutrient accumulation and allocation inseedlings [J]. Chin J Appl Ecol, 2008, 19(1): 13–19.
侯穎, 王開運(yùn), 張超. 大氣二氧化碳濃度與溫度升高對(duì)紅樺幼苗養(yǎng)分積累和分配的影響 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(1): 13–19.
[35] Wang J Q, Li L Q, LAM S K, et al. Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field [J]. Agric For Meteorol, 2018, 250–251: 202–208. doi: 10.1016/j.agrformet.2017.12.254.
[36] WANG J, YU B Y, HUANG J G. Xylem formation and response to climate ofin Dinghushan Mountain [J]. J Trop Subtrop Bot, 2020, 28(5): 445–454. doi: 10.11926/jtsb.4204.
王婕, 余碧云, 黃建國(guó). 鼎湖山錐栗木質(zhì)部形成及其對(duì)氣候的響應(yīng) [J]. 熱帶亞熱帶植物學(xué)報(bào), 2020, 28(5): 445–454. doi: 10.11926/jtsb. 4204.
[37] Liu J X, Li Y L, Liu S Z, et al. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems [J]. Chin J Plant Ecol, 2013, 37(6): 558–565. doi: 10.3724/ SP.J.1258.2013.00057.
劉菊秀, 李躍林, 劉世忠, 等. 氣溫上升對(duì)模擬森林生態(tài)系統(tǒng)影響實(shí)驗(yàn)的介紹 [J]. 植物生態(tài)學(xué)報(bào), 2013, 37(6): 558–565. doi: 10.3724/ SP.J.1258.2013.00057.
[38] Li X, Lie Z Y, Wu T, et al. Effect of warming on nutrients concen- trations and stoichiometry of 4 tree species in south subtropical mixed forest [J]. Ecol Environ Sci, 2019, 28(5): 890–897. doi: 10.16258/j. cnki.1674-5906.2019.05.005.
李旭, 列志旸, 吳婷, 等. 增溫對(duì)南亞熱帶混交林4個(gè)樹種養(yǎng)分含量及化學(xué)計(jì)量的影響 [J]. 生態(tài)環(huán)境學(xué)報(bào), 2019, 28(5): 890–897. doi: 10.16258/j.cnki.1674-5906.2019.05.005.
[39] Bremner J M, Mulvaney C S. Nitrogen-total [M]// PAGE A L, MILLER R H, KEENEY D R. Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties: Agronomy Monograph No. 9. 2nd ed. Madison, Wisconsin: American Society of Agronomy, 1982: 595–624.
[40] Li Y Y, Liu J X, Zhou G Y, et al. Warming effects on photosynthesis of subtropical tree species: A translocation experiment along an alti- tudinal gradient [J]. Sci Rep, 2016, 6: 24895. doi: 10.1038/srep24895.
[41] Drake J E, Tjoelker M G, Varhammar A, et al. Trees tolerate an extreme heatwavesustained transpirational cooling and increased leaf thermal tolerance [J]. Glob Change Biol, 2018, 24(6): 2390–2402. doi: 10.1111/gcb.14037.
[42] Butler S M, Melillo J M, Johnson J E, et al. Soil warming alters nitrogen cycling in a New England forest: Implications for eco- system function and structure [J]. Oecologia, 2012, 168(3): 819–828. doi: 10.1007/s00442-011-2133-7.
[43] Liu J X, Liu S E, Li Y Y. Warming effects on the decomposition of two litter species in model subtropical forests [J]. Plant Soil, 2017, 420 (1/2): 277–287. doi: 10.1007/s11104-017-3392-9.
[44] Li Y Y, Zhou G Y, Liu J X. Different growth and physiological responses of six subtropical tree species to warming [J]. Front Plant Sci, 2017, 8: 1511. doi: 10.3389/fpls.2017.01511.
[45] Tang X L, Wang Y P, Zhou G Y, et al. Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in southern China [J]. Plant Ecol, 2011, 212(8): 1385– 1395. doi: 10.1007/s11258-011-9914-2.
[46] Crous K Y, Quentin A G, Lin Y S, et al. Photosynthesis of temperatetrees outside their native range has limited adjustment to elevated CO2and climate warming [J]. Glob Change Biol, 2013, 19(12): 3790–3807. doi: 10.1111/gcb.12314.
[47] Bowman D M J S, Williamson G J, Keenan R J, et al. A warmer world will reduce tree growth in evergreen broadleaf forests: Evidence from Australian temperate and subtropical eucalypt forests [J]. Glob Ecol Biogeogr, 2014, 23(8): 925–934. doi: 10.1111/geb.12171.
[48] Sullivan M J P, Lewis S L, Affum-Baffoe K, et al. Long-term thermal sensitivity of Earth’s tropical forests [J]. Science, 2020, 368 (6493): 869-874. doi: 10.1126/science.aaw7578.
[49] LIN W Q, FANG Y R, XUE L. Forest biomass allocation vary with temperature in five forest types of China [J]. Int J Agric Biol, 2019, 21: 1043–1048.
[50] YE W M, XIONG D C, YAng Z J, et al. Effect of soil warming on growth and photosynthetic characteristics ofsaplings [J]. Acta Ecol Sin, 2019, 39(7): 2501–2509. doi: 10.5846/stxb 201801150110.
葉旺敏, 熊德成, 楊智杰, 等. 模擬增溫對(duì)杉木幼樹生長(zhǎng)和光合特性的影響 [J]. 生態(tài)學(xué)報(bào), 2019, 39(7): 2501–2509. doi: 10.5846/stxb 201801150110.
[51] Wang G G, Bauerle W L, Mudder B T. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut () seedlings [J]. For Ecol Manag, 2006, 226(1–3): 173–180. doi: 10.1016/j.foreco.2005.12.063.
[52] Wan S Q, Hui D F, Wallace L, et al. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie [J]. Glob Biogeochem Cycles, 2005, 19(2): GB2014. doi: 10. 1029/2004GB002315.
[53] Niu S L, Wu M Y, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe [J]. New Phytol, 2008, 177(1): 209–219. doi: 10.1111/j.1469-8137.2007. 02237.x.
[54] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control [J]. New Phytol, 2012, 193(1): 30–50. doi: 10. 1111/j.1469-8137.2011.03952.x.
[55] Ming A G, Liu S R, Mo H H, et al. Comparison of carbon storage in pure and mixed stands ofandin subtropical China [J]. Acta Ecol Sin, 2016, 36(1): 244– 251. doi: 10.5846/stxb201405211041.
明安剛, 劉世榮, 莫慧華, 等. 南亞熱帶紅錐、杉木純林與混交林碳貯量比較 [J]. 生態(tài)學(xué)報(bào), 2016, 36(1): 244–251. doi: 10.5846/stxb 201405211041.
[56] Wu M, Deng P, Zhao Y, et al. Vertical distribution and physio- logical senescence characteristics of fine roots inMiq. plantations at different ages [J]. Chin J Ecol, 2019, 38(9): 2622– 2629. doi: 10.13292/j.1000-4890.201909.023.
吳敏, 鄧平, 趙英, 等. 不同林齡紅錐人工林細(xì)根垂直分布和衰老生理特征 [J]. 生態(tài)學(xué)雜志, 2019, 38(9): 2622–2629. doi: 10.13292/j. 1000-4890.201909.023.
[57] Litton C M, Giardina C P, Freeman K R, et al. Impact of mean annual temperature on nutrient availability in a tropical montane wet forest [J]. Front Plant Sci, 2020, 11: 784. doi: 10.3389/fpls.2020. 00784.
[58] Lie Z Y, Lin W, Huang W J, et al. Warming changes soil N and P supplies in model tropical forests [J]. Biol Fert Soils, 2019, 55(7): 751–763. doi: 10.1007/s00374-019-01382-7.
[59] Guo J P, Gao S H. Impacts of CO2enrichment and soil drought on C, N accumulation and distribution in[J]. J Soil Water Conserv, 2005, 19(2): 118–121. doi: 10.3321/j.issn:1009-2242.2005.02. 031.
郭建平, 高素華. 高CO2濃度和土壤干旱對(duì)貝加爾針茅C, N積累和分配的影響 [J]. 水土保持學(xué)報(bào), 2005, 19(2): 118–121. doi: 10.3321/j. issn:1009-2242.2005.02.031.
[60] Liu J X, Li Y Y, Xu Y, et al. Phosphorus uptake in four tree species under nitrogen addition in subtropical China [J]. Environ Sci Pollut Res Int, 2017, 24(24): 20005–20014. doi: 10.1007/s11356-017-9633-x.
[61] Wu G L, Liu H, Hua L, et al. Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species [J]. Front Plant Sci, 2018, 9: 467. doi: 10.3389/fpls. 2018.00467.
[62] Restaino C M, Peterson D L, Littell J. Increased water deficit decreases douglas fir growth throughout western US forests [J]. Proc Natl Acad Sci USA, 2016, 113(34): 9557–9562. doi: 10.1073/pnas. 1602384113.
[63] Zhang X L, Manzanedo R D, D’Orangeville L, et al. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests [J]. Glob Change Biol, 2019, 25(10): 3462–3471. doi: 10.1111/gcb.14749.
[64] Zhang H W, Bai X M, Fan J H, et al. Effect of water treatments on biomass, accumulation and allocation of nitrogen and phosphorus of[J]. Grassland Turf, 2018, 38(5): 8–15. doi: 10.3969/ j.issn.1009-5500.2018.05.002.
張浩瑋, 白小明, 樊敬輝, 等. 不同水分處理對(duì)草地早熟禾生物量及N、P積累與分配的影響 [J]. 草原與草坪, 2018, 38(5): 8–15. doi: 10.3969/j.issn.1009-5500.2018.05.002.
[65] Wang C R, Li S Z, Yang X Y. Competitive patterns of pioneer species at different restoration levels in the subtropical red soil erosion and degradation region [J]. Chin J Appl Environ Biol, 2019, 25(2): 239–245. doi: 10.19675/j.cnki.1006-687x.2018.05044.
王從容, 李守中, 楊賢宇. 亞熱帶紅壤侵蝕退化區(qū)不同恢復(fù)水平生境內(nèi)先鋒樹種競(jìng)爭(zhēng)特征 [J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2019, 25(2): 239–245. doi: 10.19675/j.cnki.1006-687x.2018.05044.
[66] Cao J, Liu H Y, Zhao B, et al. Species-specific and elevation- differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid North- east Asia [J]. For Ecol Manag, 2019, 448: 76–84. doi: 10.1016/j.foreco. 2019.05.065.
[67] SCHIPPERS P, STERCK F, VLAM M, et al. Tree growth variation in the tropical forest: Understanding effects of temperature, rainfall and CO2[J]. Glob Change Biol, 2015, 21(7): 2749–2761. doi: 10.1111/gcb.12877.
[68] GENNARETTI F, GEA-IZQUIERDO G, BOUCHER E, et al. Ecophy- siological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest [J]. Biogeosciences, 2017, 14(21): 4851–4866. doi: 10.5194/bg-14-4851-2017.
Effects of Warming on Biomass Allocation Patterns and Nutrient Accumulations of Four Dominant Tree Species in Mixed Forest of Dinghushan, China
TAN Na-dan1,2, LI Xu1, WU Ting1, LIE Zhi-yang1, LIU Xu-jun1, LIU Shi-zhong1, CHEN Ping2, LIU Ju-xiu1*
(1. Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. Zhongkai University of Agriculture and Engineering,Guangzhou 510225, China)
In order to understand the effects of future global warming on species composition of forest ecosystems in the south subtropical region, the biomass allocation patterns and nutrient accumulations of four dominant tree species, such as,,and, were studied under simulated warming by translocating model forest from high altitude to low altitude in Dinghushan, Guangdong. The results showed that warming increases the average atmospheric temperature by (1.28±0.60)℃, and the average soil temperature by (1.04±0.30)℃. Forandunder warming for 6 years, the height significantly increased by 83.0% and 52.1%, and basal diameter by 37.1% and 76.9%, respectively, and the stem mass ratio significantly increased, but the ratios of root mass, leaf biomass and root to shoot significantly decreased, as well as nutrient accumulations increased significantly by 100.3% and 185.7%, respectively. However, warming had no significant effect on the height, basal diameter, biomass allocation patterns, and nutrient accumulations ofand. Therefore, the effects of 6-year warming on biomass allocation pattern and nutrient accumulation were different among four dominant tree species.andmight have strong adaptability under long-term warming due to their high biomass and nutrient accumulation. These differences might have a potential impact on community structure and function in subtropical mixed forests in China.
Warming; Biomass allocation pattern; Nutrient accumulations; Dinghushan
10.11926/jtsb.4325
2020–10–22
2021–01–05
廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2020B1111530004); 國(guó)家自然科學(xué)基金項(xiàng)目(41977287, 41991285); 廣州市民生科技攻關(guān)項(xiàng)目(201903010021)資助
This work was supported by the Project for Key Research and Development in Guangdong (Grant No. 2020B1111530004), the National Natural Science Foundation of China (Grant No. 41977287, 41991285), and the Project for Livelihood Science and Technology in Guangzhou City (Grant No. 201903010021).
譚鈉丹,碩士研究生,主要從事生態(tài)系統(tǒng)生態(tài)學(xué)研究。E-mail: tannd@scbg.ac.cn
E-mail: ljxiu@scbg.ac.cn