国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)及其功能分析

2021-10-12 12:50扈進(jìn)冬隋麗娜李玲陳凱李紀(jì)順
植物保護(hù) 2021年5期

扈進(jìn)冬 隋麗娜 李玲 陳凱 李紀(jì)順

摘要 為了解深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)的成分以及潛在的生物學(xué)功能,采用頂空氣相色譜-質(zhì)譜法測(cè)定了深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)的主要成分,并進(jìn)行了成分分析;采用對(duì)扣法測(cè)定了深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)5種植物病原菌的抑菌率;同時(shí)測(cè)定了深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)小麥幼苗生長(zhǎng)的影響。結(jié)果表明,深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)烯類的相對(duì)含量最高,為49.68%、醇類為21.78%,酮類為8.56%,其余類別相對(duì)含量較低;這些揮發(fā)性物質(zhì)對(duì)5種植物病原菌均有一定的抑制效果,其中對(duì)立枯絲核菌抑菌率最高,為5062%;揮發(fā)性物質(zhì)還可以促進(jìn)小麥幼苗生長(zhǎng),與對(duì)照相比,對(duì)小麥幼苗的株高有顯著的促進(jìn)作用(P<0.05)。這些結(jié)果為深綠木霉HB20111的開(kāi)發(fā)應(yīng)用提供了理論基礎(chǔ)。

關(guān)鍵詞 深綠木霉; 揮發(fā)性物質(zhì); 氣質(zhì)聯(lián)用; 吡喃酮

中圖分類號(hào): S 476

文獻(xiàn)標(biāo)識(shí)碼: A

DOI: 10.16688/j.zwbh.2020655

Identification and functional analysis of volatile organic compounds from Trichoderma atroviride HB20111

HU Jindong1, SUI Lina2, LI Ling1, CHEN Kai1, LI Jishun1*

(1. Shandong Provincial Key Laboratory of Applied Microbiology, Institute of Ecology, Qilu University of Technology

(Shandong Academy of Sciences), Jinan 250103, China; 2. Institute of Biological Engineering, Qilu University of

Technology (Shandong Academy of Sciences), Jinan 250353, China)

Abstract

In order to determine the components and potential biological functions of volatile organic compounds (VOCs) produced by Trichoderma atroviride HB20111, the headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the VOCs from T.atroviride HB20111. The inhibition rate of VOCs against five plant pathogenic fungi was measured by using plate-to-plate method, and the promoting effect of the VOCs on the growth of wheat seedlings was explored. The results showed that there were three major classes of VOCs, including alkenes,alcohols and ketones, accounting for 4968%, 21.78% and 8.56% of the total amount, respectively. These VOCs had certain inhibitory effects on the five plant pathogens, and the highest inhibition rate was 50.62% against Rhizoctonia solani. The VOCs also promoted the growth of wheat seedlings and significantly promoted the plant height of wheat seedlings (P<005) compared with the control. These results provide a basis for further application of T.atroviride HB20111.

Key words

Trichoderma atroviride; volatile organic compounds (VOCs); gas chromatography-mass spectrometry; 6-pentyl-2H-pyran-2-one (6PP)

近年來(lái),木霉Trichoderma spp.作為生物防治菌劑防治植物病害已逐漸被人們所熟知[1-2]。同時(shí),已有多種木霉被登記為生物肥料、生物農(nóng)藥、植物刺激劑等產(chǎn)品,廣泛用于農(nóng)業(yè)生產(chǎn)。在世界范圍內(nèi),木霉是最重要的生物農(nóng)藥制劑來(lái)源之一,如在印度有大約250種木霉及其衍生物的生物殺菌劑產(chǎn)品[3];我國(guó)也有18個(gè)已在農(nóng)業(yè)部正式登記的木霉生物農(nóng)藥產(chǎn)品。木霉除具備優(yōu)良生防功能外,還可以促進(jìn)植物側(cè)根和根毛生長(zhǎng)、提高植物生物量、高度、葉片數(shù)量、分蘗、分枝、果實(shí)產(chǎn)量等[4-5];對(duì)植物光合作用、氣孔導(dǎo)度、氣體交換、營(yíng)養(yǎng)物質(zhì)吸收同化等生理過(guò)程具有正向調(diào)控作用[6-7];可以分泌植酸酶和有機(jī)酸類物質(zhì)促進(jìn)植物根系對(duì)養(yǎng)分的溶解和吸收[8];通過(guò)提高植物氧化應(yīng)激等方面的作用改善植物在脅迫條件下的生長(zhǎng)和繁殖[9-10]。因此,在當(dāng)前提倡綠色生態(tài)健康發(fā)展環(huán)境下,木霉作為化學(xué)殺菌劑的有效替代品具備大規(guī)模應(yīng)用的潛力。

深綠木霉Trichoderma atroviride HB20111是本實(shí)驗(yàn)室篩選獲得的一株優(yōu)良生防菌株,已發(fā)現(xiàn)通過(guò)小麥拌種可以促進(jìn)小麥的根系發(fā)育和冬前分蘗,對(duì)小麥莖基腐病也有較好的防治效果,還發(fā)現(xiàn)其在生長(zhǎng)過(guò)程中會(huì)產(chǎn)生濃郁的椰香味揮發(fā)性物質(zhì)。有研究發(fā)現(xiàn)這種真菌產(chǎn)生的揮發(fā)性物質(zhì)有些可以通過(guò)激活植物的防御反應(yīng)抑制植物病原菌的增殖[11]。為了解深綠木霉HB20111所產(chǎn)揮發(fā)性物質(zhì)的成分以及潛在的生物學(xué)功能,本文通過(guò)頂空氣相色譜-質(zhì)譜法對(duì)其產(chǎn)生的揮發(fā)性有機(jī)物進(jìn)行了測(cè)定和成分分析,研究了木霉揮發(fā)性物質(zhì)的種類和含量及其對(duì)不同植物病原真菌抑制效果和對(duì)植物的促生作用,以期為該菌的開(kāi)發(fā)利用提供理論依據(jù)和參考。

1 材料與方法

1.1 菌株及培養(yǎng)條件

深綠木霉 Trichoderma atroviride HB20111, 假禾谷鐮孢Fusarium pseudograminearum、尖鐮孢F.oxysporum、層出鐮孢F.proliferatum、麥根腐平臍蠕孢Bipolaris sorokiniana、立枯絲核菌Rhizoctonia solani由實(shí)驗(yàn)室分離保存。培養(yǎng)基采用馬鈴薯葡萄糖瓊脂培養(yǎng)基(PDA),115℃,30 min滅菌后備用。上述菌株至少在60 mm直徑的PDA平板上活化兩次,培養(yǎng)溫度(28±0.5)℃。

1.2 深綠木霉HB20111產(chǎn)生的揮發(fā)性物質(zhì)鑒定

為進(jìn)行氣相色譜離子遷移譜(GC-MS)分析,將預(yù)培養(yǎng)活躍生長(zhǎng)的菌落邊緣一個(gè)直徑5 mm的瓊脂塊倒置接種在20 mL頂空瓶中,瓶底裝有5 mL PDA。瓶子用特氟龍螺旋蓋封閉,并加金屬蓋。放置于(28±0.5)℃培養(yǎng)箱中培養(yǎng)7 d。固相微萃取頭在氦氣流中于240℃老化20 min,然后將經(jīng)過(guò)老化的萃取頭插入頂空瓶中,于50℃條件下吸附45 min,吸附完成后迅速插入色譜儀進(jìn)樣口,開(kāi)始GC-MS檢測(cè)分析[12]。

氣相色譜-質(zhì)譜聯(lián)用條件[13]:采用安捷倫DB-624弱極性毛細(xì)管柱分離揮發(fā)性物質(zhì),載氣為氮?dú)?,流? mL/min,進(jìn)樣口溫度為250℃;進(jìn)樣方式為手動(dòng);分流比5∶1;升溫程序:50℃維持2 min,再以10℃/min升溫至200℃,離子源溫度:230℃;電離電壓:70 eV;質(zhì)譜采用全掃描模式,速率3.5 scans/s;質(zhì)譜范圍29~500 amu。

數(shù)據(jù)處理:深綠木霉HB20111樣品經(jīng)過(guò)固相萃取后進(jìn)行GC-MS分析鑒定,所得色譜和質(zhì)譜信息采用安捷倫公司的質(zhì)譜分析軟件進(jìn)行分析,在NIST05/Wiley275標(biāo)準(zhǔn)譜圖庫(kù)進(jìn)行檢索,選取化合物質(zhì)譜數(shù)據(jù)庫(kù)中最小匹配度均大于80的成分,同時(shí)配合人工檢索、對(duì)照和解析,確認(rèn)匹配化合物。利用面積歸一法計(jì)算各成分的相對(duì)百分含量。

1.3 深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)病原菌的抑菌率

采用對(duì)扣法測(cè)定木霉產(chǎn)揮發(fā)性物質(zhì)對(duì)病原菌的抑菌率,用5 mm滅菌打孔器分別打取已在PDA平板上活化兩次的深綠木霉HB20111和5株病原菌菌餅,用滅菌牙簽將其轉(zhuǎn)接于90 mm的PDA平板中間。將接有深綠木霉HB20111的PDA平板與接有病原真菌的PDA平板對(duì)扣起來(lái),接有拮抗菌的一面朝上,用封口膜密封。同時(shí)設(shè)置對(duì)照組,只接病原真菌,不接拮抗菌。將上述平板放置于培養(yǎng)箱中,在(28±0.5)℃下培養(yǎng)。每個(gè)處理設(shè)3個(gè)重復(fù)。培養(yǎng)5 d后采用十字交叉法測(cè)量測(cè)試病原菌菌落直徑,計(jì)算抑菌率[14]。

抑菌率=

對(duì)照病原菌菌落直徑-處理病原菌菌落直徑對(duì)照病原菌菌落直徑-5×100%。

1.4 小麥幼苗形態(tài)指標(biāo)測(cè)定

將小麥種子分為兩組,每組30粒置于發(fā)芽袋中萌發(fā)。發(fā)芽袋放入密閉的塑料盒中,其中一組塑料盒內(nèi)放入培養(yǎng)5 d的開(kāi)蓋的HB20111平板;對(duì)照組放置僅含培養(yǎng)基的空白平板,小麥萌發(fā)后7 d測(cè)定幼苗根長(zhǎng)、株高和鮮重。用刻度尺測(cè)量30株小麥根長(zhǎng)和株高,每株幼苗測(cè)量3根最長(zhǎng)的根,計(jì)算各組的平均根長(zhǎng)和株高;千分之一電子天平稱量每株鮮重;根冠比根據(jù)根系鮮重與地上部分鮮重的比值計(jì)算獲得。

2 結(jié)果與分析

2.1 氣相色譜-質(zhì)譜聯(lián)用鑒定深綠木霉HB20111有機(jī)揮發(fā)物質(zhì)

深綠木霉HB20111樣品經(jīng)GC-MS分析,從揮發(fā)性物質(zhì)中共分離出56個(gè)離子峰,從中鑒定出53種化合物,用面積歸一化法確定了各揮發(fā)性物質(zhì)的相對(duì)百分含量。鑒定的揮發(fā)性物質(zhì)結(jié)果見(jiàn)表1,總離子流圖見(jiàn)圖1。

通過(guò)質(zhì)譜分析,深綠木霉HB20111共鑒定53種揮發(fā)性物質(zhì)。在這些揮發(fā)性物質(zhì)中烷烴類5種,酯類4種,烯類17種,醇類5種,酮類4種,醛類2種,其他16種。其中烯類相對(duì)含量最高,為4968%、醇類為21.78%,酮類為8.56%,其余類別相對(duì)含量較低。在烯類中主要的揮發(fā)性物質(zhì)有β-倍半水芹烯、α-姜油烯、β-水芹烯、雙表-α-雪松烯,其中β-倍半水芹烯和α-姜油烯分別為18.34%和13.53%,相對(duì)含量較高。除此之外,吡喃酮含量也相對(duì)較高,為784%,猜測(cè)這些成分應(yīng)該是深綠木霉HB20111主要的功能性揮發(fā)物質(zhì)。

2.2 深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)病原菌的拮抗效果

由圖2可以看出,深綠木霉HB20111產(chǎn)生的揮發(fā)性物質(zhì)對(duì)5種病原菌均有明顯的抑菌作用,但對(duì)不同病原菌的抑菌率不同(表2)。其中,對(duì)立枯絲核菌抑菌率最高,為50.62%;對(duì)假禾谷鐮孢的抑菌率最低,為16.00%。對(duì)層出鐮孢、尖鐮孢、麥根腐平臍蠕孢的抑菌率分別為32.73%、43.65%和44.00%。

2.3 深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)小麥幼苗的促生作用

由圖3可以看出,深綠木霉HB20111產(chǎn)生的揮發(fā)性物質(zhì)對(duì)小麥幼苗生長(zhǎng)具有明顯的促生作用,處理小麥幼苗7 d后根長(zhǎng)、株高、鮮重和根冠比分別為6.63 mm、5.60 mm、55.29 mg和0.72,與對(duì)照相比均有一定的促進(jìn)作用,其中對(duì)小麥幼苗株高有顯著的促進(jìn)作用(表3)。

3 討論

目前已從木霉中鑒定出至少480種VOCs,其中吡喃酮(6-戊基-2H-吡喃-2-酮,6PP)是從該真菌屬最早分離出來(lái)的揮發(fā)物之一[14-16]。木霉釋放的這些VOCs與其拮抗活性有關(guān),有研究表明,它們可以抑制植物病原真菌的菌絲生長(zhǎng)[17]。綠木霉T.virens和擬康氏木霉T.pseudokoningii所產(chǎn)揮發(fā)性有機(jī)物可以促進(jìn)擬南芥?zhèn)雀男纬珊蜕L(zhǎng)[12,17-19];深綠木霉Tatroviride P1菌株除合成吡喃酮外還產(chǎn)生烷烴類、醇類、酮類、內(nèi)酯、呋喃、單萜、倍半萜烯和C8化合物,其中1-辛-3-醇、3-辛醇、3-辛酮等是脂肪酸代謝的終產(chǎn)物[19],認(rèn)為可能是調(diào)控真菌發(fā)育和菌落間通訊的信號(hào)分子。

本研究中深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)中除吡喃酮外,還有大量的烯萜類物質(zhì),與已報(bào)道到的木霉產(chǎn)揮發(fā)性物質(zhì)組成差異較大,其中β-倍半水芹烯、α-姜油烯、β-水芹烯、雙表-α-雪松烯均具有一定的生物學(xué)功能,如β-倍半水芹烯被認(rèn)為具有與姜黃素相當(dāng)?shù)目拱摿20],在β-倍半水芹烯氧化酶和脫氫酶作用下可以生成β-姜黃酮,其具有抗脂質(zhì)過(guò)氧化作用[21];β-水芹烯在低濃度時(shí)能增加細(xì)胞膜通透性,造成細(xì)胞質(zhì)膜的不可逆損傷,進(jìn)而導(dǎo)致細(xì)胞成分和鉀離子的泄漏[22-23];影響細(xì)菌的生物膜形成,對(duì)變異鏈球菌Streptococcus mutans、副溶血形弧菌Vibrio parahaemolyticus等具有抑制作用[24],還有報(bào)道發(fā)現(xiàn)不同的黃皮精油組分中,富含β-水芹烯組分對(duì)多種念珠菌具有良好的抗真菌活性[25];主要成分為α-姜油烯(34.48%),β-倍半萜烯(22.90%)和α-姜黃素(16.17%)的精油具有抗微生物活性。革蘭氏陽(yáng)性菌比革蘭氏陰性菌對(duì)精油更敏感,同時(shí)該精油還具有抗氧化能力[26]。此外,在深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)中還含有2.98%的橙花叔醇,這是一種天然存在的倍半萜烯醇,存在于各種帶有花香的植物中,它是合成(3E)-4,8-dimethy-1,3,7-壬二烯(DMNT)的中間體,能夠吸引草食動(dòng)物捕食者,從而保護(hù)植物免受草食動(dòng)物損害[27]。

本研究表明,深綠木霉HB20111產(chǎn)揮發(fā)性物質(zhì)對(duì)多種植物病原真菌具有明顯拮抗作用,同時(shí)對(duì)小麥幼苗有促生作用,其產(chǎn)生的揮發(fā)性物質(zhì)中除廣為熟知的6PP成分外,還有功能性烯萜類揮發(fā)性物質(zhì),這些物質(zhì)具有潛在的抗菌、抗氧化等功能,是我們今后需要進(jìn)一步研究的內(nèi)容。

參考文獻(xiàn)

[1] HARMAN G E, HOWELL C R, VITERBO A, et al. Trichoderma species-opportunistic avirulent plant symbionts [J]. Nature Reviews Microbiology, 2004, 2(1):43-56.

[2] WEINDLING R. Trichoderma lignorum as a parasite of other soil fungi [J]. Phytopathology,1932, 22(10): 837-845.

[3] SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: The “secrets” of a multitalented biocontrol agent [J/OL]. Plants, 2020, 9(6):762. DOI:10.3390/plants9060762.

[4] BREWER D, MASON F G, TAYLOR A. The production of alamethicins by Trichoderma spp. [J]. Canadian Journal of Microbiology, 1987, 33(7): 619-625.

[5] BODO B, REBUFF S, EL HAJJI M. Structure of trichorzianine A ⅢC, an antifungal peptide from Trichoderma harzianum [J]. Journal of the American Chemical Society, 1985, 107(21): 6011-6017.

[6] REBUFFAT S, CONRAUX L, MASSIAS M, et al. Sequence and solution conformation of the 20-residue peptaibols, saturnisporins SA Ⅱ and SA Ⅳ [J]. International Journal of Peptide and Protein Research, 1993, 41(1): 74-84.

[7] REBUFFAT S, GOULARD C, BODO B. Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols [J]. Journal of the Chemical Society Perkin Transactions, 1995, 14:1849-1855.

[8] SONG Xiaoyan, SHEN Qingtao, XIE Shutao, et al. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens [J]. FEMS Microbiology Letters, 2006, 260(1): 119-125.

[9] WORASATIT N, SIVASITHAMPARAM K, GHISALBERTI E L, et al. Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii mycological research [J]. Mycological Research, 1994, 98(12):1357-1363.

[10]MASTOURI F, BJRKMAN T, HARMAN G E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedling [J]. Phytopathology, 2010, 100(11):1213-1221.

[11]SPECKBACHER V, RUZSANYI V, WIGGER M, et al. The Trichoderma atroviride strains P1 and IMI 206040 differ in their light-response and VOC production [J/OL]. Molecules, 2020, 25(1): 208. DOI: 10.3390/molecules25010208.

[12]陶玲蕓, 張怡雯, 李雅乾,等. 棘孢木霉揮發(fā)性次級(jí)代謝產(chǎn)物檢測(cè)及抑菌活性分析[J]. 生物工程學(xué)報(bào), 2020, 36(6):166-174.

[13]CONTRERAS-CORNEJO H A, MACAS-RODRGUEZ L, HERRERA-ESTRELLA A, et al. The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission [J]. Plant and Soil, 2014, 379(1/2): 261-274.

[14]穆靜娟,焦加國(guó),葛新成, 等.植物病原真菌廣譜拮抗菌M29的篩選、鑒定及其抑菌機(jī)制[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 40(1): 84-92.

[15]VINALE F, SIVASITHAMPARAM K, GHISALBERTI E L, et al. A novel role for Trichoderma secondary metabolites in the interactions with plants [J]. Physiological & Molecular Plant Pathology, 2008, 72(1/2/3):80-86.

[16]GUPTA V K, SCHMOLL M, HERRERA-ESTRELLA A, et al. In biotechnology and biology of Trichoderma [M]. The Netherlands Amsterdam: Elsevier, 2014: 139-175.

[17]AMIN F, RAZDAN V K, MOHIDDIN F A, et al. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro [J]. Journal of Phytology, 2010, 2(10): 34-37.

[18]HUNG R, LEE S, BENNETT J W. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds [J]. Fungal Ecology, 2013, 6(1):19-26.

[19]SCHNRER J, OLSSON J, BRJESSON T. Fungal volatiles as indicators of food and feeds spoilage [J]. Fungal Genetics and Biology, 1999, 27(2/3):209-217.

[20]TYAGI A K, PRASAD S, YUAN W, et al. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin [J]. Investigational New Drugs, 2015, 33(6):1175-86.

[21]KOO H J, GANG D R. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues [J/OL]. PLoS ONE, 2012, 7(12):e51481. DOI:10.1371/journal.pone.0051481.

[22]DIAO Wenrui, HU Qingping, ZHANG Hong, et al. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.)[J]. Food Control, 2014, 35(1): 109-116.

[23]ZHANG Jing, YE Keping, ZHANG Xin, et al. Antibacterial activity and mechanism of action of black pepper essential oil on meat-borne Escherichia coli [J/OL]. Frontiers in Microbiology, 2017, 7: 2094. DOI: 10.3389/fmicb.2016.02094.

[24]MENDES J L, DE ARAU'JO T F, DE CARVALHO M G, et al. Chemical composition and mechanism of vibriocidal action of essential oil from resin of Protium heptaphyllum [J/OL]. Scientific World Journal, 2019, 2019: 9563213. DOI: 10.1155/2019/9563213.

[25]HE Xiaowen, ZHANG Lantong, CHEN Jinping, et al. Correlation between chemical composition and antifungal activity of Clausena lansium essential oil against Candida spp. [J/OL]. Molecules, 2019, 24(7):1394. DOI: 10.3390/molecules24071394.

[26]PANDINI J A, PINTO F G S, SCUR M C, et al. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A.Juss [J]. Brazilian Journal of Biology, 2018, 78(1): 53-60.

[27]CHAN W K, TAN L T, CHAN K G, et al. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities [J/OL]. Molecules, 2016, 21(5): 529. DOI: 10.3390/molecules21050529.

(責(zé)任編輯:楊明麗)