呂敏 王利丹 蘇建坤
摘要:昆蟲(chóng)取食不僅能誘導(dǎo)植物本身產(chǎn)生防御反應(yīng),還能誘導(dǎo)鄰近健康植物產(chǎn)生防御反應(yīng),這就是植物間通信作用。植物受到昆蟲(chóng)取食后,會(huì)釋放出一系列的揮發(fā)性化合物,已經(jīng)證明昆蟲(chóng)取食誘導(dǎo)的植物揮發(fā)性化合物在植物通信中起作用。本文總結(jié)昆蟲(chóng)取食誘導(dǎo)的揮發(fā)性化合物在植物通信中的作用及其機(jī)制,這有利于增加植物抗蟲(chóng)性找到害蟲(chóng)綜合防治的新途徑。
關(guān)鍵詞:昆蟲(chóng)取食;植物間通信;揮發(fā)性化合物
中圖分類(lèi)號(hào): S184;S433.1? 文獻(xiàn)標(biāo)志碼: A
文章編號(hào):1002-1302(2021)15-0021-04
收稿日期:2020-11-06
基金項(xiàng)目:江蘇里下河地區(qū)農(nóng)業(yè)科學(xué)研究所所基金[編號(hào):SJ(17)103]。
作者簡(jiǎn)介:呂 敏(1981―)女,山西晉中人,博士,副研究員,主要從事昆蟲(chóng)與植物互作的研究。Tel:(0514)87637450;E-mail:lvmin8889@126.com。
通信作者:蘇建坤,研究員,主要從事作物病蟲(chóng)害防治研究。Tel:(0514)87302325;E-mail:yzsujk@163.com。
昆蟲(chóng)取食不僅能誘導(dǎo)植物本身抗蟲(chóng)性增加,還能誘導(dǎo)鄰近健康植物的抗蟲(chóng)性增加,這就是植物間的通信作用。植物間的通信首先是由Rhoades 在1983年提出來(lái)的[1],他在田間發(fā)現(xiàn)被毛蟲(chóng)取食的樹(shù)很少有毛蟲(chóng)再來(lái)取食,令人驚訝的是鄰近健康的樹(shù)也是只有很少的毛蟲(chóng)取食。目前室內(nèi)和田間試驗(yàn)已經(jīng)在至少30種植物中證實(shí)植物通信作用的存在[2-3]。Rhoades 還提出受害植物和鄰近植物間空氣中的交流能引起鄰近植物抗性水平的增加[1]。嚴(yán)格控制實(shí)驗(yàn)室條件的結(jié)果可以表明植物間是通過(guò)空氣交流的。番茄植物與剪枝的山艾一起放在小的密閉容器內(nèi)可以增加番茄蛋白酶抑制劑的含量[4],蛋白酶抑制劑可以減少昆蟲(chóng)的取食[5]。其他密閉容器中的試驗(yàn)支持并且擴(kuò)展了這個(gè)結(jié)論[6-8]。田間植物間的距離大于60 cm,同時(shí)有植物間空氣的流通條件,鄰近植株的抗性也會(huì)增加[9]。當(dāng)阻止空氣流通后,包括樹(shù)枝間和植物間的系統(tǒng)誘導(dǎo)抗性都不能檢測(cè)到。如果山艾受害植株和健康植株離得更近,則山艾間的通信作用更有效[10-11]。植物通信對(duì)于信息的傳遞者和接收者都是非常有益的。研究植物通信的作用及機(jī)理,對(duì)于害蟲(chóng)-植物-植物-天敵之間的相互關(guān)系具有重要的意義,可為害蟲(chóng)綜合治理提供重要的理論依據(jù)。
1 昆蟲(chóng)取食誘導(dǎo)的揮發(fā)性化合物在植物通信中的作用
昆蟲(chóng)取食能誘導(dǎo)植物產(chǎn)生一系列的揮發(fā)性化合物(volatile organic compounds,VOCs),這些化合物不僅能激活間接防御反應(yīng)以吸引天敵,而且能作為傷害信號(hào)誘導(dǎo)系統(tǒng)性防御反應(yīng)。昆蟲(chóng)取食雜交楊(Populus deltoides×nigra)的葉片能敏化沒(méi)有導(dǎo)管連接的鄰近葉片防御反應(yīng);未受害的葉片暴露于同一莖桿的受害葉片釋放的揮發(fā)性化合物中,與未接收揮發(fā)性化合物的葉片相比,對(duì)舞毒蛾(Lymantria dispar L.)取食的防御作用提高了[12]。當(dāng)維管的連接受限制時(shí),揮發(fā)性化合物信號(hào)有利于系統(tǒng)防御反應(yīng)的發(fā)生,同時(shí)在短距離的植物間也發(fā)現(xiàn)這種現(xiàn)象的存在。受害誘導(dǎo)利馬豆葉片釋放的揮發(fā)性化合物能誘導(dǎo)和敏化未受害的植株和同一植株的未受害部分花外蜜露EFN的分泌[13]。這個(gè)研究不僅證明了在自然界中受害植物釋放的揮發(fā)性化合物的質(zhì)和量都足以激發(fā)未受害植株的間接防御反應(yīng),還證明了VOCs是快速和有效的植物間通信的信號(hào)。
目前關(guān)于植物通信的研究大部分都集中于一些模式系統(tǒng)如野生煙草和利馬豆[14]。以利馬豆為例,應(yīng)用離體利馬豆葉片和RT-PCR技術(shù)研究表明,未被二斑葉螨侵染的利馬豆葉片暴露在葉螨侵染葉片釋放的揮發(fā)性氣體中時(shí),未被侵染葉片和被侵染葉片中脂氧合酶(十八烷途徑中的關(guān)鍵酶)活性升高到幾乎相同的程度,被侵染葉片中檢測(cè)到6個(gè)基因的轉(zhuǎn)錄物,包括基本病原菌相關(guān)蛋白基因 PR-2(1,3-葡糖糖化酶)和PR-3(幾丁質(zhì)酶)、酸性病原菌相關(guān)蛋白基因PR-4(酸性幾丁質(zhì)酶)、十八烷途徑中的脂氧合酶(LOX)基因、苯丙烷類(lèi)代謝途徑中的苯丙氨酸解氨酶(PAL)基因以及異戊二烯合成途徑中的法呢基焦磷酸合成酶(FPS)基因。暴露在二斑葉螨誘導(dǎo)的揮發(fā)性氣體中1 d后的利馬豆葉片中,檢測(cè)到6個(gè)防御基因中5個(gè)基因的轉(zhuǎn)錄物。暴露在機(jī)械損傷誘導(dǎo)物中的利馬豆葉片中只檢測(cè)到PR-2基因轉(zhuǎn)錄物。完整利馬豆植株與離體利馬豆葉片不同,完整利馬豆植株暴露在被二斑葉螨侵染的利馬豆釋放的揮發(fā)性氣體中,只檢測(cè)到 PR-2、PR-3和PAL轉(zhuǎn)錄物的積累[15-17]。
2 昆蟲(chóng)取食誘導(dǎo)的揮發(fā)性化合物在植物通信中的作用機(jī)制
昆蟲(chóng)取食誘導(dǎo)的植物揮發(fā)物能影響鄰近植物的防御策略[1,18]。例如暴露于昆蟲(chóng)取食誘導(dǎo)的植物揮發(fā)物的植物,誘導(dǎo)抗蟲(chóng)性增加[11,19-22];植物避免遭受昆蟲(chóng)的取食[23-25];誘導(dǎo)抗性相關(guān)化合物的增加和抗性基因的表達(dá)[4,6,17,26];還有敏化植物的防御反應(yīng)[27-28]。植物揮發(fā)性化合物通過(guò)表皮吸收或激活生理反應(yīng)影響鄰近植物,有很多試驗(yàn)證據(jù)證明表皮吸收和生理反應(yīng)的作用[27]。
雖然許多昆蟲(chóng)取食誘導(dǎo)植物產(chǎn)生揮發(fā)性化合物成分已經(jīng)確定[29-33],但是很少有研究證明哪種揮發(fā)物在植物通信中起作用[34]。目前已經(jīng)證明茉莉酸甲酯可以激發(fā)鄰近植物的防御反應(yīng)。茉莉酸甲酯是艾屬植物產(chǎn)生并且釋放的非常高濃度的一種揮發(fā)性化合物。番茄植物在密閉容器內(nèi)暴露于山艾釋放的MeJA,能使蛋白酶抑制劑的含量以劑量依賴(lài)的形式增加[4]。
為了證明昆蟲(chóng)取食誘導(dǎo)植物揮發(fā)性化合物中誘導(dǎo)抗性的關(guān)鍵化合物,目前許多試驗(yàn)是使植物暴露于相對(duì)高濃度人工合成的純化合物。這些研究表明除了茉莉酸甲酯,萜類(lèi)化合物和C6綠葉揮發(fā)物也能激活依賴(lài)于茉莉酸的植物防御反應(yīng)[15,26,35-37]。然而,這種VOCs誘導(dǎo)的防御反應(yīng)劇烈程度比茉莉酸甲酯或昆蟲(chóng)激發(fā)子激發(fā)的反應(yīng)要弱得多。Engelberth 等研究發(fā)現(xiàn),甜菜夜蛾(Spodoptera exigua)取食玉米誘導(dǎo)產(chǎn)生的VOCs不能直接誘導(dǎo)防御反應(yīng),但是可以敏化植物對(duì)以后受到的傷害和昆蟲(chóng)激發(fā)子產(chǎn)生防御反應(yīng),只可以被外源性3種綠葉揮發(fā)物(Z)-3-己烯醇,(Z)-3-己烯醛或(Z)-3-己烯乙酸酯的應(yīng)用所模擬。相反,暴露于昆蟲(chóng)激發(fā)子的植物釋放的VOCs僅有微量的綠葉揮發(fā)物,不能激發(fā)鄰近植物的反應(yīng),表明綠葉揮發(fā)物是毛蟲(chóng)誘導(dǎo)VOCs中有活性的化合物[28]。與這些結(jié)果相反,煙草天蛾侵染煙草不能敏化鄰近的煙草植株[38]。奇怪的是,這些化合物(綠葉揮發(fā)物和萜類(lèi)化合物)先前證明能敏化其他種植物的防御反應(yīng)[28,36]。另外一方面,山艾的離體葉片釋放的VOCs 能敏化煙草,煙草夜蛾取食能提高煙草蛋白酶的活性[39]。這就證明了剪枝的山艾釋放的VOCs含有敏化-誘導(dǎo)的化合物,而這些化合物是煙草天蛾取食煙草誘導(dǎo)釋放的化合物中所沒(méi)有的。因此VOC-誘導(dǎo)敏化是植物界中普遍存在的現(xiàn)象,只是敏化-誘導(dǎo)的化合物因不同種植物而不同。
Ton 等從分子化學(xué)和行為角度證明了VOC-誘導(dǎo)敏化反應(yīng)能增強(qiáng)玉米的直接和間接抗蟲(chóng)性。用差式雜交的方法研究灰翅夜蛾(Spodoptera littoralis)取食玉米誘導(dǎo)的防御基因,確定了10 種防御相關(guān)基因?qū)岳蛩峄蚶ハx(chóng)激發(fā)子作出反應(yīng)[40]。暴露于取食誘導(dǎo)的 VOCs 不會(huì)直接激活這些基因,但是具有敏化作用,當(dāng)遇到昆蟲(chóng)襲擊時(shí),使它們更快更強(qiáng)地作出反應(yīng),能增加芳香族和萜類(lèi)化合物的釋放,在 VOCs 釋放最多的時(shí)候,敏化的植物能顯著吸引更多的寄生蜂。這個(gè)試驗(yàn)還證明 VOC-誘導(dǎo)敏化的目標(biāo)是特定茉莉酸誘導(dǎo)基因的一部分,在分子水平聯(lián)系這些反應(yīng)來(lái)提高直接和間接抗蟲(chóng)性。
誘導(dǎo)抗性的空間范圍包含有各種各樣的機(jī)制。例如,造癭昆蟲(chóng)取食植物后,植物產(chǎn)生高度敏感反應(yīng),阻止蟲(chóng)癭的生成,然后殺死入侵的昆蟲(chóng)[41-42]。這種高度定位反應(yīng)包括營(yíng)養(yǎng)物質(zhì)的損失和圍繞植物受傷地方的細(xì)胞壞死。其他的誘導(dǎo)反應(yīng)是系統(tǒng)的并且包含同等的信號(hào)在整個(gè)植株中移動(dòng)。例如咀嚼毛蟲(chóng)取食后,番茄植株產(chǎn)生系統(tǒng)素,一種信號(hào)分子,能使破壞迅速?gòu)氖芎θ~片擴(kuò)散到整個(gè)韌皮部[43]。系統(tǒng)素或其他信號(hào)分子誘導(dǎo)蛋白酶抑制劑和其他化學(xué)物質(zhì)的合成,使得含有導(dǎo)管聯(lián)系的植株上的咀嚼性昆蟲(chóng)很難存活[44-45]。系統(tǒng)抗性只有在山艾植株的樹(shù)枝間檢測(cè)到,揮發(fā)性信號(hào)在樹(shù)枝間傳導(dǎo)。這個(gè)信號(hào)還沒(méi)有確定,許多揮發(fā)性化合物包括茉莉酸甲酯是由受害植物釋放出來(lái)的并且作為空氣傳播的信號(hào)物質(zhì)[39,46-47]。
目前,有關(guān)植物通信及誘導(dǎo)抗性集中于基因表達(dá)、次生代謝物質(zhì)、酶活性和誘導(dǎo)釋放的揮發(fā)物[48],而一些其他的影響如時(shí)間、位置、來(lái)源、誘導(dǎo)程度和昆蟲(chóng)種類(lèi)都能影響植物的防御反應(yīng),還會(huì)間接影響取食者[49]。目前的試驗(yàn)都是將取食植物和健康植物放在密閉容器中進(jìn)行的[50],或植物暴露于揮發(fā)性物質(zhì)[11]。但是在自然的條件下,昆蟲(chóng)取食的時(shí)間、空間可能對(duì)低樣本的數(shù)據(jù)產(chǎn)生錯(cuò)誤或者強(qiáng)大影響。還有一些其他影響因子需要長(zhǎng)期研究[14]。
3 結(jié)論與展望
人們?cè)缇鸵庾R(shí)到誘導(dǎo)抗性能作為一種工具應(yīng)用于在農(nóng)業(yè)中,主要研究集中于利用昆蟲(chóng)取食誘導(dǎo)的植物來(lái)操縱害蟲(chóng)的捕食性和寄生性天敵而不是利用寄主植物本身的抗性[51-53]。研究人員更多地關(guān)注利用間接防御開(kāi)發(fā)害蟲(chóng)防治策略,較少地關(guān)注增加寄主植物抗性[54]。到目前為止,利用揮發(fā)性物質(zhì)最成功的是非洲許多農(nóng)民使用的用于保護(hù)玉米和其他作物的“push-pull”系統(tǒng)[52],這個(gè)系統(tǒng)通過(guò)有價(jià)值的作物與另一釋放趨避害蟲(chóng)信號(hào)的物種間作,使害蟲(chóng)遠(yuǎn)離該作物,同時(shí)沿田間邊種植了第3個(gè)物種,以吸引害蟲(chóng),將它們從田間“拉出”并遠(yuǎn)離作物。因此,研究昆蟲(chóng)取食誘導(dǎo)植物間的通信作用及其機(jī)制,有利于通過(guò)增加植物抗蟲(chóng)性找到害蟲(chóng)綜合防治的新途徑。
參考文獻(xiàn):
[1]Rhoades D F. Responses of alder and willow to attack by tent caterpillars and webworms:evidence for pheromonal sensitivity of willows[M]//Plant resistance to insects. Washington D C:American Chemical Society,1983.
[2]Heil M,Karban R. Explaining evolution of plant communication by airborne signals[J]. Trends in Ecology & Evolution,2010,25(3):137-144.
[3]Karban R,Wetzel W C,Shiojiri K,et al. Deciphering the language of plant communication:volatile chemotypes of sagebrush[J]. New Phytologist,2014,204(2):380-385.
[4]Farmer E E,Ryan C A. Interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves[J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(19):7713-7716.
[5]Broadway R M. Duffey S S. Plant proteinase inhibitors:mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua[J]. Journal of Insect Physiology,1986,32(10):827-833.
[6]Shulaev V,Silverman P,Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance[J]. Nature,1997,385(6618):718-721.
[7]Qj Q,Shi X Y,Liang P,et al. Induction of phenylalanine ammonia-lyase and lipoxygenase in cotton seedlings by mechanical wounding and aphid infestation[J]. Progress in Natrual Science,2005,15(5):419-423.
[8]Lyu M,Kong H L,Liu H A,et al. Induction of phenylalanine ammonia-lyase (PAL) in insect damaged and neighboring undamaged cotton and maize seedlings[J]. International Journal of Pest Management,2017,63(2):166-171.
[9]Karban R,Shiojiri K,Huntzinger M,et al. Damage-induced resistance in sagebrush:volatiles are key to intra-and interplant communication[J]. Ecology,2006,87(4):922-930.
[10]Karban R,Shiojiri K,Ishizaki S,et al. Kin recognition affects plant communication and defence[J]. Proceedings:Biological Sciences,2013,280(1756):20123062.
[11]Karban R,Yang L H,Edwards K F. Volatile communication between plants that affects herbivory:a meta-analysis[J]. Ecology Letters,2014,17(1):44-52.
[12]Frost C J,Appel H M,Carlson J E,et al. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores[J]. Ecology Letters,2007,10(6):490-498.
[13]Heil M,Silva Bueno J C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(13):5467-5472.
[14]Grof-Tisza P,Karban R,Pan V S,et al. Assessing plant-to-plant communication and induced resistance in sagebrush using the sagebrush specialist Trirhabda pilosa[J]. Arthropod-Plant Interactions,2020,14(3):327-332.
[15]Arimura G I,Ozawa R,Shimoda T,et al. Herbivory-induced volatiles elicit defence genes in Lima bean leaves[J]. Nature,2000,406(6795):512-515.
[16]Arimura G I,Tashiro K,Kuhara S,et al. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles[J]. Biochemical and Biophysical Research Communications,2000,277(2):305-310.
[17]Arimura G I,Ozawa R,Horiuchi J I,et al. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites[J]. Biochemical Systematics and Ecology,2001,29(10):1049-1061.
[18]Baldwin I T,Schultz J C. Rapid changes in tree leaf chemistry induced by damage:evidence for communication between plants[J]. Science,1983,221(4607):277-279.
[19]Karban R,Maron J,F(xiàn)elton G W,et al. Herbivore damage to sagebrush induces resistance in wild tobacco:evidence for eavesdropping between plants[J]. Oikos,2003,100(2):325-332.
[20]Ninkovic V,Ahmed E,Glinwood R,et al. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop[J]. Agricultural and Forest Entomology,2003,5(1):27-33.
[21]Karban R. Plant behaviour and communication[J]. Ecology Letters,2008,11(7):727-739.
[22]Heil M. Herbivore-induced plant volatiles:targets,perception and unanswered questions[J]. New Phytologist,2014,204(2):297-306.
[23]Ninkovic V,Olsson U,Pettersson J. Mixing barley cultivars affects aphid host plant acceptance in field experiments[J]. Entomologia Experimentalis et Applicata,2002,102(2):177-182.
[24]Glinwood R,Pettersson J,Ahmed E,et al. Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens)[J]. Journal of Chemical Ecology,2003,29(2):261-274.
[25]Glinwood R,Ninkovic V,Pettersson J,et al. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids[J]. Ecological Entomology,2004,29(2):188-195.
[26]Arimura G I,Ozawa R,Nishioka T,et al. Herbivore-induced volatiles induce the emission of ethylene in neighboring Lima bean plants[J]. The Plant Journal,2002,29(1):87-98.
[27]Choh Y,Shimoda T,Ozawa R,et al. Exposure of Lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants:active or passive process?[J]. Journal of Chemical Ecology,2004,30(7):1305-1317.
[28]Engelberth J,Alborn H T,Schmelz E A,et al. Airborne signals prime plants against insect herbivore attack[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(6):1781-1785.
[29]de Moraes C M,Lewis W J,Pare P W,et al. Herbivore-infested plants selectively attract parasitoids[J]. Nature,1998,393(6685):570-573.
[30]Rasmann S,Turlings T C J. First insights into specificity of belowground tritrophic interactions[J]. Oikos,2008,117(3):362-369.
[31]Clavijo M A,Unsicker S B,Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies[J]. Trends in Plant Science,2012,17(5):303-310.
[32]Xiao Y,Wang Q,Erb M,et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field[J]. Ecology Letters,2012,15(10):1130-1139.
[33]Rowen E,Kaplan I. Eco-evolutionary factors drive induced plant volatiles:a meta-analysis[J]. The New Phytologist,2016,210(1):284-294.
[34]Moreira X,Nell C S,Katsanis A,et al. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae)[J]. New Phytologist,2018,220(3):703-713.
[35]Farag M,Paré P W. C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato[J]. Phytochemistry,2002,61(5):545-554.
[36]Ruther J,Kleier S. Plant-plant signaling:ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol[J]. Journal of Chemical Ecology,2005,31(9):2217-2222.
[37]Yan Z G,Wang C Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize[J]. Phytochemistry,2006,67(1):34-42.
[38]Paschold A,Halitschke R,Baldwin I T. Using ‘mute plants to translate volatile signals[J]. Plant Journal,2006,45(2):275-291.
[39]Kessler A,Halitschke R,Diezel C,et al. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia,2006,148(2):280-292.
[40]Ton J,DAlessandro M,Jourdie V,et al. Priming by airborne signals boosts direct and indirect resistance in maize[J]. Plant Journal,2007,49(1):16-26.
[41]Fernandes G W. Hypersensitivity:a neglected plant resistance mechanism against insect herbivores[J]. Environmental Entomology,1990,19(5):1173-1182.
[42]Fernandes G W. Hypersensitivity as a phenotypic basis of plant induced resistance against a galling insect (Diptera:Cecidomyiidae)[J]. Environmental Entomology,1998,27(2):260-267.
[43]Pearce G,Strydom D,Johnson S,et al. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins[J]. Science,1991,5022(253):895-897.
[44]Orians C M,Jones C G. Plants as resource mosaics:a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability[J]. Oikos,2001,94(3):493-504.
[45]Orians C M. Herbivores,vascular pathways,and systemic induction:facts and artifacts[J]. Journal of Chemical Ecology,2005,31(10):2231-2242.
[46]Karban R,Baldwin I T,Baxter K J,et al. Communication between plants:induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia,2000,125(1):66-71.
[47]Preston C A,Laue G,Baldwin I T. Methyl jasmonate is blowing in the wind,but can it act as a plant-plant airborne signal?[J]. Biochemical Systematics and Ecology,2001,29(10):1007-1023.
[48]Kant M R,Jonckheere W,Knegt B,et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities[J]. Annals of Botany,2015,115(7):1015-1051.
[49]War A R,Paulraj M G,Ahmad T,et al. Mechanisms of plant defense against insect herbivores[J]. Plant Signaling & Behavior,2012,7(10):1306-1320.
[50]Karban R,Baldwin I T. Induced response to herbivory[M]. Chicago:Chicago University Press,1997.
[51]Stenberg J A,Heil M,hman I,et al. Optimizing crops for biocontrol of pests and disease[J]. Trends in Plant Science,2015,20(11):698-712.
[52]Pickett J A,Khan Z R. Plant volatile-mediated signalling and its application in agriculture:successes and challenges[J]. New Phytologist,2016,212(4):856-870.
[53]Turlings T C J,Erb M. Tritrophic interactions mediated by herbivore-induced plant volatiles:mechanisms,ecological relevance,and application potential[J]. Annual Review of Entomology,2018,63(1):433-452.
[54]Karban R. The ecology and evolution of induced responses to herbivory and how plants perceive risk[J]. Ecological Entomology,2020,45(1):1-9.