劉皓 曲一丹 周昊 趙俊江 鄭自文 張堅(jiān)
[摘要] 目的
尋找浸潤(rùn)性乳癌病人外周血單個(gè)核細(xì)胞(PBMC)的核心(HUB)基因,并構(gòu)建mRNA-miRNA-lncRNA網(wǎng)絡(luò),探討浸潤(rùn)性乳癌診療新靶點(diǎn)。
方法 基于對(duì)基因表達(dá)綜合數(shù)據(jù)庫(kù)(GEO)的數(shù)據(jù)分析,獲取浸潤(rùn)性乳癌病人術(shù)前PBMC的表達(dá)譜。應(yīng)用GEO2R在線工具篩選差異基因,DAVID工具進(jìn)行GO功能注釋分析和KEGG信號(hào)通路分析,STRING數(shù)據(jù)庫(kù)構(gòu)建差異基因蛋白互作(PPI)網(wǎng)絡(luò),CytoScape工具篩選HUB基因。應(yīng)用mirDIP與starbase工具預(yù)測(cè)HUB基因上游的miRNA以及l(fā)ncRNA并構(gòu)建對(duì)應(yīng)關(guān)系網(wǎng)絡(luò)。
結(jié)果 獲得差異基因87個(gè),其中上調(diào)基因59個(gè),下調(diào)基因28個(gè)。差異基因的本體功能主要富集在血紅蛋白復(fù)合物、胞漿組分、RNA聚合酶Ⅱ啟動(dòng)子轉(zhuǎn)錄的正調(diào)控等方面,KEGG通路主要與類風(fēng)濕性關(guān)節(jié)炎、單純皰疹病毒感染、破骨細(xì)胞分化、甲型流感病毒感染等相關(guān)。共獲得4個(gè)HUB基因ALAS2、EGR1、FOS、DUSP1,并預(yù)測(cè)到符合標(biāo)準(zhǔn)的7個(gè)miRNA及20個(gè)lncRNA。
結(jié)論 本研究獲得了浸潤(rùn)性乳癌病人的PBMC差異基因與HUB基因、可視化mRNA-miRNA-lncRNA網(wǎng)絡(luò),為通過(guò)PBMC對(duì)浸潤(rùn)性乳癌進(jìn)行診治提供可靠的理論基礎(chǔ)與方向。
[關(guān)鍵詞] 乳房腫瘤;外周血單個(gè)核細(xì)胞;基因;靶向治療
[中圖分類號(hào)] R737.9
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2021)03-0327-06
doi:10.11712/jms.2096-5532.2021.57.135
[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210628.1725.018.html;2021-06-29 09:43:54
HUB GENES IN PERIPHERAL BLOOD MONONUCLEAR CELLS OF PATIENTS WITH INVASIVE BREAST CANCER AND CONSTRUCTION OF AN mRNA-miRNA-lncRNA NETWORK
LIU Hao, QU Yidan, ZHOU Hao, ZHAO Junjiang, ZHENG Ziwen, ZHANG Jian
(Department of Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective To investigate new targets for the diagnosis and treatment of invasive breast cancer by searching for HUB genes in peripheral blood mononuclear cells (PBMCs) of patients with invasive breast cancer and constructing an mRNA-miRNA-lncRNA network.
Methods A data analysis was performed for the Gene Expression Omnibus Database (GEO) to obtain the expression profile of PBMCs from patients with invasive breast cancer before surgery. GEO2R online tool was used to screen out differentially expressed genes; DAVID tool was used for gene ontology (GO) functional annotation analysis and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) signaling pathway analysis; STRING database was used to construct a protein-protein interaction (PPI) network for differentially expressed genes; CytoScape tool was used to screen out HUB genes. The mirDIP and starbase tools were used to predict the upstream miRNAs and lncRNAs of HUB genes and construct correspondence networks.
Results
A total of 87 differentially expressed genes were obtained, among which there were 59 upregulated genes and 28 downregulated genes. The GO functions of the differentially expressed genes were mainly enriched in hemoglobin complexes, cytoplasmic components, and positive regulation of RNA polymerase Ⅱ promoter transcription, and the KEGG pathways were mainly associated with rheumatoid arthritis, herpes simplex infection, osteoclast differentiation, and influenza A virus. A total of 4 HUB genes were obtained, i.e., ALAS2, EGR1, FOS, and DUSP1, and 7 miRNAs and 20 lncRNAs met the criteria.
Conclusion This study obtains differentially expressed genes and HUB genes in PBMCs of patients with invasive breast cancer and visualizes the mRNA-miRNA-lncRNA network to provide reliable theoretical basis and direction for the diagnosis and treatment of invasive breast cancer by PBMCs.
[KEY WORDS]breast neoplasms; peripheral blood single cell; genes; molecular targeted therapy
乳癌是常見(jiàn)的惡性腫瘤之一,在女性中其發(fā)病率高居全球首位[1]。目前,臨床上對(duì)乳癌確診依靠組織活檢,根據(jù)組織中的腫瘤標(biāo)記物對(duì)疾病進(jìn)行診治。但這種方法侵入性強(qiáng),動(dòng)態(tài)性檢查效果差。隨著乳癌病人對(duì)常規(guī)療法的耐藥性逐漸增加,需進(jìn)一步尋找有效的分子靶標(biāo)進(jìn)行靶向治療。外周血單個(gè)核細(xì)胞(PBMC)主要由包括淋巴細(xì)胞和單核細(xì)胞在內(nèi)的機(jī)體免疫細(xì)胞組成,在人體的免疫防御系統(tǒng)中發(fā)揮至關(guān)重要作用。癌組織可能將癌細(xì)胞釋放到血液中,被PBMC吞噬并表達(dá)癌細(xì)胞含有的標(biāo)志物,這種變化可能比存在于外周血中的腫瘤細(xì)胞更早被檢測(cè)到。通過(guò)發(fā)現(xiàn)PBMC基因的變化,有助于對(duì)浸潤(rùn)性乳癌進(jìn)行早期的診斷與治療。生物信息學(xué)與微陣列技術(shù)可為深度研究腫瘤在基因組水平上的發(fā)展進(jìn)程提供幫助。本文研究應(yīng)用生物信息學(xué)方法,通過(guò)微陣列數(shù)據(jù)的挖掘與分析,確定浸潤(rùn)性乳癌病人PBMC中的核心(HUB)基因,預(yù)測(cè)并構(gòu)建與其對(duì)應(yīng)的調(diào)控網(wǎng)絡(luò),為探討浸潤(rùn)性乳癌的生物學(xué)過(guò)程及臨床診療提供理論依據(jù)。
1 材料與方法
1.1 數(shù)據(jù)獲取
從基因表達(dá)綜合數(shù)據(jù)庫(kù)(GEO)(http://www.ncbi.nlm.nih.gov/geo/)中獲取所需基因表達(dá)數(shù)據(jù)GSE27562(截止日期2019-05-25)。篩選條件:①樣本總量>30;②樣本資料來(lái)源于臨床病人;③原始芯片數(shù)據(jù)提取,實(shí)驗(yàn)類型為Expression profiling by array。共采集了162例樣本,選取其中的57例經(jīng)活檢證實(shí)為浸潤(rùn)性乳癌病人的術(shù)前外周血樣本,31例經(jīng)乳房X線攝影檢查結(jié)果為陰性的健康人外周血樣本。
1.2 差異基因分析
應(yīng)用GEO中GEO2R在線分析工具(http://www.ncbi.nlm.nih.gov/geo/geo2r/)對(duì)差異基因進(jìn)行分析。篩選標(biāo)準(zhǔn):P<0.05,校正P值(adjusted P-value)<0.05,基因表達(dá)值倍數(shù)變化(FC)≥0.8。應(yīng)用Metascape數(shù)據(jù)庫(kù)將不同基因的名稱轉(zhuǎn)換成統(tǒng)一的標(biāo)準(zhǔn)縮寫(xiě)。
1.3 GO分析及KEGG分析
應(yīng)用DAVID6.8(https://david.ncifcrf.gov/home.jsp)富集分析差異表達(dá)的基因,揭示其生物學(xué)功能。分別進(jìn)行GO功能注釋分析和KEGG信號(hào)通路分析,獲得差異表達(dá)基因的基因功能和信號(hào)通路的功能。GO富集標(biāo)準(zhǔn):最小交集≥5、P≤0.05。KEGG富集標(biāo)準(zhǔn):最小交集≥3、P≤0.05。
1.4 蛋白互作(PPI)網(wǎng)絡(luò)的構(gòu)建
應(yīng)用STRING數(shù)據(jù)庫(kù)(https://string-db.org)構(gòu)建PPI網(wǎng)絡(luò)。存在互作的閾值條件為:minimum required interaction score>0.4。使用CytoScape軟件可視化PPI數(shù)據(jù)。
1.5 HUB基因的篩選
應(yīng)用CytoScape軟件中的cytohubba插件,選取MCC、Degree、Bottleneck方法分別篩選出前10個(gè)差異表達(dá)基因。將上述3種方法篩選到的基因提交至Veen(http://bioinformatics.psb.ugent.be/webtools/Venn/)在線工具,獲取三者交集,交集的節(jié)點(diǎn)對(duì)應(yīng)的基因?yàn)榫哂兄匾碚{(diào)節(jié)功能的HUB基因。
1.6 HUB基因上游互作miRNA、miRNA-長(zhǎng)鏈非編碼RNA(lncRNA)分析
應(yīng)用mirDIP在線工具進(jìn)行分析、預(yù)測(cè)HUB基因上游互作miRNA。獲得mRNA-miRNA相互關(guān)系文件并導(dǎo)入CytoScape軟件進(jìn)行網(wǎng)絡(luò)可視化。篩選標(biāo)準(zhǔn):Score class:top 1%,Integrated Score≥0.6,miRNA至少與兩個(gè)及兩個(gè)以上HUB基因互相關(guān)聯(lián)。將符合標(biāo)準(zhǔn)的miRNA提交至starBase在線工具,獲得lncRNA關(guān)系對(duì)。將miRNA-lncRNA相互關(guān)系文件導(dǎo)入CytoScape軟件進(jìn)行網(wǎng)絡(luò)可視化。篩選標(biāo)準(zhǔn):CLIP-Data≥5,miRNA至少與兩個(gè)及兩個(gè)以上的lncRNA相互關(guān)聯(lián)。
1.7 構(gòu)建mRNA-miRNA-lncRNA調(diào)控網(wǎng)絡(luò)
匯總lncRNA、miRNA、mRNA的相應(yīng)結(jié)果,建立相互關(guān)系文件。使用CytoScape軟件構(gòu)建可視化mRNA-miRNA-lncRNA的三元關(guān)系調(diào)控網(wǎng)絡(luò)。
2 結(jié)? 果
2.1 差異基因的篩選
共獲得差異基因87個(gè),其中上調(diào)基因59個(gè),下調(diào)基因28個(gè)。其火山圖見(jiàn)圖1A。依據(jù)log FC絕對(duì)值大小排序,排名前10的上調(diào)差異基因分別為FOS、NR4A2、DDX6、USP9X、CXCL8、CTSZ、DUSP1、INO80D、EGR1及ARHGEF7,排名前10的下調(diào)差異基因則分別為PRKD2、HBD、PSPH、HBM、SLC25A37、HBG2、MS4A3、HINT3、CLC、ALAS2。
2.2 差異基因的基因功能和信號(hào)通路的功能
GO分析結(jié)果顯示,細(xì)胞組成(CC)主要涉及血紅蛋白復(fù)合物、胞漿、血液微粒、胞外外體、膜、細(xì)胞間黏附連接等。生物過(guò)程(BP)主要涉及細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)、血管生成正調(diào)節(jié)、RNA聚合酶Ⅱ啟動(dòng)子轉(zhuǎn)錄的正調(diào)控、血凝、細(xì)胞間黏附等進(jìn)程。分子功能(MF)則主要包含蛋白結(jié)合、鈣黏蛋白結(jié)合參與細(xì)胞間黏附、血紅素結(jié)合等(圖1B)。KEGG富集結(jié)果顯示,差異基因主要與甲型流感病毒感染、單純皰疹病毒感染、破骨細(xì)胞分化、炎癥性腸?。↖BD)、利什曼病、類風(fēng)濕性關(guān)節(jié)炎等信號(hào)通路相關(guān)(圖1C)。
2.3 PPI網(wǎng)絡(luò)與HUB基因
PPI網(wǎng)絡(luò)共涉及67個(gè)節(jié)點(diǎn)和88個(gè)邊緣。PPI富集P-value:<4.69e-14。PPI網(wǎng)絡(luò)文件導(dǎo)入CytoScape軟件中進(jìn)行可視化(圖2A),使用MCC、Bottleneck、Degree分析方法分別篩選出前10個(gè)候選基因(圖2B),使用Venn在線工具獲取3種算法的交集基因,將這些基因定義為HUB基因,分別為ALAS2、EGR1、FOS、DUSP1。見(jiàn)圖2C、表1。
2.4 HUB基因的上游互作miRNA、lncRNA以及circRNA
將4個(gè)診斷候選基因提交至mirDIP進(jìn)行分析,結(jié)果顯示62個(gè)上游互作miRNA符合標(biāo)準(zhǔn)。利用CytoScape軟件構(gòu)建miRNA-lncRNA相互關(guān)系網(wǎng)絡(luò)(圖3A)。ALAS2基因無(wú)符合后續(xù)篩選條件的miRNA。其他3個(gè)HUB基因與7個(gè)miRNA符合后續(xù)篩選條件,并提交至starBase進(jìn)行分析,結(jié)果顯示共有119個(gè)miRNA-lncRNA關(guān)系對(duì),符合篩選條件的lncRNA基因?yàn)?0個(gè)。見(jiàn)圖3B、表2。
2.5 lncRNA/circRNA-miRNA-mRNA通路調(diào)控網(wǎng)絡(luò)
匯總分析符合篩選條件的miRNA及l(fā)ncRNA和HUB基因之間的關(guān)系,使用CytoScape軟件展現(xiàn)的lncRNA、miRNA、mRNA相互作用關(guān)系網(wǎng)絡(luò)見(jiàn)圖3C。
3 討? 論
對(duì)浸潤(rùn)性乳癌的診斷治療研究一直是近年來(lái)的熱點(diǎn),但乳癌起病隱匿,早期臨床癥狀不顯著,容易錯(cuò)過(guò)最佳診療時(shí)機(jī)[2]。我國(guó)乳癌發(fā)病率和死亡率近年來(lái)有增高趨勢(shì)。尋找乳癌非侵入性診療的新靶點(diǎn)對(duì)乳癌早期診治至關(guān)重要。
癌細(xì)胞在一定情況下會(huì)進(jìn)入到外周血中,被外周循環(huán)中的PBMC所吞噬,在PBMC中表達(dá)腫瘤細(xì)胞的標(biāo)志物;同時(shí),PBMC自身就擁有部分循環(huán)腫瘤細(xì)胞和腫瘤干細(xì)胞。所以,理論上來(lái)講可以通過(guò)PBMC對(duì)癌癥進(jìn)行檢測(cè)。本研究尋找PBMC差異基因并進(jìn)行分析,有助于了解乳癌疾病進(jìn)程以及發(fā)生發(fā)展機(jī)制,為乳癌的診治提供理論支持。
微陣列技術(shù)和生物信息學(xué)分析已廣泛用于基因組水平上篩選遺傳變異,是明確人類腫瘤發(fā)生機(jī)制、確定潛在診治靶向的有力工具?;跀?shù)據(jù)庫(kù)的生物信息學(xué)技術(shù)有助于人們?nèi)娣治鲆阎蛐碌幕蚪M、蛋白質(zhì)數(shù)據(jù)等。本文對(duì)比了GSE27562芯片數(shù)據(jù)集內(nèi)經(jīng)組織活檢確診的浸潤(rùn)性乳癌與非腫瘤病人的PBMC,兩者基因表達(dá)存在差異,表明腫瘤組織的存在影響PBMC中基因的表達(dá)。GO分析結(jié)果表明,顯著富集的模塊在MF中的血紅蛋白復(fù)合物上,其次是CC的胞漿組分上,BP主要富集于RNA聚合酶Ⅱ啟動(dòng)子轉(zhuǎn)錄的正調(diào)控、細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)方面。表明乳房腫瘤病人的PBMC影響細(xì)胞增殖、轉(zhuǎn)錄活性,使其增強(qiáng)。KEGG通路富集分析顯示,差異基因主要與類風(fēng)濕性關(guān)節(jié)炎、單純皰疹病毒感染、破骨細(xì)胞分化、甲型流感病毒感染等發(fā)生發(fā)展有關(guān)。相關(guān)研究顯示,乳癌可誘導(dǎo)破骨細(xì)胞的活化,延長(zhǎng)破骨細(xì)胞的存活[3-4],推測(cè)這也與乳癌病人骨轉(zhuǎn)移、骨溶解、骨質(zhì)破壞相關(guān)。ANDTBACKA等[5]研究顯示,溶瘤病毒可以通過(guò)不斷增殖與增強(qiáng)免疫應(yīng)答的方式,使癌細(xì)胞裂解,發(fā)揮抗腫瘤的作用。溶瘤性單純皰疹病毒能夠感染腫瘤細(xì)胞并大量復(fù)制,腫瘤細(xì)胞受到其直接細(xì)胞毒的作用而死亡[6],這種方式不僅可以高效抗腫瘤并對(duì)人體影響較小。目前有研究顯示,單純皰疹病毒中的G47能通過(guò)HER-2磷酸化抑制HER-2陽(yáng)性乳癌細(xì)胞的生長(zhǎng)、增殖,并促進(jìn)癌細(xì)胞凋亡[7],這種基于病毒的生物免疫療法對(duì)前列腺癌[8]、神經(jīng)內(nèi)分泌腫瘤[9]的診治有幫助。流感病毒基因能夠攜帶外來(lái)DNA,使機(jī)體產(chǎn)生明顯的細(xì)胞、體液免疫應(yīng)答。流感病毒可以作為基因治療載體,擁有潛在靶向攻擊腫瘤細(xì)胞的能力。盡管類風(fēng)濕性關(guān)節(jié)炎與乳癌的關(guān)系鮮有研究,但我們推測(cè)乳癌可能有影響人體發(fā)生類風(fēng)濕性關(guān)節(jié)炎等免疫性疾病的風(fēng)險(xiǎn),需實(shí)驗(yàn)進(jìn)一步驗(yàn)證。本研究結(jié)果表明,浸潤(rùn)性乳癌病人的某些感染通路可以被活化,通過(guò)對(duì)這些通路進(jìn)行免疫治療可能減緩乳房腫瘤的發(fā)生發(fā)展。這些與通路相關(guān)的基因是治療的新靶點(diǎn)。這些信號(hào)通路可能涉及乳癌的產(chǎn)生及發(fā)展過(guò)程中的各個(gè)環(huán)節(jié)與步驟,不同的環(huán)節(jié)相互作用對(duì)乳癌發(fā)生發(fā)展產(chǎn)生影響。應(yīng)用病原感染激活免疫系統(tǒng)消滅腫瘤細(xì)胞,其基礎(chǔ)理論與臨床治療均可行。
本文研究通過(guò)構(gòu)建PPI網(wǎng)絡(luò),采用3種不同的方法篩選獲得了HUB基因ALAS2、EGR1、DUSP1、FOS。ALAS2基因的產(chǎn)物是一種紅系特異性線粒體定位酶,其編碼的蛋白質(zhì)催化血紅素生物合成途徑的第一步,但該基因與癌癥的關(guān)系目前鮮有文獻(xiàn)報(bào)道。EGR1基因編碼的蛋白質(zhì)具有轉(zhuǎn)錄調(diào)節(jié)功能,影響著細(xì)胞分化與有絲分裂的進(jìn)程;還有研究表明,EGR1是一個(gè)抑癌基因,EGR1影響了乳癌、前列腺癌、胃癌的發(fā)生發(fā)展[10-12]。乳癌EGR1過(guò)表達(dá)病人經(jīng)過(guò)內(nèi)分泌治療后往往預(yù)后良好[13]。FOS是一種原癌基因,其所屬的基因家族能夠編碼亮氨酸拉鏈蛋白,其在信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞增殖和分化中占據(jù)重要位置。國(guó)外研究顯示,乳癌活檢組織中FOS表達(dá)較正常組織明顯增高,F(xiàn)OS的胞質(zhì)活性為控制乳癌生長(zhǎng)的潛在靶標(biāo)[14]。DUSP1可以使MAP激酶MAPK1/ERK2去磷酸化,進(jìn)而參與多個(gè)細(xì)胞過(guò)程。BOULDING等[15]研究結(jié)果顯示,DUSP1可以參與到上皮-間質(zhì)轉(zhuǎn)化(EMT)和乳癌干細(xì)胞調(diào)節(jié)的過(guò)程,從而干預(yù)乳癌的發(fā)生和進(jìn)展。這些HUB基因在PBMC中的表達(dá)影響著乳癌的生物進(jìn)程。多個(gè)HUB基因在組織同時(shí)表達(dá)表明腫瘤或腫瘤基質(zhì)與外周血PBMC之間存在關(guān)聯(lián);腫瘤基質(zhì)分泌的蛋白與PBMC中的受體結(jié)合,影響著PBMC在外周血中表達(dá)的改變。這些基因的發(fā)現(xiàn)有助于促進(jìn)乳房腫瘤非侵入性診療的發(fā)展。
miRNA可以參與基因表達(dá)調(diào)控的重要進(jìn)程中。本研究顯示,miR-144-3p表達(dá)與乳癌的分期分級(jí)相關(guān)[16]。miR-181c-5p、miR-181d-5p、miR-181b-5p、miR-181a-5p均已經(jīng)被證明參與乳癌的發(fā)生及轉(zhuǎn)移的相關(guān)進(jìn)程[17-19]。miR-543過(guò)表達(dá)可抑制細(xì)胞增殖和細(xì)胞周期,上調(diào)細(xì)胞凋亡,并通過(guò)直接靶向ERK/MAPK抑制乳癌細(xì)胞的增殖[20]。miR-101-3p的表達(dá)上調(diào)及下調(diào)與乳房腫瘤細(xì)胞的侵襲性相關(guān)[21];同時(shí),miR-101-3p可與多種靶基因結(jié)合,對(duì)乳癌發(fā)展、轉(zhuǎn)移以及癌細(xì)胞的增殖過(guò)程產(chǎn)生抑制作用,并促進(jìn)腫瘤細(xì)胞凋亡[22-24]。這些miRNA影響著乳癌的發(fā)生、發(fā)展,可能成為診治靶標(biāo)。
LncRNA被認(rèn)為是多種癌癥(包括浸潤(rùn)性乳癌)發(fā)生發(fā)展的生物標(biāo)記物。本文研究共發(fā)現(xiàn)20個(gè)符合條件的上游lncRNA,其中XIST、SNHG7、SNHG5、SNHG1、OIP5-AS1、NORAD、NEAT1、MIR4458HG、MALAT1、KCNQ1OT1等涉及乳癌的發(fā)生發(fā)展。其作用機(jī)制主要包括兩個(gè)方面:①通過(guò)對(duì)miRNA的調(diào)控,上調(diào)或下調(diào)靶向基因的表達(dá),間接對(duì)癌癥的發(fā)展發(fā)揮促進(jìn)或者抑制的作用,這些LncRNA包括SNHG7、SNHG5、SNHG1、XIST、OIP5-AS1和KCNQ1OT1[25-30];②通過(guò)直接對(duì)乳癌細(xì)胞信號(hào)通路進(jìn)行調(diào)控影響其生物學(xué)進(jìn)程,這些LncRNA包括NEAT1、NORAD、MALAT1[31-33]。本文研究發(fā)現(xiàn)的20個(gè)上游lncRNA影響浸潤(rùn)性乳癌的發(fā)展、轉(zhuǎn)移、增殖和侵襲等進(jìn)程。目前,有關(guān)浸潤(rùn)性乳癌病人PBMC中l(wèi)ncRNA的生物信息數(shù)據(jù)、文獻(xiàn)較少,相關(guān)mRNA、lncRNA的研究有待進(jìn)一步深入。
綜上所述,本文使用綜合的生物信息學(xué)分析方法,獲得浸潤(rùn)性乳癌病人的PBMC差異基因,并尋找到其中的HUB基因。然后通過(guò)預(yù)測(cè)HUB基因上游的miRNA、lncRNA,構(gòu)建了mRNA-miRNA-lncRNA可視化網(wǎng)絡(luò)以顯示基因分子間的相互作用關(guān)系。本文結(jié)果為通過(guò)外周血PBMC對(duì)浸潤(rùn)性乳癌進(jìn)行早期診斷及臨床精準(zhǔn)治療、靶向治療提供可靠的理論基礎(chǔ)與方向。
[參考文獻(xiàn)]
[1]SHAH C, TENDULKAR R, SMILE T, et al. Adjuvant radiotherapy in early-stage breast cancer: evidence-based options[J]. Annals of Surgical Oncology, 2016,23(12):3880-3890.
[2]DENG H Y, WANG X R, YUE M, et al. Extensive peritumoral retraction clefts and prognosis in invasive breast carcinomas of no specific type[J]. Chinese Journal of Pathology, 2018,47(3):196-200.
[3]CLOHISY D R, PALKERT D, RAMNARAINE M L, et al. Human breast cancer induces osteoclast activation and increases the number of osteoclasts at sites of tumor osteolysis[J]. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 1996,14(3):396-402.
[4]LU X, MU E, WEI Y, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors[J]. Cancer Cell, 2011,20(6):701-714.
[5]ANDTBACKA R H I, KAUFMAN H L, COLLICHIO F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma[J]. Journal of Clinical Oncology, 2015,33(25):2780-2788.
[6]SPENCER D M. Developments in suicide genes for preclinical and clinical applications[J]. Current Opinion in Molecular Therapeutics, 2000,2(4):433-440.
[7]羅彪. HER-2陽(yáng)性乳腺癌蒽環(huán)類藥物化療效果及其與P53、TOPⅡa相關(guān)性研究進(jìn)展[J].臨床醫(yī)藥文獻(xiàn)電子雜志, 2017,4(52):10295-10296.
[8]WANG L, NING J F, WAKIMOTO H, et al. Oncolytic Her-pes simplex virus and PI3K inhibitor BKM120 synergize topromote killing of prostate cancer stem-like cells[J]. Molecular Therapy Oncolytics, 2019,13:58-66.
[9]KLOKER L D, BERCHTOLD S, SMIRNOW I, et al. The oncolytic Herpes simplex virus talimogene laherparepvec shows promising efficacy in neuroendocrine cancer cell lines[J]. Neuroendocrinology, 2019,109(4):346-361.
[10]TANG T T, ZHU Q H, LI X P, et al. Correction: Protease Nexin I is a feedback regulator of EGF/ PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness[J]. Cell Death & Disease, 2020,11(1):13.
[11]LI L C, AMERI A H, WANG S M, et al. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis[J]. Oncogene, 2019,38(35):6241-6255.
[12]LEE J C, KOH S A, LEE K H, et al. BAG3 contributes to HGF-mediated cell proliferation, migration, and invasion via the Egr1 pathway in gastric cancer[J]. Tumori, 2019,105(1):63-75.
[13]SHAJAHAN-HAQ A N, JIN L, CHEEMA A K, et al. Abstract B1-23: Early growth response (EGR1) is a critical regulator of cellular metabolism and predicts increased responsiveness to antiestrogens in breast cancer[C]//Network-Based Cancer Biology. American Association for Cancer Research, 2015:B1-23.
[14]MOTRICH R D, CASTRO G M, CAPUTTO B L. Old pla-
yers with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm[J]. PLoS One, 2013,8(1):e53211.
[15]BOULDING T, WU F, MCCUAIG R, et al. Differential roles for DUSP family members in epithelial-to-mesenchymal transition and cancer stem cell regulation in breast cancer[J]. PLoS One, 2016,11(2):e0148065.
[16]許發(fā)功,楊立. 乳腺癌組織中miR-144-3p和SGK3的表達(dá)水平及臨床意義[J]. 中國(guó)臨床研究, 2019,32(2):173-178.
[17]TASHKANDI H, SHAH N, PATEL Y, et al. Identification of new miRNA biomarkers associated with HER2-positive breast cancers[J]. Oncoscience, 2015,2(11):924-929.
[18]TAYLOR M A, SOSSEY-ALAOUI K, THOMPSON C L, et al. TGF-β upregulates miR-181a expression to promote breast cancer metastasis[J]. Journal of Clinical Investigation, 2013,123(1):150-163.
[19]RAJARAJAN D, SELVARAJAN S, CHARAN RAJA M R, et al. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer[J]. Journal of Cellular Physiology, 2019,234(10):17959-17974.
[20]CHEN P, XU W T, LUO Y, et al. MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK[J]. OncoTargets and Therapy, 2017,10:1423-1431.
[21]WANG R, WANG H B, HAO C J, et al. MiR-101 is involved in human breast carcinogenesis by targeting Stathmin1[J]. PLoS One, 2012, 7(10):e46173.
[22]LI J T, JIA L T, LIU N N, et al. MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7[J]. Oncotarget, 2015,6(31):30818-30830.
[23]GUAN H T, DAI Z J, MA Y G, et al. MicroRNA-101 inhi-
bits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer[J]. International Journal of Molecular Medicine, 2016,37(6):1643-1651.
[24]WANG L, LI L Q, GUO R, et al. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2[J]. Cellular Physiology and Biochemistry, 2014,34(2):413-422.
[25]LUO X, SONG Y, TANG L, et al. LncRNA SNHG7 promotes development of breast cancer by regulating microRNA-186[J]. European Review for Medical and Pharmacological Sciences, 2018,22(22):7788-7797.
[26]CHI J R, YU Z H, LIU B W, et al. SNHG5 promotes breast cancer proliferation by sponging the miR-154-5p/PCNA axis[J]. Molecular Therapy Nucleic Acids, 2019,17:138-149.
[27]ZHENG S P, LI M Q, MIAO K K, et al. SNHG1 contributes to proliferation and invasion by regulating miR-382 in breast cancer[J]. Cancer Management and Research, 2019,11:5589-5598.
[28]ZENG H J, WANG J J, CHEN T, et al. Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation[J]. Cancer Science, 2019,110(1):289-302.
[29]ZHANG C, GONG C, LI J, et al. (Preprint) MicroRNA-935 mediates the regulatory effect of lncRNA KCNQ1OT1 on tumor progression of breast cancer[J]. ResearchGate, 2020.? https://www.researchsquare.com/article/rs-21089/v.
[30]ZHENG R N, LIN S H, GUAN L, et al. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis[J]. Biochemical and Biophy-
sical Research Communications, 2018,498(4):1002-1008.
[31]ZHANG M, WU W B, WANG Z W, et al. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT[J]. European Review for Medical and Pharmacological Sciences, 2017,21(5):1020-1026.
[32]ZHOU K, OU Q, WANG G, et al. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-β pathway[J]. Cancer Cell International, 2019,19(1):1-7.
[33]WANG Z W, KATSAROS D, BIGLIA N, et al. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival[J]. Breast Cancer Research and Treatment, 2018,171(2):261-271.
(本文編輯 黃建鄉(xiāng))