李國(guó)明 祖慶學(xué) 曹本福 陸引罡 聶忠揚(yáng) 林松
摘 要:為明確叢枝菌根(AM)真菌對(duì)不同氮效率煙草品種養(yǎng)分吸收的作用,采用盆栽試驗(yàn),以不接種處理(CK)為對(duì)照,研究了4株AM真菌(Fm、Ri、Ce、Gm)對(duì)不同氮效率品種煙草[ZY100(低)、K326(中)、NC89(高)]生長(zhǎng)及礦質(zhì)養(yǎng)分吸收的影響。結(jié)果表明,4種菌株均能與煙草根系形成共生關(guān)系。接種AM真菌,各處理煙株的干物質(zhì)累積量、株高、最大根長(zhǎng)、根表面積、根體積、總根長(zhǎng)、根尖數(shù)及養(yǎng)分吸收量均得到不同程度提高。各煙草品種干物質(zhì)累積量表現(xiàn)為NC89>ZY100>K326,菌根依賴性表現(xiàn)為ZY100>NC89>K326。各礦質(zhì)養(yǎng)分中,接種AM真菌各處理N、P、K、Ca累積量增幅效果因菌株種類和煙草品種而異,微量元素Fe、Mn、Cu、Zn積累量增幅效果主要受菌株種類影響, Mg積累量在各處理間差異不顯著??梢?jiàn),接種AM真菌可以有效地促進(jìn)烤煙根系形態(tài)的發(fā)育,優(yōu)化根系結(jié)構(gòu),進(jìn)而促進(jìn)煙株對(duì)養(yǎng)分的吸收和積累。整體來(lái)看,氮效率低的ZY100更易與菌株建立共生關(guān)系,Ce菌株對(duì)3個(gè)氮效率品種煙草親和力更強(qiáng),綜合而言以Ce-ZY100處理效果最佳。
關(guān)鍵詞:烤煙;叢枝菌根真菌;根系性狀;生長(zhǎng)效應(yīng);礦質(zhì)養(yǎng)分
Abstract: A pot experiment was used to study the effects of four AM fungi (Fm, Ri, Ce, Gm) on the growth and mineral nutrient uptake of tobacco with different nitrogen efficiency [ZY100 (low), K326 (medium), NC89 (high)] with no inoculation (CK) as a control, which will clarify the effects of AM fungi on nutrient uptake of tobacco varieties with different nitrogen efficiency. The results indicated that four AM fungal strains could form a symbiotic relationship with roots of different tobacco genotypes. After inoculation with AM fungi, dry matter accumulation, plant height, maximum root length, root surface area, root volume, total root length, root tip number and nutrient uptake of each treated tobacco plant were increased to different degrees. The dry matter accumulationof each tobacco variety showed NC89>ZY100>K326, and the mycorrhiza dependence showed ZY100>NC89>K326. For mineral nutrients, after inoculated with AM fungi, the effects of increasing the accumulation of N, P, K, and Ca in each treatment were different with strain types and tobacco varieties, while the effects of increasing the accumulation of trace elements Fe, Mn, Cu and Zn were mainly affected by strain types, the accumulation of Mg was not significantly different among the treatments. It was shown that inoculation with AM fungi could effectively promote development of flue-cured tobacco root morphology, optimize root structure, and then promote uptake and accumulation of nutrients in tobacco plants. Overall, it is easier for ZY100 with low nitrogen efficiency to establish symbiotic relationship with AM strains, the Ce strain has a stronger affinity for the three varieties of flue-cured tobacco. In general, the Ce-ZY100 combination is the best for symbiotic establishment.
Keywords: flue-cured tobacco; arbuscular mycorrhizal fungi; root traits; growth effect; mineral nutrients
氮素是植物生長(zhǎng)發(fā)育需求量最多的礦質(zhì)元素之一,對(duì)作物生長(zhǎng)發(fā)育及品質(zhì)形成至關(guān)重要[1],而煙草氮肥利用率普遍低于他種作物[2]。近年來(lái)隨著氮肥施用量增加,氮肥利用率逐年下降[3],由此帶來(lái)的環(huán)境污染問(wèn)題日益凸顯,如何減氮增效已成為農(nóng)業(yè)生產(chǎn)環(huán)節(jié)亟待解決的問(wèn)題。提高煙草的氮素利用效率對(duì)減少氮肥投入、維持作物產(chǎn)量穩(wěn)定及發(fā)展環(huán)境友好型農(nóng)業(yè)具有重要意義[4]。
叢枝菌根(Arbuscularmycorrhiza,AM)真菌是根系土壤區(qū)域中重要的功能菌群之一[5],可與多數(shù)植物根系形成共生體。其菌絲一端著生于宿主根系內(nèi)部表皮細(xì)胞形成共生界面,以便從植物根部獲取滿足自身生長(zhǎng)的碳水化合物和生長(zhǎng)物質(zhì)[6],另一端深入土壤,從土壤中吸收礦質(zhì)養(yǎng)分和水分等,通過(guò)菌絲內(nèi)部的原生質(zhì)環(huán)流快速轉(zhuǎn)運(yùn)到根內(nèi),對(duì)植物營(yíng)養(yǎng)物質(zhì)改善具有積極作用。目前關(guān)于接種AM真菌對(duì)不同氮效率品種烤煙生長(zhǎng)及養(yǎng)分含量的影響鮮有報(bào)道。本文采用盆栽試驗(yàn)研究了4種AM真菌與3種氮效率品種烤煙的共生效應(yīng),以期為應(yīng)用叢枝菌根真菌改善煙草氮肥利用效率提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
供試菌株:摩西斗管囊霉Funneliformis mosseae (Fm)、根內(nèi)根孢囊霉Rhizophagus intraradices (Ri)、幼套近明球囊霉Claroideoglomus etunicatum (Ce)、球狀巨孢囊霉Gigaspora margarita (Gm),均來(lái)自北京農(nóng)林科學(xué)院植物營(yíng)養(yǎng)與資源研究所叢枝菌根真菌種質(zhì)資源保藏中心。皆采用以白三葉草擴(kuò)繁131 d的合格接種菌劑,4株菌株孢子數(shù)均>50個(gè)/g土。
供試煙草品種:ZY100、K326、NC89,包衣種子由貴州省煙草科學(xué)研究院福泉基地提供。氮素利用率大小順序?yàn)閆Y100 供試土壤:取自貴州大學(xué)西校區(qū)后山0~20 cm表層土(106°44′52″N,26°27′21″E),含水量27.1%,pH 5.85,有機(jī)質(zhì)21.6 g/kg,全氮1.18 g/kg,全磷0.75 g/kg,全鉀11.6 g/kg,堿解氮93.7 mg/kg,有效磷12.9 mg/kg,速效鉀83.25 mg/kg。土壤風(fēng)干、粉碎、混勻,過(guò)2.5 mm不銹鋼網(wǎng)篩,經(jīng)高溫滅菌后備用。高壓滅菌鍋工作參數(shù):121 ℃,1×105 kpa,2 h,滅菌重復(fù)2次。 供試肥料:所用養(yǎng)分均以改良的hoagland營(yíng)養(yǎng)液外源加入[9],配制所需的化學(xué)試劑均購(gòu)自成都金山化學(xué)試劑廠。 1.2 試驗(yàn)設(shè)計(jì) 試驗(yàn)于2019年6—10月在貴州大學(xué)農(nóng)學(xué)院盆栽場(chǎng)塑料大棚內(nèi)進(jìn)行。試驗(yàn)設(shè)置5種接菌處理:不接種(CK)、接種Fm、接種Ri、接種Ce、接種Gm,每千克土壤接種菌劑30 g;3種氮效率品種:ZY100、K326、NC89。其中不接菌處理加入等量4種菌株混合滅活菌劑。試驗(yàn)共設(shè)15個(gè)處理,每處理6盆,共計(jì)90盆。 試驗(yàn)盆栽桶為聚乙烯材料,高18.5 cm,口徑13.5 cm,底徑10.5 cm。每桶裝供試土壤2 kg,在移苗前7 d用苯菌50%可濕粉劑(800倍稀釋)消除煙苗根系微生物干擾。選擇素質(zhì)良好且長(zhǎng)勢(shì)一致的煙苗單盆單株移栽,移栽當(dāng)日將菌劑接種于距煙苗根系約0.5 cm處。底肥以1/2 hoagland溶液的形式加入,并保持土壤含水量為40%田間最大持水量。移栽7 d后每周加入全量hoagland溶液200 mL,期間不定時(shí)以滅菌水補(bǔ)充土壤水分,保持土壤含水率為60%田間最大持水量。每1周轉(zhuǎn)動(dòng)盆體1次,同時(shí)每2周隨機(jī)挪動(dòng)盆體位置1次,以消除光照、通風(fēng)等因素造成的試驗(yàn)誤差;煙株生育期內(nèi)不進(jìn)行打頂處理,其他栽培管理措施均按煙草栽培管理要求進(jìn)行。試驗(yàn)共培養(yǎng)121 d。 1.3 測(cè)定指標(biāo) 1.3.1 菌根侵染率的測(cè)定 培養(yǎng)121 d各處理隨機(jī)選取3株長(zhǎng)勢(shì)均一的煙株,完整挖出根系,用清水反復(fù)沖洗,再用去離子水沖洗干凈,剪取1 cm須根前端幼嫩根尖,用于菌根侵染率的測(cè)定。測(cè)定方法采用臺(tái)盼藍(lán)染色-方格交叉劃線法,具體操作參照文獻(xiàn)[10]。 1.3.2 煙株株高、根系性狀及生物量的測(cè)定 培養(yǎng)121 d時(shí),各處理選取3株煙株,用卷尺測(cè)量煙株地上部高度,將煙株根系剪下,最大根長(zhǎng)用直尺測(cè)量。 用Epson V950 Prophoto掃描儀對(duì)根系進(jìn)行掃描。采用WinR HIZO-Pro2019根系分析系統(tǒng)軟件分析根系體積、總根長(zhǎng)、根系表面積、根系平均直徑等形態(tài)參數(shù)。 煙株地上部、根系均置于烘箱中105 ℃殺青30 min,70 ℃烘干,測(cè)定干物質(zhì)。 菌根依賴性是指在一定土壤肥力水平下植物通過(guò)形成菌根而能夠達(dá)到的最大生物量或產(chǎn)量的程度,計(jì)算公式:菌根依賴性 (%) = (接種處理干質(zhì)量?不接種處理干質(zhì)量) /接種處理干質(zhì)量×100 1.3.3 煙株養(yǎng)分含量的測(cè)定 煙株干物質(zhì)量測(cè)定完畢將各部位粉碎以測(cè)定養(yǎng)分含量。測(cè)定方法:各部位采用H2SO4-H2O2消化后,分別用開(kāi)氏法、釩鉬黃比色法、火焰光度法測(cè)定全氮、全磷、全鉀含量。 煙株經(jīng)低溫濕式灰化(HClO4+HNO3),采用等離子發(fā)射光譜法測(cè)定Ca、Mg、Fe、Mn、Cu、Zn含量。 1.4 數(shù)據(jù)處理 用SPSS 19.0軟件進(jìn)行二因素方差分析,Duncan法進(jìn)行多重比較,采用Excel 2016軟件進(jìn)行圖形制作。 2 結(jié) 果 2.1 AM真菌對(duì)不同氮效率烤煙品種根系的侵染 由圖1可知,不接種處理(CK)未表現(xiàn)出侵染現(xiàn)象,接種AM真菌后,各處理菌根侵染率達(dá)到21.82%~41.6%。同一AM真菌對(duì)不同氮效率烤煙根系侵染強(qiáng)度不同,氮效率較低的ZY100菌根侵染率大于K326、NC89;不同AM真菌對(duì)同氮效率煙株的侵染率也不一致,F(xiàn)m、Ce侵染強(qiáng)度更高。綜合來(lái)看,以Fm對(duì)ZY100的侵染率最高。 2.2 AM真菌對(duì)不同氮效率烤煙品種根系生長(zhǎng)的影響 由表1可知,煙草品種、接種AM真菌類型以及品種與菌種互作效應(yīng)對(duì)煙株根總長(zhǎng)、根系表面積、平均直徑、根體積及根尖數(shù)均有極顯著影響(p<0.001)。未接種處理的根系指標(biāo)整體呈現(xiàn)ZY100
2.3 AM真菌對(duì)不同氮效率烤煙品種株高、最大根長(zhǎng)的影響
由圖2a可知,就株高而言,未接種AM真菌3種氮效率品種烤煙大體表現(xiàn)為ZY100 2.4 AM真菌對(duì)不同氮效率烤煙品種干物質(zhì)積累量的影響 表2表明,煙草品種和菌株類型對(duì)煙株的地上部、地下部生物量及菌根依賴性均有顯著性影響,但冠根比只與煙草品種有關(guān)。就地上部而言,接種AM真菌,3個(gè)烤煙品種干物質(zhì)積累量均在不同程度上得到顯著提高,以Ce-NC89處理單株積累量最大,達(dá)25.20 g。從地下部來(lái)看,接種AM真菌,除Ce-NC89 處理較對(duì)照處理顯著提高外,其余各處理未較對(duì)照達(dá)到顯著差異水平。與未接種AM真菌煙株相比,接種處理冠根比有不同程度的提升。就菌根依賴性而言,不同烤煙品種間表現(xiàn)為ZY100>NC89>K326;不同AM真菌間,接種Ri的煙株菌根依賴性較差,而接種Fm、Ce的煙株菌根依賴性較強(qiáng)。 2.5 AM真菌對(duì)不同氮效率烤煙品種礦質(zhì)元素積累的影響 由表3可知,接種該4株AM真菌對(duì)3種氮效率烤煙品種N、P、K、Ca、Fe、Mn、Cu、Zn的吸收積累均有一定的促進(jìn)作用。就大量元素而言,N、P積累量以Ce-NC89最高,K的積累量以Ce-ZY100最高,分別較未接種AM真菌同一烤煙品種提高11.83%、23.02%、23.13%。就中量元素而言,Ri促進(jìn)鈣積累的幅度較低,F(xiàn)m、Ce促進(jìn)幅度較高。Ce-NC89處理鈣素積累量最高,較未接種同品種提高13.21%;接種該4株菌株對(duì)鎂的積累無(wú)顯著影響。就微量元素而言,F(xiàn)e、Mn以Ce-NC89處理最高;Cu、Zn則以Gm-ZY100處理最高,分別較同品種未接種處理增加17.21%、17.70%、33.33%和34.55%。從整體來(lái)看,品種間N、P、K、Ca 4種元素的積累有顯著差異,而微量元素積累差異不顯著;AM真菌對(duì)煙株各元素積累均起到促進(jìn)作用,且不同菌株作用效果不一;品種與菌株的交互效應(yīng)僅對(duì)煙株Cu、Zn的積累量有顯著影響。 3 討 論 AM真菌無(wú)嚴(yán)格的宿主專一性,可以與多種植物共生[11]。JANOU?KOV?等[12]研究報(bào)道,G. intraradices PH5和G. intraradices BEG75在不同煙草品種的定殖狀況差異較大,其中在Basma BEK和TN90品種中BEG75侵染率顯著大于PH5,在K326中則反之。本試驗(yàn)結(jié)果表明,4株AM真菌均可有效與3種氮效率品種烤煙形成共生關(guān)系,但同一AM真菌對(duì)3種氮效率品種烤煙根系侵染率不同,同一氮效率品種烤煙與該4株AM真菌的共生強(qiáng)度也有差異,與前人研究結(jié)果趨于一致。從根系侵染情況來(lái)看,該4株AM真菌與ZY100整體定殖率較高,可見(jiàn),AM真菌更易與氮效率低的ZY100形成共生結(jié)構(gòu)。 養(yǎng)分效率高的品種往往比效率低的品種根系發(fā)達(dá)[13],而AM真菌可以通過(guò)與植物根系的共生形成叢枝菌根結(jié)構(gòu),從而引起植物根系結(jié)構(gòu)改變[14]。宿主植株通過(guò)分泌類黃酮與菌根真菌分泌的生長(zhǎng)素進(jìn)行信號(hào)識(shí)別,誘發(fā)植物生長(zhǎng)素信號(hào)通路,促進(jìn)側(cè)根形成[15]。崔令軍等[16]研究發(fā)現(xiàn),楨楠在AM真菌接種處理后,根系總長(zhǎng)度、表面積、體積和側(cè)根數(shù)量均顯著高于未接種處理。本研究得出相似的結(jié)果,接種4株AM真菌,3個(gè)品種煙株總根長(zhǎng)、根表面積、根體積、平均直徑及根尖數(shù)得到顯著提高;無(wú)論接種AM真菌與否,各根系指標(biāo)整體呈現(xiàn)為ZY100<K326<NC89,可見(jiàn)接種AM真菌能顯著改善根系形態(tài),但品種依然是煙草根系結(jié)構(gòu)形成的決定因素。 當(dāng)土壤養(yǎng)分含量處于較高水平時(shí),植物不依賴菌根便能獲取足夠的養(yǎng)分,高氮水平反而會(huì)抑制植物與微生物的共生作用[17],相反,低土壤養(yǎng)分條件下,AM真菌更易發(fā)揮作用[18]。本試驗(yàn)在低肥料水平下進(jìn)行,煙株長(zhǎng)勢(shì)弱于大田。此試驗(yàn)條件下,接種AM真菌可以有效促進(jìn)煙株生長(zhǎng),增加煙株干物質(zhì)的累積。而干物質(zhì)量的增加是通過(guò)改善煙株根系形態(tài),促進(jìn)側(cè)根發(fā)育,調(diào)節(jié)煙株冠根比,促進(jìn)煙株地上部干物質(zhì)量累積而實(shí)現(xiàn)的。 宿主植物對(duì)養(yǎng)分的攝取分為2種方式:一種通過(guò)根細(xì)胞直接吸收;另一種通過(guò)菌絲體的根外菌絲進(jìn)行吸收[19]。AM真菌在土壤中形成的龐大菌絲網(wǎng)絡(luò)可以延伸到根系無(wú)法到達(dá)的地方[20],從土壤中吸收養(yǎng)分并轉(zhuǎn)運(yùn)到植物體內(nèi)以確保植物良好生長(zhǎng)[21-22]。接種AM真菌可以促進(jìn)宿主植物對(duì)養(yǎng)分的吸收[23-25]。本研究結(jié)果顯示,不接種AM真菌,3個(gè)氮效率品種煙株礦質(zhì)元素積累量較低,接種AM真菌對(duì)煙株N、P、K、Ca、Fe、Mn、Cu、Zn的含量有顯著促進(jìn)作用。與未接種AM真菌相比,接種AM真菌的ZY100較其他兩個(gè)品種增幅更大,表明AM真菌與氮效率低的ZY100品種能形成更好的共生關(guān)系,這可能是因?yàn)榈实偷钠贩N在低氮條件下難以獲得滿足自身生長(zhǎng)發(fā)育所必需的礦質(zhì)養(yǎng)分,因此更需要依賴與真菌共生,以便獲得更多的養(yǎng)分[26]。就AM真菌而言,Ce對(duì)各氮效率品種烤煙礦質(zhì)元素積累增幅較Fm、Ri、Gm更大,表明Ce與煙株親和度更高,二者能更有效地相互識(shí)別,形成良好的共生關(guān)系。 4 結(jié) 論 本研究表明,接種AM真菌可以顯著促進(jìn)煙株生長(zhǎng)及礦質(zhì)養(yǎng)分的積累,但其效果因菌株種類和烤煙品種而有不同,氮效率低的煙草品種更易與AM真菌形成共生關(guān)系,而Ce菌株與煙株親和力更高,更易形成良好的共生關(guān)系。其中Ce-ZY100處理效果較佳。本試驗(yàn)為盆栽條件下進(jìn)行,在大田條件下的表現(xiàn)有待進(jìn)一步驗(yàn)證。 參考文獻(xiàn) [1]MARTINEZ-FERIA R A, CASTELLANO M J, DIETZEL R N, et al. Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs[J]. Agriculture Ecosystems and Environment, 2018, 256: 131-143.
[2]曹本福,陸引罡,劉麗,等. 減施氮肥下聚天冬氨酸對(duì)烤煙生理特性及氮肥去向的影響[J]. 水土保持學(xué)報(bào),2019,33(5):223-229.
CAO B F, LU Y G, LIU L, et al. Effects of polyaspartic acid on physiological characteristics and fate of nitrogen fertilizer in flue-cured tobacco with nitrogen fertilizer reduction[J]. Journal of Soil and Water Conservation, 2019, 33(5): 223-229.
[3]馬興華,石屹,張忠鋒,等. 施氮量與基追比例對(duì)煙葉品質(zhì)及氮肥利用率的影響[J]. 中國(guó)煙草科學(xué),2015,36(4):34-39.
MA X H, SHI Y, ZHANG Z F, et al. Effects of nitrogen fertilizer rate and ratio of base and topdressing on flue-cured tobacco quality and nitrogen utilization efficiency[J]. Chinese Tobacco Science, 2015, 36(4): 34-39.
[4]GIRONDE A, PORET M, ETIENNE P, et al. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape[J]. Journal of Experimental Botany, 2015, 66(9): 2461-2473.
[5]JIANG Y, WANG W, XIE Q, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343): 1172-1175.
[6]RUSSO G, CAROTENUTO G, FIORILLI V, et al. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi[J]. New Phytologist, 2019, 221(2): 1036-1048.
[7]周健飛,武云杰,薛剛,等. 煙葉成熟期氮代謝酶活性、基因表達(dá)與烤煙氮素利用效率的關(guān)系[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(3):625-632.
ZHOU J F, WUY J, XUE G, et al. Relationship between nitrogen metabolic enzyme activity, gene expression and nitrogen use efficiency of flue-cured tobacco in maturing stage[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3):625-632.
[8]鐘思榮,陳仁霄,陶瑤,等. 不同煙草基因型氮素吸收效率與利用效率差異[J]. 中國(guó)煙草科學(xué),2017,38(4):58-63.
ZHONG S R, CHEN R X, TAO Y, et al. Study on the difference of nitrogen uptake and utilization efficiency of different tobacco genotypes[J]. Chinese Tobacco Science, 2017, 38(4): 58-63.
[9]羅方舟,向壘,李慧,等. 叢枝菌根真菌對(duì)旱稻生長(zhǎng)、Cd吸收累積和土壤酶活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(6):1090-1095.
LUO F Z, XIANG L, LI H, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and Cd accumulation of upland rice and soil enzyme activities in cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2015, 34(6): 1090-1095.
[10]ZHANG S, ZHOU J, WANG G H, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10225-10235.
[11]郭濤,劉先良,申鴻. 叢枝菌根菌絲橋傳遞作用對(duì)煙草抗病性相關(guān)酶活性的影響[J]. 植物保護(hù)學(xué)報(bào),2015,42(3):390-395.
GUO T, LIU X L, SHEN H, et al. The effect of transfer between roots of different tobacco plants through common arbuscular mycorrhiza networks on enzyme activities related to disease resistance[J]. Journal of Plant Protection, 2015, 42(3): 390-395.
[12]JANOU?KOV?. M, M. VOS?TKA, ROSSI L, et al. Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types[J]. Applied Soil Ecology, 2007, 35(3): 502-510.
[13]康亮,梁瓊月,姚一華,等. 不同氮效率木薯品種根系形態(tài)、構(gòu)型及氮吸收動(dòng)力學(xué)特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(11):1920-1928.
KANG L, LIANG Q Y, YAO Y H, et al. Root morphology, configuration and nitrogen absorption kinetics of cassava cultivars with different nitrogen efficiencies[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1920-1928.
[14]WANG X X, HOFFLAND E, MOMMER L, et al. Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists[J]. Mycorrhiza, 2019, 29(3): 251-261.
[15]馮邦,楊祝良. 外生菌根共生:共生真菌多樣性及菌根形成的分子機(jī)制[J]. 中國(guó)科學(xué):生命科學(xué),2019,49(4):436-444.
FENG B, YANG Z L. Ectomycorrhizal symbioses: Diversity of mycobionts and molecular mechanisms that entail the development of ectomycorrhizae[J]. Scientia Sinica (Vitae) , 2019, 49(4): 436-444.
[16]崔令軍,劉瑜霞,林健,等. 鹽脅迫下叢枝菌根真菌對(duì)楨楠根系生長(zhǎng)和激素的影響[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(4):119-124.
CUN L J, LIU Y X, LIN J, et al. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 119-124.
[17]KEARNS P J, ANGELL J H, HOWARD E M, et al. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments[J]. Nature Communications, 2016, 7(1): 1014-1015.
[18]劉婷婷,劉智蕾,宋佳媚,等. 不同溫度與供氮水平下叢枝菌根真菌對(duì)水稻養(yǎng)分吸收的影響[J]. 土壤通報(bào),2019,50(4):885-890.
LIU T T, LIU Z L, SONG J M, et al. Effects of arbuscular mychorrhizal fungi on rice nutrient uptake under different temperature and nitrogen conditions[J]. Chinese Journal of Soil Science, 2019, 50 (4): 885-890.
[19]薛英龍,李春越,王蓯蓉,等 .叢枝菌根真菌促進(jìn)植物攝取土壤磷的作用機(jī)制[J]. 水土保持學(xué)報(bào),2019,33(6):10-20.
XUE Y L, LI C Y, WANG C R, et al. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi[J]. Journal of Soil and Water Conservation, 2019, 33(6): 10-20.
[20]SMITH S E, SMITH F A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth[J]. Mycologia, 2012, 104(1): 1-13.
[21]JONES M D, SMITH S E. Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms?[J]. Canadian Journal of Botany, 2004, 82(8): 1089-1109.
[22]MULLER J, DULIEU H. Enhanced growth of non-photosynthesizing tobacco mutants in the presence of a mycorrhizal inoculum[J]. Journal of Experimental Botany, 1998, 49(321): 707-711.
[23]王茂勝,江龍. 養(yǎng)分用量對(duì)接種叢枝菌根真菌煙苗菌根效應(yīng)的影響[J]. 貴州農(nóng)業(yè)科學(xué),2010,38(7):45-49.
WANG M S, JIANG L. Influence of nutrition levels on quality of tobacco seedlings inoculated with arbuscular mycorhiza fungi[J]. Guizhou Agricultural Sciences, 2010, 38(7): 45-49
[24]賀學(xué)禮,王東雪,趙麗莉. AM真菌和施氮量對(duì)煙葉生長(zhǎng)和部分礦質(zhì)元素含量的影響[J]. 核農(nóng)學(xué)報(bào),2006,20(2):154-158.
HE X L, WANG D X, ZHAO L L. Effect of AM fungi on the growth and absorption of some mineral elements in tobacco leaf under different nitrogen levels[J]. Journal of Nuclear Agricultural Sciences, 2006, 20(2): 154-158.
[25]趙青華,孫立濤,王玉,等. 叢枝菌根真菌和施氮量對(duì)茶樹(shù)生長(zhǎng)、礦質(zhì)元素吸收與茶葉品質(zhì)的影響[J]. 植物生理學(xué)報(bào),2014,50(2):164-170.
ZHAO Q H, SUN L T, WANG Y, et al. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in camellia sinensis (L.) O. Kuntze[J]. Plant Physiology Journal, 2014, 50(2): 164-170.
[26]劉婷婷,劉智蕾,宋佳媚,等. 不同溫度與供氮水平下叢枝菌根真菌對(duì)水稻養(yǎng)分吸收的影響[J]. 土壤通報(bào),2019,50(4):885-890.
LIU T T, LIU Z L, SONG J M, et al. Effects of arbuscular mychorrhizal fungi on rice nutrient uptake under different temperature and nitrogen conditions[J]. Chinese Journal of Soil Science, 2019, 50(4): 885-890.