彭麗莎,張毅敏,熊 威,趙 丹,羅 凱
四川筠連地區(qū)高階煤煤層氣井解堵技術及應用
彭麗莎,張毅敏,熊 威,趙 丹,羅 凱
(中國石油股份有限公司浙江油田西南采氣廠,四川 宜賓 645250)
四川筠連地區(qū)樂平組煤層為低孔、低滲的高階煤儲層。部分煤層氣井在生產(chǎn)過程中產(chǎn)氣量出現(xiàn)快速下降,嚴重制約了煤層氣井的開發(fā)效益。結合排采、水化學、檢泵等生產(chǎn)動態(tài)信息系統(tǒng)分析煤層氣井產(chǎn)氣量下降的原因,認為煤層結垢與煤粉堵塞裂縫通道是產(chǎn)氣量下降的主要原因。針對堵塞問題,對筠連地區(qū)煤層氣區(qū)塊開展了酸洗、水力震蕩、等離子脈沖、注水等解堵工藝措施試驗?,F(xiàn)場排采動態(tài)表明,酸洗與等離子脈沖具有較好的增產(chǎn)效果。酸洗主要針對結垢的井,通過將酸液注入井筒,與井筒和近井筒地帶無機垢充分反應,以達到解除井筒和近井筒地帶通道堵塞的目的,酸洗措施成功率高,投入產(chǎn)出比1∶1.8,是區(qū)域內(nèi)首選低成本有效性措施;等離子脈沖解堵主要針對煤粉和結垢井,通過物理震蕩的方式粉碎堵塞物,然后通過洗井將堵塞物攜帶出井筒,從而實現(xiàn)解堵,實施后增產(chǎn)效果較佳,煤層氣產(chǎn)量增產(chǎn)達130%,但因實施數(shù)量有限,區(qū)域適應性還有待評價;水力震蕩、注水等解堵措施主要是針對煤粉堵塞井,通過水力沖擊以及水力循環(huán)的方式帶出煤粉以達到解堵的效果,但該措施本身也會造成儲層激動,容易產(chǎn)生副作用,措施整體有效率不到30%,增產(chǎn)效果不明顯。上述4種解堵措施均有其適應條件,需要根據(jù)堵塞原因,采取與之適應的措施才能獲得最佳的解堵效果。研究成果可為我國同類煤層氣井解堵、增產(chǎn)提供一定的借鑒。
四川筠連;高階煤;煤層氣;結垢;煤粉;解堵;等離子脈沖;酸洗
與常規(guī)天然氣井相比,煤層氣井產(chǎn)量要低得多,經(jīng)濟效益差。各大煤層氣公司為了提高經(jīng)濟效益,開展了一系列提質(zhì)增效活動,其中解堵增透是提質(zhì)增效的一項重要舉措。目前針對煤層氣井解堵的措施,主要有重復壓裂[1-2]、高壓氮氣悶井[3]、可控沖擊波[4]、氮氣泡沫解堵、微生物解堵[1]等。近年國內(nèi)一些煤層氣企業(yè)在解堵增透方面進行了一些積極探索,提供了很好的借鑒。如山西藍焰煤層氣公司在沁水盆地試驗了2口井的等離子脈沖增透技術,發(fā)現(xiàn)該技術在硬煤中解堵效果較好,但在軟煤中收效甚微[5]。鄭莊區(qū)塊試驗了4口低產(chǎn)井的微生物解堵措施[6],但解堵效果沒有后續(xù)報道。一些煤層氣井實施過重復壓裂[6-8],但重復壓裂一般會嚴重影響鄰井生產(chǎn),因此,重復壓裂應控制壓裂規(guī)模,以免壓裂液波及鄰井造成產(chǎn)量下降。氮氣及氮氣泡沫解堵措施也在煤層氣低產(chǎn)、低效井治理中有較多應用[9-11],該措施主要適用于煤粉堵塞儲層的井。解堵工藝都有其適應范圍,在選擇解堵措施前應首先分析低產(chǎn)原因,然后根據(jù)低產(chǎn)原因選擇與之適應的技術。不同地區(qū)的煤層氣地質(zhì)條件差異較大,非均質(zhì)性強[12],選擇解堵措施時,需要進行綜合分析,選擇與其地質(zhì)條件相匹配的措施方可取得較好的增產(chǎn)效果。四川筠連地區(qū)煤層氣田位于滇黔川交界川黔古坳陷北緣,是中國南方第一個規(guī)模開發(fā)的高階煤層氣田。目前該區(qū)域已投產(chǎn)排采井400余口,整體開發(fā)效果較好,但隨著生產(chǎn)的進行,部分煤層氣井的產(chǎn)量明顯下降,經(jīng)濟效益差。筆者分析認為,其產(chǎn)量下降的主要原因是水敏、壓力敏感、煤粉運移、儲層結垢等導致儲層受到傷害、滲流通道發(fā)生堵塞。為使煤層氣井產(chǎn)量得到恢復,需要進行解堵作業(yè)。針對研究區(qū)實際生產(chǎn)井情況,開展現(xiàn)場酸洗、水力震蕩、等離子脈沖、注水等解堵措施研究,評價其解堵效果,以期為研究區(qū)及類似區(qū)域煤層氣高效開發(fā)提供借鑒。
筠連地區(qū)煤層氣區(qū)塊構造上位于東西向云臺寺斷層、NE—SW向的武德向斜、沐愛–老牌坊背斜、鐵廠溝向斜與沐愛斷層的交匯區(qū)[13]。礦區(qū)主體為壓性構造線展布特征,發(fā)育較多斷層,尤其是細小斷層。礦區(qū)內(nèi)煤層氣開采層位為二疊系樂平組,含煤十余層,主力煤層為2、3、7、8號煤層,主力煤層總厚度一般約為8 m。區(qū)域宏觀煤巖類型為暗淡型煤,宏觀煤巖成分以暗煤為主;顯微煤巖組分中有機組分占83.39%,無機組分以黏土類礦物為主,其次為氧化硅類、硫化物類、碳酸鹽類。煤演化程度高,鏡質(zhì)體反射率主要介于2.6%~3.5%,為高階無煙煤,儲層平均孔隙率僅4.5%,滲透率為(0.02~ 0.18)×10–3μm–2,煤層含氣量為12~16 m3/t,屬低孔、低滲、高含氣量煤層。
生產(chǎn)實踐證實,煤層氣井生產(chǎn)過程中會有煤粉產(chǎn)生。由于煤膠結性差、易碎、易塌,在剪切力的作用下極易造成煤顆粒脫落。近年來,國內(nèi)外學者針對煤粉的產(chǎn)生機理做了大量研究[15-21]。煤層裂縫中的煤粉主要是由于流體的沖刷、支撐劑的打磨、煤巖應力狀態(tài)的改變以及排采降壓誘發(fā)產(chǎn)生,當煤巖表面所受應力大于抗破壞強度時,顆粒從煤基質(zhì)上脫落成為煤粉,煤粉產(chǎn)生后會隨著流體運移(圖1a)。煤粉的運移產(chǎn)出普遍存在于煤層氣井排采過程中,是制約煤層氣井穩(wěn)定、連續(xù)排采的關鍵因素[22-24]。一定的水流速度對煤粉有攜帶作用(圖1a),但當水流速度下降或水流停止時,大顆粒煤粉由于水動力不足發(fā)生沉降,堵塞煤層的流動通道。這也是部分煤層氣井檢泵后產(chǎn)量下降的原因(圖1b)。
表1 水質(zhì)分析數(shù)據(jù)
(紅色箭頭表示煤粉運動方向)
2.2.1 檢泵與停井造成的煤粉堵塞
檢泵是煤層氣井生產(chǎn)中常見的維護性措施,筠連地區(qū)煤層氣井年平均檢泵次數(shù)達90井次,占總井數(shù)的1/4。部分井檢泵后產(chǎn)氣量和產(chǎn)水量同時降低,產(chǎn)氣潛力不能恢復到檢泵前水平(圖2)。分析認為,造成檢泵后產(chǎn)量降低的主因原因是,產(chǎn)氣井停機檢泵期間,地層流體流速降低甚至停止流動,使原本懸浮在流體中的煤粉等固體顆粒沉降、滯留,堵塞滲流通道,導致煤層氣井產(chǎn)氣量降低[25]。另外,筠連煤層氣區(qū)塊處于山區(qū),夏季雷電現(xiàn)象導致停電事件頻發(fā),致使煤層氣井多次突然停產(chǎn),也可能導致煤粉等顆粒堵塞煤層。
圖2 X5-3井檢泵前后排采曲線對比
2.2.2 鄰井壓竄的影響
隨著筠連地區(qū)煤層氣開發(fā)進展,針對儲量動用程度低、動用不均衡等制約氣藏穩(wěn)產(chǎn)的關鍵問題,在氣田主產(chǎn)區(qū)采取了井網(wǎng)加密措施。但隨著加密井的增多,井間距縮短,水力壓裂過程中容易壓竄鄰井,造成鄰井壓力上升,產(chǎn)氣量大幅度下降。核心區(qū)塊13%的已投產(chǎn)井受鄰井壓裂影響而造成產(chǎn)量下降,且其中85%的井未能恢復至原有產(chǎn)氣量水平。壓竄的煤層氣井產(chǎn)量無法恢復到壓竄前水平,其主要原因為壓裂液沖刷導致煤粉顆粒從縫面脫落,并堵塞滲流通道,造成煤儲層滲透率降低。例如,X3-2井被壓竄前煤層氣產(chǎn)量為1 000 m3/d左右,當其被相鄰的X3-5井壓竄后,產(chǎn)氣量一直無法恢復至壓竄前水平(圖3)。
圖3 X3-2井被鄰井壓竄前后排采曲線對比
采取研究區(qū)煤層氣井垢樣品進行X衍射分析,發(fā)現(xiàn)垢樣主要成分為碳酸鹽、鐵的化合物、石英砂等。因此,針對研究區(qū)結垢的煤層氣井主要采取酸洗解堵:向地層注入酸液,使酸液溶蝕近井地帶,尤其是裂縫通道中沉淀物,以恢復煤儲層滲透率??紤]到儲層中酸敏性礦物與酸反應會生成可溶性鹽類,易水解成絮狀沉淀堵塞地層。為此,添加鐵離子穩(wěn)定劑來控制沉淀造成的儲層傷害。酸液中同時添加酸洗緩蝕劑和助排劑2種表面活性劑。酸洗緩蝕劑可有效降低酸液對井筒的腐蝕,助排劑可以降低氣/液表面張力,提高酸液殘渣的返排能力。
通過室內(nèi)實驗,選取的酸液配方為:15%HCl+ 0.5%助排劑+1%緩蝕劑+1%鐵離子穩(wěn)定劑+0.5%煤粉分散劑。本區(qū)域共實施酸洗解堵33井次,單井平均增產(chǎn)7.4萬m3,累計增產(chǎn)量245萬m3,總有效率65%,投入產(chǎn)出比為1∶1.8,總體酸洗效果較好。X19-5井于2017年8月19日進行了酸洗作業(yè),煤層氣產(chǎn)量從酸洗作業(yè)前的600 m3/d上升至1 500 m3/d以上,增產(chǎn)效果明顯(圖4)。
水力震蕩技術主要是通過水力振蕩器產(chǎn)生的高頻脈沖式水流直接噴射在需要解堵的儲層上,在機械振動和空化作用下使堵塞物粉碎、脫落,實現(xiàn)解堵增透。水力震蕩主要適用于垢物和煤粉堵塞的煤層氣井。選取措施井時,應選擇地質(zhì)條件較好、近井筒地帶堵塞、產(chǎn)氣量突降的煤層氣井。筠連地區(qū)煤層氣區(qū)塊總計實施8井次水力震蕩,2口井有效,有效率25%。措施效果較好的X22井及X6-2井均前期有過較高產(chǎn)量,后期由于結垢或煤粉原因導致產(chǎn)氣下降,該類井措施效果較好。同時也存在無效井和負效果井。分析認為造成負效果的主要原因為井筒不清潔,作業(yè)時井筒中垢粉/煤粉等進入地層,造成地層污染,影響整體措施效果。
圖4 X19-5井酸洗前后生產(chǎn)曲線對比
等離子脈沖解堵是利用電流形成高能量的等離子束,周期性地作用于地層中,產(chǎn)生彈性沖擊波,引發(fā)儲層巖石的擠壓和拉伸應力,造成堵塞物破裂、脫落。該技術主要適合近井筒地帶解堵,措施井應選擇歷史上曾達到較高產(chǎn)量,后來產(chǎn)量出現(xiàn)快速下降的或檢泵等作業(yè)后產(chǎn)量明顯低于作業(yè)前的煤層氣井。研究區(qū)共實施等離子脈沖解堵1井次(X19-1井),該井初期最高產(chǎn)量為3 500 m3/d,但不穩(wěn)定,3個月后產(chǎn)氣量快速下降至600 m3/d左右。2017年10月27日對該井實施等離子脈沖解堵后,產(chǎn)氣量快速上升,最高產(chǎn)量達到1 400 m3/d,增產(chǎn)效果較好(圖5)。
圖5 X19-1井等離子脈沖解堵前后排采曲線對比
通過向地層中注水,使裂縫中的煤粉在水流的攜帶下流出地層,以實現(xiàn)解堵提高儲層滲透率。主要適用于被鄰井壓竄的井。被壓竄井的注水解堵工藝步驟為:首先對被壓竄井進行正洗井,然后再用壓裂泵車進行注水,將堵塞物從壓裂井排出,最后對壓裂井進行洗井。通過注水將煤團沖散,并通過壓裂形成的通道將其攜帶至壓裂井井筒或直接被從壓裂井沖出,最后洗井時把沖散的堵塞物帶出到地面,避免對地層造成再次堵塞,從而恢復并提高氣井產(chǎn)量。壓竄井的注水排量在400~500 L/min,注入量一般為50~200 m3(視壓竄程度)。筠連煤層氣區(qū)塊總計實施了6井次注水解堵作業(yè),但增產(chǎn)效果不明顯(圖6)。
a. 四川筠連煤層氣礦區(qū)煤層氣井低產(chǎn)的主要原因是煤層結垢和煤粉堵塞。針對這一問題,主要開展酸洗、水力震蕩、等離子脈沖、注水等4種解堵技術。從解堵成效來看,酸洗的效果相對較好,而等離子脈沖由于只實施了1口井,不好判斷其有效性。從煤層氣井排采統(tǒng)計數(shù)據(jù)可知,水力震蕩、注水2種工藝措施成功率較低,在研究區(qū)適應性較差。
b. 酸洗屬于化學解堵,通過溶蝕作用達到解堵目的,對結垢井具有較好的解堵效果,但由于每口井的地質(zhì)條件以及結垢程度不同,需要結合具體情況,優(yōu)化酸液體系、燜井時間、酸洗工藝,以實現(xiàn)措施效果最佳。其余3種解堵措施均為物理解堵,其機理是通過清除堵塞物達到解堵目的。由于井筒及儲層中存在煤粉/垢等顆粒,在實施解堵措施的過程中,有可能加劇儲層傷害,不但達不到增產(chǎn)效果反而使煤層氣井產(chǎn)量降低,因此,在實施措施前,務必綜合論證措施的適應性,制定完善的方案。
c. 煤層氣低產(chǎn)低效井治理是煤層氣井高產(chǎn)面臨的難題,而解堵是治理低產(chǎn)低效井的一種重要手段。本文提及的低產(chǎn)原因分析及增產(chǎn)措施可為海相高階煤煤層氣增產(chǎn)提供一定的借鑒方向。目前國內(nèi)外已有多種儲層解堵工藝,文中的解堵措施僅僅只是增透措施中的一小部分,下一步將針對不同區(qū)域地質(zhì)條件下試驗研究其他解堵增透措施,探尋更加經(jīng)濟有效的匹配工藝,為研究區(qū)及其他類似區(qū)域煤層氣開發(fā)整體提質(zhì)增效提供對策。
圖6 X3-4井注水解堵前后排采曲線對比
[1] 趙武鵬,劉春春,申興偉,等. 鄭莊區(qū)塊煤層氣低產(chǎn)井增產(chǎn)技術研究[J]. 石油鉆采工藝,2017,39(4):491–494.
ZHAO Wupeng,LIU Chunchun,SHEN Xingwei,et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang Block[J]. Oil Drilling & Production Technology,2017,39(4):491–494.
[2] 賈慧敏,胡秋嘉,祁空軍,等. 高階煤煤層氣直井低產(chǎn)原因分析及增產(chǎn)措施[J]. 煤田地質(zhì)與勘探,2019,47(5):104–110.
JIA Huimin,HU Qiujia,QI Kongjun,et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration,2019,47(5):104–110.
[3] 曹運興,石玢,周丹,等. 煤層氣低產(chǎn)井高壓氮氣悶井增產(chǎn)改造技術與應用[J]. 煤炭學報,2019,44(8):2556–2565.
CAO Yunxing,SHI Bin,ZHOU Dan,et al. Study and application of stimulation technology for low production CBM well through high pressure N2injection-soak[J]. Journal of China Coal Society,2019,44(8):2556–2565.
[4] 王喆. 可控沖擊波解堵增透技術在延川南煤層氣田中的應用[J].油氣藏評價與開發(fā),2020,10(4):87–92.
WANG Zhe. Application of controllable shock wave plugging removal and permeability improvement technology in CBM gas field of Southern Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):87–92.
[5] 張遂安,劉欣佳,溫慶志,等. 煤層氣增產(chǎn)改造技術發(fā)展現(xiàn)狀與趨勢[J]. 石油學報,2021,42(1):105–118.
ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105–118.
[6] 倪小明,趙政,劉度,等. 柿莊南區(qū)塊煤層氣低產(chǎn)井原因分析及增產(chǎn)技術對策研究[J]. 煤炭科學技術,2020,48(2):176–184.
NI Xiaoming,ZHAO Zheng,LIU Du,et al. Study on cause of low production and countermeasures of increasing production technology about coalbed methane wells in Shizhuang South Block[J]. Coal Science and Technology,2020,48(2):176–184.
[7] 曹超. 煤層氣重復壓裂技術在沁水盆地南部的應用[J]. 中國煤層氣,2017,14(4):15–18.
CAO Chao. Application of CBM repeated fracturing technology in southern Qinshui Basin[J]. China Coalbed Methane,2017,14(4):15–18.
[8] 李瑩,鄭瑞,羅凱,等. 筠連地區(qū)煤層氣低產(chǎn)低效井成因及增產(chǎn)改造措施[J]. 煤田地質(zhì)與勘探,2020,48(4):146–155.
LI Ying,ZHENG Rui,LUO Kai,et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration,2020,48(4):146–155.
[9] 胡秋嘉,唐鈺童,吳定泉,等. 氮氣泡沫解堵技術在樊莊區(qū)塊多分支水平井上的應用[J]. 中國煤層氣,2015,12(5):27–29.
HU Qiujia,TANG Yutong,WU Dingquan,et al. Application of the nitrogen foam blocking technology in multi-branch horizontal wells of Fanzhuang block[J]. China Coalbed Methane,2015,12(5):27–29.
[10] 姚紅生,陳貞龍,郭濤,等. 延川南深部煤層氣地質(zhì)工程一體化壓裂增產(chǎn)實踐[J]. 油氣藏評價與開發(fā),2021,11(3):291–296.
YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291–296.
[11] 李鑫,肖翠,陳貞龍,等. 延川南煤層氣田低效井原因分析與措施優(yōu)選[J]. 油氣藏評價與開發(fā),2020,10(4):32–38.
LI Xin,XIAO Cui,CHEN Zhenlong,et al. Analysis of low-efficiency wells in CBM gas field of South Yanchuan and optimization of measures[J]. Petroleum Reservoir Evaluation and Development,2020,10(4):32–38.
[12] 張洪盼,明玉坤,孫建孟,等. 煤層氣儲層徑向非均質(zhì)性評價及其應用[J]. 煤田地質(zhì)與勘探,2017,45(6):169–175.
ZHANG Hongpan,MING Yukun,SUN Jianmeng,et al. Radial heterogeneity evaluation of coalbed methane reservoirs and its application[J]. Coal Geology & Exploration,2017,45(6):169–175.
[13] 李金珊,楊敏芳,朱維耀,等. 川南筠連沐愛地區(qū)煤層含氣量預測及控制因素分析[J]. 東北大學學報(自然科學版),2015,36(5):724–727.
LI Jinshan,YANG Minfang,ZHU Weiyao,et al. Coalbed gas content prediction and controlling factors analysis of coalbed in Junlian Mu’ai area at south of Sichuan[J]. Journal of Northeastern University(Natural Science),2015,36(5):724–727.
[14] 王林,王維旭,馬飛英,等. 煤層氣井筒垢的產(chǎn)生機理與防垢方法:以蜀南龍?zhí)督M煤層氣井為例[J]. 廣東石油化工學院學報,2018,28(4):1–4.
WANG Lin,WANG Weixu,MA Feiying,et al. Scaling mechanism and control methods in coal bed methane wellbores:Taking coal bed methane wells of Longtan Formation in Shunan Area as an example[J]. Journal of Guangdong University of Petrochemical Technology,2018,28(4):1–4.
[15] 陳振宏,王一兵,孫平. 煤粉產(chǎn)出對高煤階煤層氣井產(chǎn)能的影響及其控制[J]. 煤炭學報,2009,34(2):229–232.
CHEN Zhenhong,WANG Yibin,SUN Ping. Destructive influence and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229–232.
[16] 白建梅,孫玉英,李薇. 高階煤煤層氣井煤粉產(chǎn)出對滲透率影響研究[J]. 中國煤層氣,2011,8(6):18–21.
BAI Jianmei,SUN Yuying,LI Wei,et al. Study of the impact of coal dust yield on permeability rate in high rank CBM well[J]. China Coalbed Methane,2011,8(6):18–21.
[17] 王戰(zhàn)鋒,許耀波. 構造煤儲層煤粉產(chǎn)出機理及防治對策[J]. 陜西煤炭,2014,10(5):1–3.
WANG Zhanfeng,XU Yaobo. Formation mechanism of coal power in tectonic coal reservoir and its control measures[J]. Shaanxi Coal,2014,10(5):1–3.
[18] 王慶偉. 沁南潘莊區(qū)塊煤粉產(chǎn)出機理與控制因素研究[D]. 北京:中國礦業(yè)大學(北京),2013.
WANG Qingwei. The output mechanism and control factors of the coal powder in Panzhuang area,Qinshui Basin[D]. Beijing:China University of Mining and Technology(Beijing),2013.
[19] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350–359.
[20] TOWLER B,F(xiàn)IROUZI M,UNDERSCHULTZ J,et al. An overview of the coal seam gas developments in Queensland[J]. Journal of Natural Gas Science and Engineering,2016,31:249–271.
[21] GE L,HAMILTON C,F(xiàn)EBRINA R T,et al. A phase inversion polymer coating to prevent swelling and spalling of clay fines in coal seam gas wells[J]. International Journal of Coal Science & Technology,2018,5(2):179–190.
[22] 馬飛英,劉全穩(wěn),王林,等. 單相水流階段煤層裂縫中沉積煤粉的起動[J]. 煤炭學報,2016,41(4):917–920.
MA Feiying,LIU Quanwen,WANG Lin,et al. Motion of incipient sedimental coal fines in coal seam fractures at single phase water flow stage[J]. Journal of China Coal Society,2016,41(4):917–920.
[23] 傅雪海. 我國煤層氣勘探開發(fā)現(xiàn)存問題及發(fā)展趨勢[J]. 黑龍江科技學院學報,2012,22(1):1–5.
FU Xuehai. Existing problems and development trend of CBM exploration and development in China[J]. Journal of Heilongjiang Institute of Science & Technology,2012,22(1):1–5.
[24] 張遂安,曹立虎,杜彩霞. 煤層氣井產(chǎn)氣機理及排采控壓控粉研究[J]. 煤炭學報,2014,39(9):1927–1931.
ZHANG Sui’an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927–1931.
[25] 王林,馬飛英,劉全穩(wěn),等. 基于產(chǎn)生式系統(tǒng)的煤層氣井排采異常識別技術[J]. 煤田地質(zhì)與勘探,2017,45(3):72–76.
WANG Lin,MA Feiying,LIU Quanwen,et al. Abnormal drainage identification of coalbed methane well based on production system[J]. Coal Geology & Exploration,2017,45(3):72–76.
De-blocking technology and application of high-rank CBM well in Junlian region in Sichuan Province
PENG Lisha, ZHANG Yimin, XIONG Wei, ZHAO Dan, LUO Kai
(Southwest Gas Production Plant, Zhejiang Oil Field, CNPC, Yibin 645250, China)
The coal seams of Leping Formation in Junlian area are high-rank coal reservoir with low porosity and low permeability. The gas production of some coalbed methane wells decreases rapidly in the production process, which seriously restricts the benefit development of coalbed methane wells. Combined with the production data such as drainage, hydrochemistry and pump inspection, this paper analyzes the reasons for the decline of gas production. The main reasons for the decline are coal scaling and coal fines blockage. Targeted measures such as acid pickling, hydraulic shock, plasma pulse and water injection are carried out to remove the blockage. The results show that acid pickling and plasma pulse have good effect on increasing gas production. Pickling is mainly aimed at scaling wells. By injecting acid into the wellbore and fully reacting with inorganic scale in the wellbore and near wellbore zone, the purpose of removing blockage of the passage in the wellbore and near wellbore zone is achieved. The success rate of pickling measures is high, and the input-output ratio is 1︰1.8, so it is the first choice of low-cost effective measures in the area. Pulse plugging is also aimed at coal fine output and scaling wells, and it has a good effect for increasing gas production by 130% after implementation. However, due to the limited number of implementation, the regional adaptability remains to be evaluated. The measures such as hydraulic shock and water injection are mainly aimed at wells blocked by coal fines. Coal fines are taken out to remove blockage by means of hydraulic shock and hydraulic circulation. However, such measures themselves will also cause formation stress change, which is prone to cause the negative effect. The overall effective rate of hydraulic shock and water injection measures is less than 30% and the effect of increasing production is not obvious. The above four de-blocking measures all have their own adaptive conditions, so it is necessary to take appropriate measures according to the causes of blockage to obtain the best de-blocking effect. The research results in this paper can provide some reference for de-plugging and increasing production of similar coalbed methane wells in China.
Sichuan Junlian; high-rank coal; coalbed methane; scaling; coal fines; blockage removal; plasma pulse; acid pickling
移動閱讀
語音講解
TE377
A
1001-1986(2021)05-0132-07
2021-02-18;
2021-06-16
中國石油股份有限公司重大科技專項項目(2017E-1401)
彭麗莎,1992年生,女,湖南岳陽人,工程師,從事煤層氣和頁巖氣開發(fā)動態(tài)研究工作. E-mail:pengls85@petrochina.com.cn
彭麗莎,張毅敏,熊威,等. 四川筠連地區(qū)高階煤煤層氣井解堵技術及應用[J]. 煤田地質(zhì)與勘探,2021,49(5):132–138. doi: 10.3969/j.issn.1001-1986.2021.05.014
PENG Lisha,ZHANG Yimin,XIONG Wei,et al. De-blocking technology of CBM wells of the high-rank coal and their application in Junlian area in Sichuan Province[J]. Coal Geology & Exploration,2021,49(5):132–138. doi: 10.3969/j.issn. 1001-1986.2021.05.014
(責任編輯 范章群)