田鎮(zhèn),陳愛華,曹奕,吳楊平,張雨,陳素華,張志東,李秋潔
摘要:【目的】了解群體選育過程中紅殼色文蛤(Meretrix meretrix)選育群體的遺傳多樣性變化及世代遺傳分化情況,為文蛤育種計(jì)劃的可持續(xù)性提供理論依據(jù)?!痉椒ā恳越K黃文蛤原種(SY)、江蘇紅文蛤原種(SR)及5個(gè)紅殼色文蛤選育群體(SRF1~SR5F5)為研究對(duì)象,利用15對(duì)微衛(wèi)星引物對(duì)各文蛤群體基因組DNA進(jìn)行PCR擴(kuò)增,然后通過Gel-Pro32 4.0、PopGen 32和MEGA 6.0等在線軟件分析7個(gè)文蛤群體的遺傳多樣性?!窘Y(jié)果】從7個(gè)文蛤群體中共檢測(cè)出766個(gè)等位基因,每個(gè)微衛(wèi)星位點(diǎn)在每個(gè)群體中檢測(cè)出3~18個(gè)等位基因,且等位基因數(shù)(Na)隨選育世代增加呈下降趨勢(shì)。15個(gè)微衛(wèi)星位點(diǎn)的平均多態(tài)信息含量(PIC)在0.575~0.630,均屬于高度多態(tài)性位點(diǎn)。7個(gè)文蛤群體的平均觀測(cè)雜合度(Ho)為0.442~0.502,平均期望雜合度(He)為0.629~0.680,群體中63.81%的微衛(wèi)星位點(diǎn)偏離Hardy-Weinberg平衡,表明各微衛(wèi)星位點(diǎn)存在一定程度的雜合子缺失;群體內(nèi)近交系數(shù)(Fis)范圍為-0.0157~0.7409,平均為0.2777,表明文蛤群體內(nèi)存在一定程度的近交水平;群體間遺傳分化系數(shù)(Fst)平均為0.0455,即文蛤群體變異中僅有4.55%是由不同群體間的基因差異所產(chǎn)生,而95.45%的變異來源于群體內(nèi)部;各群體的基因流(Nm)為0.9002~18.9478,平均為8.8065,說明7個(gè)文蛤群體間的遺傳分化較低。UPMGA聚類分析發(fā)現(xiàn)7個(gè)文蛤群體聚類呈兩大支,江蘇紅文蛤原種及其選育群體聚為一支,而江蘇黃文蛤原種(SY)獨(dú)自聚為一支?!窘Y(jié)論】經(jīng)過5代人工選育的紅殼色文蛤選育群體雖然較基礎(chǔ)群體其遺傳多樣性指數(shù)略有下降,但并未導(dǎo)致各選育群體的遺傳結(jié)構(gòu)發(fā)生改變,仍具有較高的遺傳多樣性。在連續(xù)的選擇育種計(jì)劃中,應(yīng)增加親本養(yǎng)殖環(huán)境多樣化,避免因人工繁育的親本和養(yǎng)殖群體規(guī)模較小引起遺傳漂移或近交衰退而致使某些等位基因缺失,導(dǎo)致后代的遺傳結(jié)構(gòu)發(fā)生改變。
關(guān)鍵詞: 文蛤;紅殼色;群體選育;微衛(wèi)星;遺傳多樣性;遺傳漂移
中圖分類號(hào): S968.317? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)09-2582-08
Microsatellite analysis on genetic diversity of breeding populations of red shell color Meretrix meretrix
TIAN Zhen1,2, CHEN Ai-hua1*, CAO Yi1, WU Yang-ping1, ZHANG Yu1,
CHEN Su-hua1, ZHANG Zhi-dong1,2, LI Qiu-jie1,2
(1Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu? 226007, China;2Shanghai Ocean University/National Experimental Teaching Demonstration Center of Aquatic Science, Shanghai? 201306, China)
Abstract:【Objective】In order to understand the genetic diversity and generational genetic differentiation of breeding populations of red shell color Meretrix meretrix during population selection, and to provide theoretical basis for long-term sustainability of breeding programs. 【Method】In this study, fifteen pairs of microsatellite markers were used to analyze seven populations of M. meretrix, including Jiangsu wild population with yellow shell(SY), wild population with red shell (SR) and five generations selected consecutively though red shell and shell length(SRF1-SR5F5). Fifteen pairs of microsatellite primers were used for PCR amplification of genomic DNA of sevenpopulations. The genetic diversity of se-ven populations was analyzed by online softwares such as Gel-Pro32 4.0, PopGen 32 and MEGA 6.0. 【Result】The results showed that a total of 766 alleles were detected in seven populations,and 3 to 18 alleles were detected at each microsatellite locus in each population. The number of alleles (Na) decreased with the increase of breeding generations. The mean polymorphic information content (PIC) of the 15 microsatellite loci ranged from 0.575 to 0.630, so they were highly polymorphic loci. The average observed heterozygosity(Ho) and expected heterozygosity(He) were 0.442-0.502 and 0.629-0.680, respectively. 63.81% of microsatellite loci deviated from Hardy-Weinberg equilibrium, indicating a certain degree of heterozygous deletion at each microsatellite locus. The number of inbreeding lines(Fis) ranged from -0.0157 to 0.7409, with an average of 0.2777, indicating that there was a certain level of inbreeding in the population. The average coefficient of genetic differentiation(Fst) between populations was 0.0455, that was, 4.55% of the population variation was caused by gene differences between different populations, and 95.45% of the population variation was from within populations. The gene flow (Nm) of each population ranged from 0.9002 to 18.9478, with an average of 8.8065, indica-ting low genetic differentiation among the seven populations. UPMGA cluster analysis showed that the seven clam populations clustered into two branches, the SR and its breeding population clustered into one branch, and SY clustered into one branch. 【Conclusion】After five generations of artificial selective breeding, the genetic diversity index of the selected po-pulation decreased slightly compared with SR and SY, but the genetic structure of the selected population did not change andthey still had a high genetic diversity. In the continuous selective breeding program, the breeding environment of parents should be diversified to avoid the genetic drift or inbreeding decline caused by the small size of artificially bred parents and breeding population, which leads to the deletion of some alleles in breeding population and the change of genetic structure of offspring.
Key words:? Meretrix meretrix; red shell color; population selection; microsatellite; genetic diversity; genetic drift
Foundation item: Fishery Science and Technology Key Project of Jiangsu(D2018-1);General Project of Natural Science Foundation of Jiangsu(BK20181201);Subei Project of Jiangsu Department of Science and Technology(SZYC 2018064); Jiangsu Aquatic Breeds Conservation and Parent Updating Project(2020-SJ-006)
0 引言
【研究意義】文蛤(Meretrix meretrix)因肉質(zhì)鮮美、分布范圍廣及資源量大等優(yōu)勢(shì),已發(fā)展成為我國(guó)灘涂傳統(tǒng)養(yǎng)殖的主要貝類之一,也是朝鮮和日本等國(guó)家最常見的經(jīng)濟(jì)貝類(王超,2011;孔令鋒等,2017)。文蛤野生群體存在殼色花紋復(fù)雜、生長(zhǎng)速度低及抗逆性不強(qiáng)等缺陷,在今后很長(zhǎng)一段時(shí)間內(nèi)仍需通過人工選育途徑以打破期苗種限制。群體選育是目前廣泛應(yīng)用于水產(chǎn)養(yǎng)殖品種遺傳改良的一種有效方法,但群體選育過程中產(chǎn)生的遺傳漂變(Keller and Waller,2002)和非隨機(jī)交配(曾吉,2018)等因素均有可能影響選育種群遺傳多樣性喪失,從而導(dǎo)致生長(zhǎng)及抗逆等優(yōu)良性狀基因的缺失,增加近親交配衰退的風(fēng)險(xiǎn)(Wang et al.,2001;Evans et al.,2004)。在長(zhǎng)期的群體選育過程中,選育群體遺傳多樣性降低已受到廣泛關(guān)注,包括魚類(Wang et al.,2011)、甲殼類動(dòng)物(Zhang et al.,2014)和軟體動(dòng)物等(Chen et al.,2017)。因此,如何最大限度地避免遺傳多樣性在選育后代中喪失,是水產(chǎn)育種工作者需要解決的首要問題。【前人研究進(jìn)展】在遺傳育種工作中,保證選育種群足夠的遺傳變異水平不僅能增強(qiáng)其適應(yīng)新環(huán)境及抵御疾病暴發(fā)的能力,還直接影響持續(xù)育種計(jì)劃的遺傳收益(Gamfeldt and Kallstrom,2007)?,F(xiàn)階段,有關(guān)長(zhǎng)牡蠣(Crassostrea gigas)、菲律賓蛤仔(Ruditapes philippinarum)及泥蚶(Tegiccarca granosa)等選育群體遺傳結(jié)構(gòu)的研究已有較多報(bào)道(王慶志等,2012;Xing et al.,2014;田野等,2015),但針對(duì)紅殼色文蛤選育群體世代中遺傳多樣性變化的研究并不多見。李太武等(2008)對(duì)5個(gè)文蛤地理群體不同殼色的研究發(fā)現(xiàn),不同地理群體的殼色存在明顯差異;朱東麗等(2012)利用SSR分子標(biāo)記對(duì)4個(gè)殼色花紋文蛤品系進(jìn)行遺傳分析,結(jié)果發(fā)現(xiàn)4個(gè)品系間存在明顯的遺傳差異;鄭培(2013)利用ISSR和SSR分子標(biāo)記對(duì)3個(gè)文蛤選育世代的遺傳多樣性進(jìn)行分析,發(fā)現(xiàn)選育群體遺傳多樣性仍保持在一個(gè)較高的水平;代平(2014)研究表明,繁育群體的有效群體大小直接會(huì)影響文蛤群體近交程度及親代對(duì)子代的貢獻(xiàn)率等;張雨等(2015)進(jìn)行紅殼色文蛤選育時(shí)發(fā)現(xiàn),文蛤子代中的紅殼色個(gè)體比例不斷提高,且紅殼色文蛤F2代的殼長(zhǎng)均顯著大于F1代,生長(zhǎng)性能得到不斷提高,殼色也得到提純,即紅殼色文蛤的選育取得一定進(jìn)展;吳楊平等(2017)在進(jìn)行文蛤選育過程中發(fā)現(xiàn)紅殼色文蛤較其他殼色文蛤具有顯著的生長(zhǎng)優(yōu)勢(shì)?!颈狙芯壳腥朦c(diǎn)】開展選育群體遺傳多樣性檢測(cè)分析是實(shí)施遺傳改良計(jì)劃過程的必要環(huán)節(jié)(趙廣泰等,2010;彭敏等,2020)。江蘇海洋水產(chǎn)研究所經(jīng)過5代的群體選育獲得一個(gè)文蛤新品系,在生長(zhǎng)速度和殼色性狀上存在明顯的遺傳變異,但在群體選育過程中是否隨著選育世代增加各選育世代遺傳多樣性水平呈顯著變化,以及是否限制持續(xù)遺傳獲得的潛力和選擇力均有待進(jìn)一步驗(yàn)證?!緮M解決的關(guān)鍵問題】通過基因組微衛(wèi)星分子標(biāo)記評(píng)估群體選育過程中紅殼色文蛤選育群體的遺傳多樣性變化及世代遺傳分化情況,以期為文蛤育種計(jì)劃的可持續(xù)性提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)動(dòng)物
試驗(yàn)動(dòng)物為取自江蘇省海洋水產(chǎn)研究所呂四文蛤良種場(chǎng)保種的江蘇文蛤原種及經(jīng)選育的不同世代江蘇紅殼色文蛤群體。選育群體是以江蘇南部沿海自然野生的紅殼色文蛤5000粒為育種基礎(chǔ)群體,以紅殼色+生長(zhǎng)為目標(biāo)性狀,通過閉鎖群體選育方式,經(jīng)過10年選育獲得子五代選育系(表1),各選育世代的親本數(shù)均大于5000粒,每代的選擇強(qiáng)度約0.1%。利用不銹鋼編織網(wǎng)分割出7個(gè)不同區(qū)域放置文蛤幼苗進(jìn)行同世代養(yǎng)殖對(duì)比,區(qū)域劃分為江蘇黃文蛤原種(SY)、江蘇紅文蛤原種(SR)、紅殼色文蛤選育群體子一代(SRF1)、紅殼色文蛤選育群體子二代(SR2F2)、紅殼色文蛤選育群體子三代(SR3F3)、紅殼色文蛤選育群體子四代(SR4F4)及紅殼色文蛤選育群體子五代(SR5F5);樣品獲取途徑均為實(shí)地采樣。每個(gè)群體隨機(jī)選取30個(gè)健康個(gè)體,除去附著物,吐沙完畢后以滅菌刀片將文蛤軟體部與殼體分離開,濾紙拭干軟體部與殼體,取其閉殼肌置于95%酒精中,-20 ℃保存?zhèn)溆谩?/p>
1. 2 試驗(yàn)方法
1. 2. 1 基因組DNA提取 將文蛤閉殼肌從95%酒精中取出,濾紙吸干,剪碎,依次加入475 μL STE緩沖液、10 μL蛋白酶K(20 mg/mL)及25 μL 10% SDS(十二烷基硫磺鈉),混勻,55 ℃水浴消化2 h。參照DNA提取說明[生工生物工程(上海)股份有限公司]提取基因組DNA,經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè)后, -20 ℃保存?zhèn)溆谩?/p>
1. 2. 2 微衛(wèi)星引物篩選及來源 依據(jù)文蛤轉(zhuǎn)錄組開發(fā)微衛(wèi)星位點(diǎn),通過Primer 5.0設(shè)計(jì)25對(duì)微衛(wèi)星引物,并委托生工生物工程(上海)股份有限公司合成。從中篩選出15對(duì)微衛(wèi)星引物用于7個(gè)文蛤群體的遺傳結(jié)構(gòu)分析。微衛(wèi)星引物的詳細(xì)信息見表2。
1. 2. 3 PCR擴(kuò)增 PCR反應(yīng)體系25.0 μL:10×PCR Buffer 2.5 μL,2.5 mmol/L dNTP 2.0 μL,10 μmol/L上、下游引物各0.5 μL,Taq DNA聚合酶(2.5 U/μL) 0.5 μL,DNA模板1.0 μL,ddH2O補(bǔ)足至25.0 μL。擴(kuò)增程序: 94 ℃預(yù)變性3 min;94 ℃ 30 s,退火30 s,72 ℃ 45 s,進(jìn)行30個(gè)循環(huán);最后72 ℃延伸5 min。PCR擴(kuò)增產(chǎn)物采用ABI3730進(jìn)行毛細(xì)管電泳,確定每個(gè)個(gè)體的等位基因。
1. 2. 4 數(shù)據(jù)分析 使用Gel-Pro32 4.0讀取微衛(wèi)星目標(biāo)條帶,利用PopGen 32分析等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、觀測(cè)雜合度(Ho)、期望雜合度(He)、基因流(Nm)、群體間遺傳分化系數(shù)(Fst)及Neis遺傳相似系數(shù)等,每個(gè)微衛(wèi)星位點(diǎn)均利用哈迪—溫伯格平衡法則(Hardy-Weinberg equilibrium,HWE)進(jìn)行卡方檢驗(yàn),并采用MEGA 6.0以UPGMA法構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。參照Botstein等(1980)的方法計(jì)算多態(tài)信息含量(PIC),計(jì)算公式如下:
PIC=1-[i=1nPi2]-[i=1n-1j=i+1n2Pi2Pj2]
式中,Pi和Pj是某個(gè)位點(diǎn)第i、j個(gè)等位基因的基因頻率,n為該位點(diǎn)上的等位基因數(shù)。
2 結(jié)果與分析
2. 1 7個(gè)文蛤群體的微衛(wèi)星遺傳多樣性
由表3可知,5個(gè)紅殼色文蛤選育群體的Na、Ho、He和PIC整體上隨著世代的增加而呈一定下降趨勢(shì)。本研究中,15個(gè)微衛(wèi)星位點(diǎn)的平均PIC在0.575~0.630,均屬于高度多態(tài)性位點(diǎn),但每對(duì)引物的變異程度不同,從7個(gè)文蛤群體中共檢測(cè)出766個(gè)等位基因。SY、SR、SRF1、SR2F2、SR3F3、SR4F4和SR5F5群體的Na依次降低,分別檢測(cè)出115、131、119、107、104、97和93個(gè)等位基因,群體間無顯著差異(P=0.394>0.05)。Na以SR群體的最高,SR5F5群體的最低,平均每位點(diǎn)有51.07個(gè)等位基因。每個(gè)微衛(wèi)星位點(diǎn)在每個(gè)群體中檢測(cè)出2~18個(gè)等位基因,其中以位點(diǎn)M2和M4表現(xiàn)為高度多態(tài)性。7個(gè)文蛤群體的平均He亦無顯著差異(P=0.645);與He相比,7個(gè)文蛤群體的平均Ho相對(duì)較低,處于0.442~0.502,表明各微衛(wèi)星位點(diǎn)存在一定程度的雜合子缺失。此外,有63.81%的微衛(wèi)星位點(diǎn)偏離Hardy-Weinberg平衡,進(jìn)一步驗(yàn)證存在雜合子缺失和純合子過?,F(xiàn)象。
2. 2 7個(gè)文蛤群體間的遺傳變異及基因交流情況
由表4可知,7個(gè)文蛤群體中僅位點(diǎn)M7的群體內(nèi)近交系數(shù)(Fis)呈負(fù)值(-0.0157),其他14個(gè)微衛(wèi)星位點(diǎn)的Fis均為正值;Fis的范圍為-0.0157~0.7409,平均為0.2777,說明文蛤群體內(nèi)存在一定程度的近交水平。15個(gè)微衛(wèi)星位點(diǎn)的總?cè)后w近交系數(shù)(Fit)范圍為0.0066~0.7491,平均為0.3103。此外,7個(gè)文蛤群體的平均Fst為0.0455,各群體的Nm為0.9002~18.9478,平均Nm為8.8065,表現(xiàn)出較高的基因交流,即7個(gè)文蛤群體間的遺傳分化較低。
2. 3 7個(gè)文蛤群體間的遺傳關(guān)系及聚類分析結(jié)果
由表5可知,7個(gè)文蛤群體間的Neis遺傳相似系數(shù)在0.8233~0.9726,遺傳距離在0.0198~0.1667,說明7個(gè)文蛤群體間存在一定的遺傳變異。其中,SR4F4群體與SR5F5群體的親緣關(guān)系最近,二者間的Neis遺傳相似系數(shù)最大(0.9726),遺傳距離最?。?.0198);SY群體與SRF1群體的親緣關(guān)系最遠(yuǎn),二者間的遺傳距離最大(0.1667),Neis遺傳相似性系數(shù)最小(0.8233),說明這2個(gè)群體間的遺傳變異程度相對(duì)較高。依據(jù)7個(gè)文蛤群體間的遺傳距離進(jìn)行UPGMA聚類分析,從構(gòu)建的聚類系統(tǒng)進(jìn)化樹(圖1)可看出,7個(gè)文蛤群體聚類呈兩大支,江蘇紅文蛤原種(SR)及其選育群體(SRF1~SR5F5)聚為一支,而江蘇黃文蛤原種(SY)獨(dú)自聚為一支。在聚類系統(tǒng)進(jìn)化樹中,SR4F4群體和SR5F5群體先聚為一支,再與SR3F3群體聚為一支;SRF1群體和SR2F2群體聚為一支;這2個(gè)分支聚為一支后再與SR群體聚為一大支。
3 討論
3. 1 文蛤群體的遺傳多樣性
在連續(xù)的選擇育種計(jì)劃中,遺傳變異和近親衰退是選育工作關(guān)注的重點(diǎn)內(nèi)容。He是衡量群體總體遺傳多樣性的重要參數(shù)之一,能反映群體的遺傳一致性程度(Wang et al.,2016)。在本研究中,7個(gè)文蛤群體的Ho平均值明顯低于He平均值,存在明顯的雜合子缺失現(xiàn)象;但在不同選育世代間,Ho與He的差異不顯著,說明江蘇紅文蛤經(jīng)過5代選育后,其選育群體的遺傳多樣性并無明顯變化。這與Yu和Guo(2004)對(duì)美洲牡蠣(Crassostrea virginica)、薛蕊(2015)對(duì)許氏平鮋(Sebastes schlegelii)的研究結(jié)論相似,均未觀察到生長(zhǎng)選育與雜合度缺失間是否存在一定關(guān)聯(lián)。然而,與SY(江蘇黃文蛤原種)和SR(江蘇紅文蛤原種)基礎(chǔ)群體相比,選育群體的Na隨選育世代增加而呈降低趨勢(shì),與菲律賓蛤仔和羅氏沼蝦(Macrobrachium rosenbergii)等水生生物養(yǎng)殖群體等位基因丟失的研究結(jié)論(聶鴻濤等,2016;董丁建和戴習(xí)林,2020)一致。等位基因丟失通常較雜合度降低更明顯,表明封閉群體中連續(xù)群體選擇可能會(huì)增加稀有等位基因發(fā)生遺傳漂移的概率,即等位基因丟失與否可能是衡量連續(xù)世代選育品系遺傳變異的一個(gè)理想指標(biāo)(邢德等,2017)。本課題組的前期研究也發(fā)現(xiàn),文蛤的Na隨著選育世代增加而呈一定下降趨勢(shì)(鄭培,2013),表明連續(xù)選擇育種對(duì)選育群體的遺傳變異有一定未知影響,選育世代若連續(xù)選育可能會(huì)出現(xiàn)較高的隨機(jī)遺傳漂移風(fēng)險(xiǎn)。
3. 2 7個(gè)文蛤群體的遺傳分化
通過人工選育對(duì)一些特定性狀進(jìn)行定向選擇,一定程度上會(huì)導(dǎo)致近交衰退的現(xiàn)象,從而造成遺傳多樣性降低(王統(tǒng)苗等,2019)。本研究結(jié)果顯示,7個(gè)文蛤群體間的平均Fst為0.0455,說明文蛤群體變異中僅有4.55%是由不同群體間的基因差異所產(chǎn)生,而95.45%的變異來源于群體內(nèi)部,即文蛤群體的遺傳變異絕大部份來源于各群體內(nèi)個(gè)體間的遺傳差異,選育原種群體與選育世代之間及各選育世代之間存在較低的遺傳變異,在海灣扇貝(Argopecten irradians concentricus)和太平洋牡蠣選育系F5代的微衛(wèi)星分析中(陳靜等,2012;Xu et al.,2019)也獲得類似結(jié)論。Fst為0.0455還提示隨著連續(xù)多代選擇的進(jìn)行和幼蟲期的高死亡率,而導(dǎo)致選育群體可能出現(xiàn)潛在的基因交換障礙,在南美白對(duì)蝦(Litopenaeus vannamei)和鯉魚(Cyprinus carpio L.)的一些選育品系中(Andriantahina et al.,2013;李鵬飛等,2015)也有類似現(xiàn)象。Nm是指基因從一個(gè)種群到另一個(gè)種群的轉(zhuǎn)移程度,本研究中7個(gè)文蛤群體間的Nm為0.9002~18.9478,平均為8.8065(Nm>4.000),表明各種群間的基因交流更充分,其遺傳分化尚處于較低水平。
3. 3 基因型分布偏離Hardy-Weinberg平衡
本研究結(jié)果表明,7個(gè)文蛤群體的微衛(wèi)星位點(diǎn)中有63.81%偏離Hardy-Weinberg平衡,尤其以位點(diǎn)M4、M7、M11和M13的偏離較多。實(shí)際上,偏離Hardy-Weinberg平衡的現(xiàn)象在海洋生物中普遍存在,究其原因有選擇作用、群體混合及非隨機(jī)交配等(王軍等,2018;崔文濤等,2020)?;A(chǔ)群體和選育群體均出現(xiàn)明顯的Hardy-Weinberg平衡偏離現(xiàn)象說明存在一些無效等位基因,在牡蠣等貝類的微衛(wèi)星位點(diǎn)上也有類似現(xiàn)象(Zhang et al.,2018)。此外,部分Hardy-Weinberg平衡偏離位點(diǎn)出現(xiàn)雜合子缺失現(xiàn)象,7個(gè)文蛤群體的Fis范圍為-0.0157~0.7409,平均為0.2777,說明群體間存在一定的種群自交現(xiàn)象,導(dǎo)致近親繁殖,增加選育群體中某些位點(diǎn)等位基因的純合子頻率,相對(duì)減少雜合子頻率,從而出現(xiàn)因雜合子缺失或純合子過量引起遺傳信息丟失,一定程度上影響群體遺傳多樣性水平(Xu and Li,2009)。紅殼色文蛤選育群體中多數(shù)微衛(wèi)生位點(diǎn)偏離Hardy-Weinberg平衡,與Singh等(2015)對(duì)鯉選育群體的研究結(jié)果相似,故推測(cè)這種現(xiàn)象是由于閉鎖選育過程中非隨機(jī)交配和定向選擇所造成,在人工定向選擇過程中,部分個(gè)體所攜帶的遺傳物質(zhì)被淘汰,導(dǎo)致種群原有的部分等位基因缺失,引起雜合子缺失而造成偏離Hardy-Weinberg平衡現(xiàn)象。因此,在今后的群體選育種工作中要注意群體性別比例平衡及保證有效親本數(shù)量,盡可能避免出現(xiàn)雜合子缺失現(xiàn)象。
4 結(jié)論
經(jīng)過5代人工選育的紅殼色文蛤選育群體雖然較基礎(chǔ)群體其遺傳多樣性指數(shù)略有下降,但并未導(dǎo)致各選育群體的遺傳結(jié)構(gòu)發(fā)生改變,仍具有較高的遺傳多樣性。在連續(xù)的選擇育種過程中,應(yīng)增加親本養(yǎng)殖環(huán)境多樣化,避免因人工繁育的親本和養(yǎng)殖群體規(guī)模較小引起遺傳漂移或近交衰退而致使某些等位基因缺失,導(dǎo)致后代的遺傳結(jié)構(gòu)發(fā)生改變。
參考文獻(xiàn):
陳靜,劉志剛,鄔思榮,宋雪芹. 2012. 海灣扇貝南部亞種(Argopecten irradians concentricus)選育系 F5的生長(zhǎng)及SSR分析[J]. 海洋與湖沼, 43(4):784-788. [Chen J,Liu Z G,Wu S R,Song X Q. 2012. Growth and microsatellite analysis of F5 selected line of Argopecten irradians concentricus[J]. Oceanologia et Limnologia Sinica,43(4):784-788.] doi:10.11693/hyhz201204015015.
崔文濤,鄭國(guó)棟,蘇曉磊,李寶玉,陳杰,鄒曙明. 2020. 魴鲌雜交及回交F2群體的微衛(wèi)星遺傳結(jié)構(gòu)及其生長(zhǎng)性能分析[J]. 中國(guó)水產(chǎn)科學(xué),27(6):613-623. [Cui W T,Zheng G D,Su X L,Li B Y,Chen J,Zou S M. 2020. Analysis of microsatellite markers and growth performance of hybrid F2 and two backcross F2 populations of Megalobrama amblycephala ♀ and Culter alburnus ♂[J]. Journal of Fishery Sciences of China,27(6):613-623.] doi:10.3724/SP.J.1118.2020.19290.
代平. 2014. 文蛤(Meretrix meretrix)選育群體的遺傳測(cè)定及生長(zhǎng)相關(guān)SNP鑒定[D]. 北京:中國(guó)科學(xué)院大學(xué). [Dai P. 2014. Genetic test of breeing populations and identification of growth-associated SNPs in the clam Meretrix mere-trix[D]. Beijng:University of Chinese Academy of Scien-ces.]
董丁建,戴習(xí)林. 2020. 羅氏沼蝦不同群體世代遺傳多樣性的SSR分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),51(2):421-428. [Dong D J,Dai X L. 2020. SSR analysis on genetic diversity in different populations and generations of Macrobrachium rosenbergii[J]. Journal of Southern Agriculture,51(2):421-428.] doi:10.3969/j.issn.2095-1191.2020.02.023.
孔令鋒,王曉璇,松隈明彥,李琪. 2017. 中國(guó)沿海文蛤?qū)俜诸愌芯窟M(jìn)展[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版),47(9):30-35. [Kong L F,Wang X X,Matsukuma A,Li Q. 2017. A review of taxonomy of genus Meretrix along the coast of China[J]. Periodical of Ocean University of China,47(9):30-35.] doi:10.16441/j.cnki.hdxb.20170023.
李鵬飛,徐開達(dá),周宏霞. 2015. 浙江近海三疣梭子蟹養(yǎng)殖與野生群體的基因組微衛(wèi)星分析[J]. 浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版),34(6):538-542. [Li P F,Xu K D,Zhou H X. 2015. Genetic diversity of Portunus trituberculatus among the cultured and wild populationsinthe offing of Zhejiang using microsatellite markers[J]. Journal of Zhejiang Ocean University(Natural Science),34(6):538-542.] doi:10.3969/j.issn.1008-830X.2015.06.007.
李太武,張安國(guó),蘇秀榕. 2008. 文蛤花紋的形態(tài)及形成觀察[J]. 動(dòng)物學(xué)雜志,43(6):83-87. [Li T W,Zhang A G,Su X R. 2008. Morphology and formation of stripes in Meretrix meretrix[J]. Chinese Journal of Zoology,43(6):83-87.] doi:10.3969/j.issn.0250-3263.2008.06.012.
聶鴻濤,李佳,霍忠明,郭煒,閆喜武. 2016. 菲律賓蛤仔人工選育群體與野生群體的遺傳多樣性分析[J]. 中國(guó)水產(chǎn)科學(xué),23(3):538-546. [Nie H T,Li J,Huo Z M,Guo W,Yan X W. 2016. Analysis of genetic variability in selec-ted lines and a wild population of Ruditapes philippinarum using microsatellite markers[J]. Journal of Fishery Sciences of China,23(3):538-546.] doi:10.3724/SP.J. 1118.2016.15307.
彭敏,陳慧芳,李強(qiáng)勇,楊春玲,曾地剛,劉青云,趙永貞,陳曉漢,林勇,陳秀荔. 2020. 凡納濱對(duì)蝦連續(xù)3個(gè)世代選育群體的遺傳多樣性分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),51(6):1442-1450. [Peng M,Chen H F,Li Q Y,Yang C L,Zeng D G,Liu Q Y,Zhao Y Z,Chen X H,Lin Y,Chen X L. 2020. Genetic diversity of three consecutive generations of Litopenaeus vannamei[J]. Journal of Southern Agriculture,51(6):1442-1450.] doi:10.3969/j.issn.2095-1191.2020.06.026.
田野,邵艷卿,肖國(guó)強(qiáng),縢爽爽,柴雪良,張炯明,方軍. 2015. 泥蚶人工選育群體的微衛(wèi)星分析[J]. 海洋科學(xué),39(4):1-7. [Tian Y,Shao Y Q,Xiao G Q,Teng S S,Chai X L,Zhang J M,F(xiàn)ang J. 2015. Analysis of genetic variability in selective breeding populations of Tegiccarca granosa by microsatellites[J]. Marine Science,39(4):1-7.] doi:10.11759/hykx20140624001.
王超. 2011. 文蛤(Meretrix meretrix)選擇群體生長(zhǎng)、抗性差異的初步解析[D]. 北京:中國(guó)科學(xué)院研究生院. [Wang C. 2011. Preliminary analysis of growth and resistance differences among selected Meretrix meretrix populations[D]. Beijing:Institute of Oceanology,Chinese Academy of Science.]
王軍,王清印,孔杰,孟憲紅,曹家旺,王明珠,馮亞萍,呂丁. 2018. 中國(guó)明對(duì)蝦人工選育群體與野生群體遺傳多樣性的SSR分析[J]. 漁業(yè)科學(xué)進(jìn)展,39(2):104-111. [Wang J,Wang Q Y,Kong J,Meng X H,Cao J W,Wang M Z,F(xiàn)eng Y P,Lü D. 2018. SSR analysis on genetic diversity in breeding and wild populations of Fenneropenaeus chinensis[J]. Progress in Fishery Sciences,39(2):104-111.] doi:10.19663/j.issn2095-9869.20170227001.
王慶志,李琪,孔令鋒. 2012. 長(zhǎng)牡蠣3代人工選育群體的微衛(wèi)星分析[J]. 水產(chǎn)學(xué)報(bào),36(10):1529-1536. [Wang Q Z,Li Q,Kong L F. 2012. Genetic variability assessed by microsatellites in mass selection lines of Pacific oyster(Crassostrea gigas)[J]. Journal of Fisheries of China,36(10):1529-1536.] doi:10.3724/SP.J.1231.2012.28157.
王統(tǒng)苗,張莘,陳博雯,常國(guó)斌,白皓,江勇,張揚(yáng),王志秀,陳國(guó)宏. 2019. 我國(guó)六個(gè)地方鴨品種的群體遺傳結(jié)構(gòu)及遺傳分化[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),54(6):24-29. [Wang T M,Zhang X,Chen B W,Chang G B,Bai H,Jiang Y,Zhang Y,Wang Z X,Chen G H. 2019. Population gene-tic structure and genetic differentiation of six local duck breeds in China[J]. Journal of Gansu Agricultural University,54(6):24-29.] doi:10.13432/j.cnki.jgsau.2019.06.004.
吳楊平,陳愛華,張雨,曹奕,姚國(guó)興,蔡永祥,王超. 2017. 文蛤紅殼色選育系F3的生長(zhǎng)規(guī)律及模型[J]. 海洋漁業(yè),39(4):411-418. [Wu Y P,Chen A H,Zhang Y,Cao Y,Yao G X,Cai Y X,Wang C. 2017. On the growth law and model of the selected line (F3) of red shell colored Meretrix meretrix[J]. Marine Fisheries,39(4):411-418.] doi:10.3969/j.issn.1004-2490.2017.04.006.
邢德,李琪,張景曉. 2017. 利用微衛(wèi)星熒光多重PCR技術(shù)分析殼白長(zhǎng)牡蠣3代人工選育群體的遺傳多樣性[J]. 水產(chǎn)學(xué)報(bào),41(12):1838-1846. [Xing D,Li Q,Zhang J X. 2017. Analysis of genetic diversity in mass selection lines of white-shell Pacific oyster (Crassostrea gigas) using mic-rosatellite fluorescent multiplex PCR technique[J]. Journal of Fisheries of China,41(12):1838-1846.] doi:10.11964/ jfc.20161110611.
薛蕊. 2015. 許氏平鲉(Sebastes schlegelii)EST-SSR標(biāo)記開發(fā)及快速生長(zhǎng)選育系遺傳結(jié)構(gòu)分析[D]. 上海:上海海洋大學(xué). [Xue R. 2015. Development of EST-SSR markers and genetics assessment of fast-growing breeding lines for the black rockfish,Sebastes schlegelii[D]. Shanghai:Shanghai Ocean University.]
曾吉. 2018. 非隨機(jī)交配對(duì)種群基因頻率的影響[J]. 生物學(xué)教學(xué),43(1):68. [Zeng J. 2018. Effect of non-random ma-ting on gene frequency in population[J]. Biology Tea-ching,43(1):68.] doi:10.3969/j.issn.1004-7549.2018.01. 038.
張雨,陳愛華,姚國(guó)興,吳楊平,曹奕. 2015. 兩世代紅殼色文蛤早期表型性狀差異分析[J]. 海洋漁業(yè),37(4):325-330. [Zhang Y,Chen A H,Yao G X,Wu Y P,Cao Y. 2015. Comparison of characters on the early growth of offspring from Meretrix meretrix with two generation[J]. Marine Fisheries,37(4):325-330.] doi:10.3969/j.issn. 1004-2490.2015.04.005.
趙廣泰,劉賢德,王志勇,蔡明夷,姚翠鸞. 2010. 大黃魚連續(xù)4代選育群體遺傳多樣性與遺傳結(jié)構(gòu)的微衛(wèi)星分析[J]. 水產(chǎn)學(xué)報(bào),34(4):500-507. [Zhao G T,Liu X D,Wang Z Y,Cai M Y,Yao C L. 2010. Genetic structure and genetic diversity analysis of four consecutive breeding ge-nerations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers[J]. Journal of Fisheries of China,34(4):500-507.] doi:10.3724/SP.J.1231.2010. 06624.
鄭培. 2013. 文蛤三個(gè)選育世代的多樣性研究[D]. 上海:上海海洋大學(xué). [Zheng P. 2013. Genetic diversity analysis of three generations of selective breeding of Meretrix meretrix[D]. Shanghai:Shanghai Ocean University.]
朱東麗,董迎輝,林志華,姚韓韓. 2012. 利用微衛(wèi)星標(biāo)記對(duì)文蛤4個(gè)殼色花紋品系的遺傳分析[J]. 水產(chǎn)學(xué)報(bào),36(2):202-209. [Zhu D L,Dong Y H,Lin Z H,Yao H H. 2012. Genetic analysis among four strains of different shell colors and decorative patterns of Meretrix meretrix using microsatellite markers[J]. Journal of Fisheries of China,36(2):202-209.] doi:10.3724/SP.J.1231.2012.27603.
Andriantahina F,Liu X L,Huang H. 2013. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications[J]. PLoS One,8(9):e75206. doi:10.1371/journal.pone.0075206.
Botstein D,White R L,Skolnick M,Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,32(3):314-331.
Chen N,Luo X,Lu C K,Ke C H,You W W. 2017. Effects of artificial selection practices on loss of genetic diversity in the Pacific abalone,Haliotis discus hannai[J]. Aquaculture Research,48(9):4923-4933. doi:10.1111/are.13311.
Evans F,Matson S,Brake J,Langdon C. 2004. The effects of inbreeding on performance traits of adult Pacific oysters (Crassostrea gigas)[J]. Aquaculture,230(1-4):89-98. doi:10.1016/j.aquaculture.2003.09.023.
Gamfeldt L,Kallstrom B. 2007. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations[J]. Oikos,116(4):700-705.
Keller L F,Waller D M. 2002. Inbreeding effects in wild po-pulations[J]. Trends in Ecology and Evolution,17(5):230-241. doi:10.1016/S0169-5347(02)02489-8.
Singh E,Sharma O P,Jain H K,Sharma A,Ojha M. L,Saini V P. 2015. Microsatellite based genetic diversity and differentiation of common carp,Cyprinus carpio in Rajasthan(India)[J]. National Academy Science Letters,38(3):193-196. doi:10.1007/s40009-014-0340-6.
Wang L,Meng Z N,Liu X C,Liu X C,Zhang Y,Lin H R. 2011. Genetic diversity and differentiation of the orange-spotted grouper (Epinephelus coioides) between and wi-thin cultured stocks and wild populations inferred from microsatellite DNA analysis[J]. International Journal of Molecular Science,12(7):4378-4394. doi:10.3390/ijms 12074378.
Wang S Z,Hard J J,Utter F. 2001. Salmonid inbreeding:A review[J]. Reviews in Fish Biology and Fisheries,11(4):301-319. doi:10.1023/A:1021330500365.
Wang X B,Li Q,Yu H,Kong L F. 2016. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster(Crassostrea gigas) in China[J]. Journal of Ocean University of China,15(4):1039-1045. doi:10. 1007/s11802-016-3056-z.
Xing K,Gao M L,Li H J. 2014. Genetic differentiation between natural and hatchery populations of Manila clam (Ruditapes philippinarum) based on microsatellite mar-kers[J]. Geneticsand Molecular Research,13(1):237-245. doi:10.4238/2014.January.17.7.
Xu K F,Li Q. 2009. Inheritance pattern of microsatellite loci and their use for kinship analysis in the Japanese scallop Patinopecten yessoensis[J]. Journal of Ocean University of China,8(2):184-190. doi:10.1007/s11802-009-0184-8.
Xu L,Li Q,Xu C X,Yu H,Kong L F. 2019. Genetic diver-sity and effective population size in successive mass selected generations of black shell strain Pacific oyster (Crassostrea gigas) based on microsatellites and mtDNA data[J]. Aquaculture,500:338-346. doi:10.1016/j.aquaculture.2018.10.007.
Yu Z N,Guo X M. 2004. Genetic analysis of selected strains of eastern oyster(Crassostrea virginica) using AFLP and microsatellite markers[J]. Marine Biotechnology,6(6):575-586. doi:10.1007/s10126-004-3600-5.
Zhang J X,Li Q,Wang Q Z,Cong R H,Ge J L,Kong L F. 2018. The impact of successive mass selection on population genetic structure in the Pacific oyster(Crassostrea gigas) revealed by microsatellite markers[J]. Aquaculture International,26:113-125. doi:10.1007/s10499-017-0196-0.
Zhang K,Wang W J,Li W Y,Zhang Q Q,Kong J. 2014. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite mar-kers[J]. Journal of Ocean University of China,13:647-656. doi:10.1007/s11802-014-2208-2.
(責(zé)任編輯 蘭宗寶)