邢東旭 廖森泰 黃文潔 李慶榮 肖陽 趙超藝 晏石娟 蔣滿貴 黃旭華 楊瓊
摘要:【目的】利用GC-MS代謝組學(xué)技術(shù)研究阿苯達(dá)唑?qū)嘉⒘W硬〖倚Q血淋巴代謝物的影響,從代謝組學(xué)角度闡明阿苯達(dá)唑的作用機(jī)制,為以阿苯達(dá)唑?yàn)橹鲃┭邪l(fā)新的家蠶微粒子病治療藥物提供理論依據(jù)?!痉椒ā繉ξ妪g起蠶接種家蠶微孢子蟲(Nosema bombycis,N.b)建立家蠶微粒子病模型,分別于攻毒后12、24、48、72和96 h開始飼喂阿苯達(dá)唑混懸液處理桑葉直至上蔟結(jié)繭,以未攻毒未給藥的家蠶為對照,待化蛹后逐頭鏡檢調(diào)查家蠶感染率,以評價(jià)阿苯達(dá)唑的治療效果;同時(shí)采用GC-MS代謝組學(xué)技術(shù)進(jìn)行非靶向代謝組學(xué)研究,篩選患微粒子病蠶體血淋巴中的差異代謝物,并通過MetaboAnalyst 4.0進(jìn)行代謝通路分析?!窘Y(jié)果】阿苯達(dá)唑?qū)倚Q微粒子病具有顯著的治療效果,藥物作用的關(guān)鍵時(shí)間是攻毒后24~48 h。與對照組家蠶血淋巴相比,從模型組家蠶血淋巴中共篩選并定性獲得47種差異代謝物,其中27種代謝物呈下降趨勢、20種代謝物呈上升趨勢。對模型組與阿苯達(dá)唑給藥組的家蠶血淋巴樣本進(jìn)行比較分析,結(jié)果發(fā)現(xiàn)除木酮糖、D-葡萄糖-6-磷酸、肌醇、泛酸、甲基丁二酸和油酸外,阿苯達(dá)唑?qū)Χ鄶?shù)與家蠶微粒子病相關(guān)的代謝物具有干預(yù)調(diào)節(jié)作用。通過MetaboAnalyst 4.0進(jìn)行通路分析,發(fā)現(xiàn)家蠶感染N.b后有6條主要的代謝通路發(fā)生明顯變化,分別為:①淀粉和蔗糖代謝;②苯丙氨酸、酪氨酸和色氨酸的生物合成;③苯丙氨酸代謝;④甘氨酸、絲氨酸和蘇氨酸代謝;⑤谷胱甘肽代謝;⑥磷酸肌醇代謝。家蠶添食阿苯達(dá)唑混懸液處理桑葉后能有效減輕上述代謝通路的改變,從而促使患微粒子病家蠶處于較正常的生理狀態(tài)。【結(jié)論】阿苯達(dá)唑?qū)倚Q微粒子病具有顯著的治療效果,藥物作用的關(guān)鍵時(shí)間在N.b感染后24~48 h,結(jié)合N.b的生活史,可全面揭示阿苯達(dá)唑治療家蠶微粒子病的作用機(jī)制,即阿苯達(dá)唑通過抑制N.b在蠶體內(nèi)的裂殖體增殖,有效降低N.b感染對家蠶氨基酸代謝和能量代謝的破壞作用,維持家蠶的正常生理狀態(tài),而達(dá)到治療效果。
關(guān)鍵詞: 家蠶微粒子病;家蠶微孢子蟲(N.b);阿苯達(dá)唑;代謝組學(xué);GC-MS
中圖分類號(hào): S884.21? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)07-1735-10
Therapeutic mechanism of albendazole in treating pebrine disease of Bombyx mori based on GC-MS metabonomics analysis
XING Dong-xu1, LIAO Sen-tai1, HUANG Wen-jie2, LI Qing-rong1, XIAO Yang1,
ZHAO Chao-yi1, YAN Shi-juan2, JIANG Man-gui3, HUANG Xu-hua3*, YANG Qiong1*
(1Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou? ?510610, China; 2Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou? 510640, China; 3Guangxi Academy of Sericulture Sciences, Nanning? 530007, China)
Abstract:【Objective】GC-MS metabolomics was used to investigate the effect of albendazole on hemolymph metabolites of Bombyx mori with pebrine disease, and to clarify the action mechanism of albendazole from the perspective of metabolomics, so as to provide a theoretical basis for developing new therapeutic drugs for pebrine disease with albendazole as the main agent. 【Method】The model of pebrine disease was established by inoculating 5th instar Bombyx mori larvae with Nosema bombycis(N.b).? The mulberry leaves coating with albendazole suspension were fed at 12, 24, 48, 72 and 96 h after inoculation until cocooning. The silkworms without inoculation and administration was used as the control. The infection rate was investigated by individual microscopic examination at pupal stage and the therapeutic effect was evaluated; GC-MS was used to conduct the non-targeted metabonomics study to search the hemolymph related differential metabolites in silkworms with pebrine disease, and the related metabolic pathways were constructed by MetaboAnalyst 4.0. 【Result】The results showed that albendazole had a significant therapeutic effect on pebrine disease, and the key time was 24-48 h after inoculation. Compared with the control group, a total of 47 different metabolites were screened and identified from the hemolymph of B.mori in the model group, of which 27 metabolites showed a downward trend and 20 meta-bolites showed an upward trend. The comparative analysis of the hemolymph samples between the model group and the albendazole treatment group showed that albendazole had an intervention and regulation effect on most metabolites related to pebrine disease except xylulose, D-glucose 6-phosphate, inositol, pantothenic acid, methylsuccinic acid and oleic acid. Six metabolic pathways changed greatly after infection with N.b by MetaboAnalyst 4.0, which were as follows:① starch and sucrose metabolism; ② biosynthesis of phenylalanine, tyrosine and tryptophan; ③ phenylalanine metabolism; ④ glycine, serine and threonine metabolism; ⑤ glutathione metabolism; ⑥ inositol phosphate metabolism. The albendazole suspension treatment could effectively reduce the changes of the above metabolic pathways, so as to promote the silkworms suffering from pebrine disease in a more normal physiological state. 【Conclusion】Albendazole had a significant therapeutic effect on pebrine disease of B. mori. The key time of drug action was 24-48 h after N.b infection. Combined with the life cycle of N.b, the mechanism of albendazole in the treatment of pebrine disease can be fully revealed. Albendazole can effectively reduce the the destruction of amino acid metabolism and energy metabolism by N.b infection by inhibiting the proliferation of the meronts in silkworms, thus maintaining the normal physiological state of B. mori and achieve healing effects.
Key words: silkworm pebrine disease; Nosema bombycis(N.b); albendazole; metabonomics; GC-MS
Foundation item:Youth Project of National Natural Science Foundation of China(31702189); General Project of Guangdong Natural Science Foundation(2021A1515010595); Guangdong Agricultural Science and Technology Innovation and Promotion System Construction Project(2021KJ124)
0 引言
【研究意義】家蠶微粒子病是微孢子蟲感染家蠶引起的一種毀滅性傳染性蠶病,具有食下和胚種2種傳染途徑,是蠶業(yè)上唯一的法定檢疫對象(黃旭華等,2012,2020)。我國蠶區(qū)家蠶病原性微孢子蟲分布廣泛,種類繁多,且各種微孢子蟲的感染力存在明顯差異(黃旭華等,2018),防治家蠶微粒子病是蠶業(yè)生產(chǎn)的重點(diǎn)和難點(diǎn),但生產(chǎn)上仍沿用傳統(tǒng)鏡檢母蛾淘汰帶毒蠶種預(yù)防為主的被動(dòng)防治策略,至今尚缺乏有效的治療手段(魯興萌和邵勇奇,2016)。因此,研發(fā)家蠶微粒子病治療藥物并明確其作用機(jī)理,對蠶業(yè)生產(chǎn)上有效防控家蠶微粒子病具有重要意義?!厩叭搜芯窟M(jìn)展】化學(xué)藥物防治昆蟲微孢子蟲在國外已有若干嘗試,如在蜜蜂群落上成功采用煙曲霉素有效控制西方蜜蜂微孢子蟲感染(Higes et al.,2011);草酸和ApiHerb?對東方蜜蜂微孢子蟲感染均表現(xiàn)出良好的防治效果(Nanetti et al.,2015;Michalczyk and Sokó?,2018);此外,一些含有天然化合物的配方藥物也被用于治療蜂群C型微粒子蟲?。˙otías et al.,2013)。阿苯達(dá)唑(Albendazole,ABZ)是一種咪唑衍生物類廣譜驅(qū)腸蟲藥物,具有高效低毒的特點(diǎn),已廣泛應(yīng)用于治療由線蟲、吸蟲及絳蟲等病原微生物引起的疾?。ɡ顣枣玫?,2019)。Haque等(1993)研究表明,阿苯達(dá)唑在體外和體內(nèi)均具有抗家蠶微孢子蟲(Nosema bombycis,N.b)的活性,可有效控制家蠶微粒子病的發(fā)展;Boohene等(2003)研究證實(shí),采用3%阿苯達(dá)唑能有效降低成年盜捕金小蜂微粒子蟲經(jīng)卵傳播,但未能完全清除感染。Johny等(2009)在蝗蟲中通過血腔注射法評估噻菌靈、奎寧、阿苯達(dá)唑和煙曲霉素等4種抗生素對腦炎微孢子蟲的防治效果,結(jié)果發(fā)現(xiàn)這些藥物能使微孢子蟲數(shù)量顯著減少,但未能消除感染。在國內(nèi),廣東省農(nóng)科院蠶業(yè)研究所蠶病組(1979)最早報(bào)道了苯來特、多菌靈和托布津等化學(xué)藥物對家蠶微粒子病的治療作用;劉仕賢等(1993)以多菌靈為主劑成功研發(fā)出防治家蠶微粒子病的藥物——防微靈,并獲得國家獸藥產(chǎn)品批準(zhǔn)文號(hào)(獸藥字〔2012〕190099841);曹寧寧等(2016)研究表明以防微靈處理的桑葉飼喂原蠶,其繁育系數(shù)較漂白粉液處理略有提高,且防微靈使用方便、操作簡單,即在蠶種生產(chǎn)中表現(xiàn)出良好的防治效果,使家蠶微粒子病防治措施由預(yù)防為主轉(zhuǎn)變?yōu)轭A(yù)防與治療相結(jié)合,有效保障了我國蠶種生產(chǎn)安全(廖森泰等,2016)。此外,貢成良等(2000)研究發(fā)現(xiàn),五齡起蠶感染N.b后采用復(fù)配TAAL進(jìn)行治療,其母蛾帶毒率可降低30%左右。魯興萌等(2000)、錢永華等(2001)研究證明咪唑類藥物能抑制N.B增殖或降低家蠶微粒子病發(fā)生率。田發(fā)芳等(2020)研究表明,用50%克微1號(hào)可濕性粉劑1000倍稀釋液噴灑桑園桑葉表面,再連續(xù)不間斷飼蠶直至上蔟,家蠶微粒子病得到有效控制,且具有節(jié)省勞動(dòng)力和降低勞動(dòng)強(qiáng)度的優(yōu)勢?!颈狙芯壳腥朦c(diǎn)】沈中元等(1997)、楊瓊等(2010)、黃旭華等(2016)先后證實(shí)阿苯達(dá)唑?qū)倚Q微粒子病具有顯著的治療效果,并研發(fā)出以阿苯達(dá)唑?yàn)橹鲃┑募倚Q微粒子病治療藥物,但這些藥物的作用機(jī)制及其對家蠶血淋巴代謝物的影響均有待進(jìn)一步探究?!緮M解決的關(guān)鍵問題】建立家蠶微粒子病模型,調(diào)查阿苯達(dá)唑?qū)倚Q微粒子病的治療作用,并利用GC-MS代謝組學(xué)技術(shù)研究阿苯達(dá)唑?qū)嘉⒘W硬〖倚Q血淋巴代謝物的影響,從代謝組學(xué)角度闡明阿苯達(dá)唑的作用機(jī)制,以期為以阿苯達(dá)唑?yàn)橹鲃┭邪l(fā)新的家蠶微粒子病治療藥物提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試的N.b由廣東省農(nóng)業(yè)科學(xué)院蠶業(yè)與農(nóng)產(chǎn)品加工研究所繼代保存,供試家蠶品種春5由廣東家蠶種質(zhì)資源庫提供。
1. 2 阿苯達(dá)唑?qū)倚Q微粒子病的治療作用調(diào)查
將阿苯達(dá)唑配制成混懸液(主劑濃度為1000 mg/L),桑葉放入混懸液中完全浸濕,取出后晾干備用。以N.b孢子液(1×106個(gè)/mL)均勻涂抹桑葉,桑葉稍微晾干后添食接種五齡起蠶,4 h后飼喂正常桑葉,分別于攻毒后12、24、48、72和96 h開始飼喂阿苯達(dá)唑混懸液處理桑葉直至上蔟結(jié)繭,化蛹后逐頭進(jìn)行顯微鏡檢,統(tǒng)計(jì)家蠶微粒子病感染率,計(jì)算相對治療效果。試驗(yàn)以攻毒但未給藥為模型組,未攻毒未給藥為對照組,每組設(shè)3個(gè)重復(fù),每個(gè)重復(fù)50頭家蠶。相對治療效果(%)=(1-處理組發(fā)病率/模型組發(fā)病率)×100。
1. 3 代謝組樣本制備
阿苯達(dá)唑給藥組以1×106個(gè)/mL的N.b孢子液均勻涂抹桑葉,添食接種四齡起蠶,4 h后以阿苯達(dá)唑混懸液處理桑葉飼育至五齡第3 d,用無菌注射器刺破家蠶尾足并在冰上收集家蠶血淋巴,液氮速凍后置于-80 ℃冰箱保存?zhèn)溆?。同時(shí)設(shè)模型組和對照組,每組設(shè)6個(gè)重復(fù),每個(gè)重復(fù)5頭家蠶。取凍存的家蠶血淋巴樣本在室溫下解凍,渦旋振蕩5 s。取20.0 μL蠶血淋巴置于2 mL的EP管中,加入80.0 μL甲醇,渦旋振蕩30 s,然后4 ℃下14000×g離心15 min,吸取80.0 μL上清液置于高回收率玻璃衍生小瓶中,加入10.0 μL L-苯丙氨酸內(nèi)標(biāo)液(0.1 mg/mL),將提取液用溫和的氮?dú)獯蹈伞O蚋稍镂镏屑尤?0.0 μL鹽酸甲氧胺吡啶溶液(20 mg/mL),37 ℃培養(yǎng)箱中肟化反應(yīng)90 min,再加入30.0 μL BSTFA衍生試劑[含1%三甲基氯硅烷(TMCS)],70 ℃下繼續(xù)反應(yīng)60 min。處理后的樣本用于GC-MS代謝組學(xué)分析。
1. 4 GC-MS代謝組學(xué)分析
采用Agilent-7890-A-5975C氣相色譜—質(zhì)譜聯(lián)用儀進(jìn)行GC-MS代謝組學(xué)分析。氣相色譜(GC)條件:HP-5ms毛細(xì)管色譜柱(30 m×0.25 mm×0.25 μm),載氣為高純氦氣,載氣流速6 mL/min。不分流進(jìn)樣,進(jìn)樣量0.5 μL,進(jìn)樣口溫度280 ℃。初始柱溫70 ℃,維持2 min,以6 ℃/min的速度升至160 ℃,再以10 ℃/min的速度升至240 ℃,最后以20 ℃/min的速度升至300 ℃,并保持6 min。質(zhì)譜(MS)條件:電離方法為電子電離(EI),離子源溫度230 ℃,四極桿溫度150 ℃,采用全掃描采集模式進(jìn)行質(zhì)譜掃描,掃描范圍(m/z)為50~600 amu。
1. 5 數(shù)據(jù)分析
將原始數(shù)據(jù)在R軟件平臺(tái)使用自寫程序代碼進(jìn)行基線過濾、峰識(shí)別、峰積分、保留時(shí)間校正、峰對齊和質(zhì)譜碎片歸屬分析,然后將試驗(yàn)數(shù)據(jù)導(dǎo)入Excel 2017進(jìn)行后期編輯,最后將整理后的數(shù)據(jù)矩陣導(dǎo)入Simca-P 11.0進(jìn)行多變量統(tǒng)計(jì)分析。構(gòu)建正交偏最小二乘法判別分析(OPLS-DA)模型,按照模型第一主成分的變量投影重要性(Variable importance in the projection,VIP)>1.000,并結(jié)合Mann-Whitney U檢驗(yàn)的P<0.05篩選差異代謝物。將代謝物保留時(shí)間和特征質(zhì)荷比與自建的標(biāo)準(zhǔn)物數(shù)據(jù)庫及NIST商業(yè)數(shù)據(jù)庫比對,進(jìn)行物質(zhì)定性分析,通過MetaboAnalyst 4.0(http://www.metaboanalyst.ca)進(jìn)行代謝通路分析(Pathway analysis)。采用SPSS 23.0對試驗(yàn)數(shù)據(jù)進(jìn)行單因素方差分析(One-way ANOVA)。
2 結(jié)果與分析
2. 1 阿苯達(dá)唑?qū)倚Q微粒子病的治療效果
于攻毒后不同時(shí)間通過飼喂阿苯達(dá)唑混懸液處理桑葉的方式進(jìn)行給藥,其相對治療效果如圖1所示。攻毒12和24 h后,以阿苯達(dá)唑給藥組的治療效果最佳,與對照組一致,在蠶蛹樣本內(nèi)均未檢測到N.b。攻毒48 h后,阿苯達(dá)唑給藥組的相對治療效果有所降低,為(90.10±1.36)%。攻毒72和96 h后,阿苯達(dá)唑給藥組的治療效果已不明顯,相對治療效果分別為(25.80±10.24)%和(20.08±5.37)%。進(jìn)一步證實(shí)阿苯達(dá)唑?qū)倚Q微粒子病有顯著的治療效果,并揭示藥物作用的關(guān)鍵時(shí)間是攻毒后24~48 h。
2. 2 代謝輪廓分析結(jié)果
為了直觀展示家蠶微粒子病模型組與對照組家蠶血淋巴樣本間的差異,首先對這2組樣本進(jìn)行主成分分析(PCA),結(jié)果如圖2-A所示。模型組和對照組家蠶血淋巴樣本在PCA得分圖上能較好地區(qū)分開。由于PCA分析是無監(jiān)督模式的識(shí)別分析方法,為使樣本最大化分離,達(dá)到更好的組間分類效果,因此進(jìn)一步建立偏最小二乘法判別分析(PLS-DA)模型,并進(jìn)行隨機(jī)置換檢驗(yàn)(n=200),其排列試驗(yàn)結(jié)果(圖2-B)顯示,R2=0.735,Q2= -0.523,表明PLS-DA模型質(zhì)量可靠,模型穩(wěn)定性及預(yù)測能力較優(yōu)。PLS-DA模型分析也發(fā)現(xiàn),模型組和對照組家蠶血淋巴樣本分別位于PLS-DA圖的左右2個(gè)區(qū)域,表明家蠶血淋巴樣本間存在明顯的代謝差異。
2. 3 差異代謝物鑒定結(jié)果
為獲得模型組和對照組家蠶血淋巴樣本間更加可靠且具有顯著差異的代謝物信息,建立OPLS-DA模型,并繪制得分圖和載荷圖,以尋找貢獻(xiàn)值較大的變量(圖3)。在OPLS-DA載荷圖中,橫坐標(biāo)表示預(yù)測主成分,縱坐標(biāo)表示正交主成分;2個(gè)藍(lán)色圓點(diǎn)代表模型組和對照組的虛擬位置,離藍(lán)色圓點(diǎn)越近的X變量則表明該代謝物具有更好區(qū)分兩組家蠶血淋巴樣品的能力。結(jié)合VIP>1.000和P<0.05篩選出差異性代謝物,然后通過搜索自建的標(biāo)準(zhǔn)物數(shù)據(jù)庫和NIST商業(yè)數(shù)據(jù)庫對差異代謝物進(jìn)行定性分析。與對照組家蠶血淋巴相比,從模型組家蠶血淋巴中共篩選并定性獲得47種差異代謝物,結(jié)果見表2。其中,27種代謝物呈下降趨勢,分別是4,5-二甲基-2,6-二羥基嘧啶、D-赤糖酸-γ-內(nèi)酯、胱硫醚、木酮糖、甘露糖-6-磷酸、賴氨酸、膽固醇、D-葡萄糖-6-磷酸、L-鳥氨酸、2-甲基檸檬酸、對羥基苯甲酸、阿拉伯呋喃糖、α-亞麻酸、6-磷酸-葡萄糖酸、3-磷酸甘油、β-谷甾醇、2-氨基己二酸、苯丙氨酸、磷酸甲酯、肌醇、哌啶酸、麥芽糖、2-甲基蘋果酸、D-核糖-6-磷酸、泛酸、海藻糖和甲基丁二酸;20種代謝物呈上升趨勢,分別是多巴、尿囊素、1-甲基-L-組氨酸、5-羥基哌啶酸、尿嘧啶、尿酸、組胺、谷氨酰胺、N-乙酰谷氨酰胺-6-磷酸、油酸、氨基丙二酸、3,6-二羥基己酸、L-蘇氨酸、2-單棕櫚酸甘油、甘氨酸、AMDA(q-aminomethyl-9,10-dihydroanthracene)、琥珀酸、6-羥基-2-氨基己酸、3-氨基-2-哌啶酮和奎寧酸。
2. 4 阿苯達(dá)唑?qū)倚Q血淋巴代謝的影響
為了明確阿苯達(dá)唑?qū)倚Q血淋巴代謝的影響,對模型組、對照組和阿苯達(dá)唑給藥組家蠶血淋巴樣本進(jìn)行PCA和OPLS-DA分析,結(jié)果如圖4所示。模型組和對照組家蠶血淋巴樣本在PCA得分圖(圖4-A)上能有效區(qū)分,而阿苯達(dá)唑給藥組家蠶血淋巴代謝輪廓明顯趨向于對照組;模型組、對照組和阿苯達(dá)唑給藥組家蠶血淋巴樣本在OPLS-DA得分圖(圖4-B)上能較好地區(qū)分開。由表2已知,與對照組家蠶血淋巴相比,家蠶感染N.b后(模型組)其血淋巴代謝物發(fā)生明顯變化,27種代謝物呈下降趨勢,20種代謝物呈上升趨勢。以模型組家蠶血淋巴為參照,分析上述差異代謝物在阿苯達(dá)唑給藥組家蠶血淋巴中的變化趨勢,若變化趨勢相反則表明阿苯達(dá)唑?qū)Ω腥綨.b家蠶血淋巴代謝物具有干預(yù)調(diào)節(jié)作用,具體變化趨勢見表2,結(jié)果發(fā)現(xiàn)除木酮糖、D-葡萄糖-6-磷酸、肌醇、泛酸、甲基丁二酸和油酸外,阿苯達(dá)唑?qū)Χ鄶?shù)與家蠶微粒子病相關(guān)的代謝物具有干預(yù)調(diào)節(jié)作用。
2. 5 代謝通路分析結(jié)果
利用篩選到的差異性代謝物(表2),通過MetaboAnalyst 4.0進(jìn)行通路分析,以發(fā)現(xiàn)與家蠶微粒子病相關(guān)的代謝通路。由圖5可看出,家蠶感染N.b后有6條主要的代謝通路發(fā)生明顯變化,分別為:①淀粉和蔗糖代謝;②苯丙氨酸、酪氨酸和色氨酸的生物合成;③苯丙氨酸代謝;④甘氨酸、絲氨酸和蘇氨酸代謝;⑤谷胱甘肽代謝;⑥磷酸肌醇代謝。家蠶添食阿苯達(dá)唑浸濕桑葉后能有效減輕上述代謝通路的改變,從而促使患微粒子病家蠶處于較正常的生理狀態(tài)。其中,模型組家蠶血淋巴中的賴氨酸、鳥氨酸、苯丙氨酸、蘇氨酸和甘氨酸代謝水平均發(fā)生顯著變化。與對照組家蠶血淋巴相比,賴氨酸、鳥氨酸和苯丙氨酸代謝水平顯著下調(diào),而甘氨酸和蘇氨酸代謝水平顯著上調(diào)。
3 討論
阿苯達(dá)唑是一種廣譜的苯并咪唑類殺蟲劑,多用于驅(qū)蛔蟲、蟯蟲、絳蟲、鞭蟲、鉤蟲及糞圓線蟲等(Goyal et al.,2018)。因具有高效低毒的特點(diǎn),在畜禽養(yǎng)殖和水產(chǎn)養(yǎng)殖業(yè)上已得到廣泛應(yīng)用(Movahedi et al.,2017)。沈中元等(1997)研究表明,以阿苯達(dá)唑?yàn)橹鲃┑目宋?號(hào)對家蠶微粒子病具有明顯治療作用,且0.2~2.0 g/L的藥液濃度均能達(dá)到完全治愈的效果。本研究的養(yǎng)蠶試驗(yàn)結(jié)果也表明,攻毒12和24 h后阿苯達(dá)唑給藥組的家蠶治療效果均達(dá)100.00%,攻毒48 h后阿苯達(dá)唑給藥組的治療效果有所降低[(90.10±1.36)%],攻毒72和96 h后阿苯達(dá)唑給藥組的治療效果已不明顯,揭示阿苯達(dá)唑作用的關(guān)鍵時(shí)間在接種N.b后的24~48 h,此時(shí)正值N.b在蠶體內(nèi)的裂殖體增殖階段(Xing et al.,2014)。據(jù)相關(guān)文獻(xiàn)報(bào)道,苯并咪唑類藥物可通過結(jié)合病原菌β-微管蛋白單體而抑制微管形成,從而阻止細(xì)胞有絲分裂(Akiyoshi et al.,2007;Li et al.,2014),故推測阿苯達(dá)唑是通過抑制N.b在家蠶體內(nèi)的裂殖體增殖而達(dá)到治療效果。
家蠶微粒子病是N.b感染家蠶而引起的一種慢性傳染病(Pan et al.,2013)。感染N.b的家蠶體色暗淡,行動(dòng)呆滯,食欲減退,發(fā)育遲緩,群體大小不齊,蠶體背部或氣門線上下出現(xiàn)黑褐色斑點(diǎn)。代謝組學(xué)是對生物體病理生理刺激產(chǎn)生的代謝物變化進(jìn)行測定分析,為了解疾病的致病機(jī)理提供新手段(Nicholson et al.,1999)。本研究結(jié)果顯示,患家蠶微粒子病蠶體血淋巴中的代謝物譜已發(fā)生明顯變化,27種代謝物呈下降趨勢,20種代謝物呈上升趨勢。這些代謝物主要包括氨基酸、糖類和有機(jī)酸等物質(zhì),涉及6條主要的代謝通路,主要與氨基酸代謝和能量代謝密切相關(guān),說明N.b感染導(dǎo)致家蠶的氨基酸代謝和能量代謝被破壞,引起家蠶的生理障礙和組織器官功能喪失。
N.b可通過宿主線粒體為其提供能量,致使寄主的正常代謝出現(xiàn)異?;虬l(fā)生細(xì)胞凋亡(Lom and Nilsen,2003;Williams et al.,2008)。家蠶的碳水化合物代謝包括糖酵解、戊糖循環(huán)和三羧酸循環(huán)。海藻糖是存在于昆蟲血淋巴中含量最高的糖類物質(zhì),與血糖的作用類似,是重要的儲(chǔ)能物質(zhì)之一,參與體內(nèi)的糖代謝過程(Elbein et al.,2003;Shukla et al.,2015)。正常狀態(tài)下,家蠶體液中的海藻糖含量相對穩(wěn)定;但在感染N.b的家蠶血淋巴中海藻糖、D-葡萄糖-6-磷酸、6-磷酸-葡萄糖酸和麥芽糖等均明顯下降,即N.b侵染家蠶后其能量代謝出現(xiàn)異常。此外,模型組家蠶血淋巴中的賴氨酸、鳥氨酸、苯丙氨酸、蘇氨酸和甘氨酸代謝水平均發(fā)生顯著變化。與對照組家蠶血淋巴相比,賴氨酸、鳥氨酸和苯丙氨酸代謝水平顯著下調(diào),而甘氨酸和蘇氨酸代謝水平顯著上調(diào)。甘氨酸是合成蠶絲蛋白的主要氨基酸(Chen et al.,2015),其含量增多可能是由于家蠶絲腺受損,絲蛋白合成受阻導(dǎo)致相關(guān)氨基酸在血淋巴中富集。苯丙氨酸可生成酪氨酸,然后經(jīng)酚酶氧化生成多巴,多巴可進(jìn)一步生成黑色素,而參與昆蟲的黑化反應(yīng)(Fuchs et al.,2014)。
本研究的PCA和OPLS-DA分析發(fā)現(xiàn),模型組和對照組家蠶血淋巴樣本能較好地區(qū)分開,而阿苯達(dá)唑給藥組家蠶血淋巴樣本的代謝輪廓明顯趨向于對照組。除木酮糖、D-葡萄糖-6-磷酸、肌醇、泛酸、甲基丁二酸和油酸外,阿苯達(dá)唑給藥組家蠶血淋巴中與家蠶微粒子病相關(guān)的代謝物均呈現(xiàn)出回調(diào)趨勢,說明阿苯達(dá)唑通過抑制N.b增殖,有效降低病原微生物對家蠶代謝的破壞作用,從而維持家蠶的正常生理狀態(tài)。
4 結(jié)論
阿苯達(dá)唑?qū)倚Q微粒子病具有顯著的治療效果,藥物作用的關(guān)鍵時(shí)間在N.b感染后24~48 h,結(jié)合N.b的生活史,可全面揭示阿苯達(dá)唑治療家蠶微粒子病的作用機(jī)制,即阿苯達(dá)唑通過抑制N.b在蠶體內(nèi)的裂殖體增殖,有效降低N.b感染對家蠶氨基酸代謝和能量代謝的破壞作用,維持家蠶的正常生理狀態(tài),而達(dá)到治療效果。
參考文獻(xiàn):
曹寧寧,袁桂陽,宋友權(quán),龔大剛,王少伯. 2016. 防微靈對家蠶微粒子病的防治效果試驗(yàn)[J]. 中國蠶業(yè),37(3):32-36. doi:10.16839/j.cnki.zgcy.2016.03.008. [Cao N N,Yuan G Y,Song Y Q,Gong D G,Wang S B. 2016. Control effect of Fangweiling on Bombyx mori pebrine disease[J]. China Sericulture,37(3):32-36.]
貢成良,朱軍貞,潘中華,曹廣力,薛仁宇. 2000. 復(fù)配TAAL對家蠶微粒子病的治療[J]. 江蘇蠶業(yè),(3):9-11. [Gong C L,Zhu J Z,Pan Z H,Cao G L,Xue R Y. 2000. Treatment of Bombyx mori pebrine disease with compound TAAL[J]. Jiangsu Sericulture,(3):9-11.]
廣東省農(nóng)科院蠶業(yè)研究所蠶病組. 1979. 多菌靈和苯來特治療桑蠶微粒子病的效果試驗(yàn)[J]. 廣東農(nóng)業(yè)科學(xué),(4):53-55. doi:10.16768/j.issn.1004-874x.1979.04.013. [Silkworm Disease Group,Sericulture Research Institute,Guangdong Academy of Agricultural Sciences. 1979. Effect of carbendazim and benazelate on Bombyx mori pebrine[J]. Guangdong Agricultural Sciences,(4):53-55.]
黃旭華,何強(qiáng),湯慶坤,蔣滿貴,李田,龍江瓊,潘國慶,鄭寧,魯成,潘志新. 2020. 一株從原蠶分離的微孢子蟲的生物學(xué)特性及其系統(tǒng)發(fā)育分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),51(1):11-18. doi:10.3969/j.issn.2095-1191.2020.01.002. [Huang X H,He Q,Tang Q K,Jiang M G,Li T,Long J Q,Pan G Q,Zheng N,Lu C,Pan Z X. 2020. Biological characters and phylogenetic analysis of a microsporidian isolated from parent silkworm[J]. Journal of Southern Agriculture,51(1):11-18.]
黃旭華,潘志新,韋廷秀,湯慶坤,賈雪峰,黃深惠,王霞,羅梅蘭. 2016. 家蠶微粒子病治療藥物篩選和應(yīng)用技術(shù)研究[J]. 廣西蠶業(yè),53(1):6-11. doi:10.3969/j.issn.1006-1657. 2016.01.002. [Huang X H,Pan Z X,Wei T X,Tang Q K,Jia X F,Huang S H,Wang X,Luo M L. 2016. Scree-ning and application of drugs for pebrine disease of Bombyx mori[J]. Guangxi Sericulture,53(1):6-11.]
黃旭華,祁廣軍,湯慶坤,潘志新,羅梅蘭,蔣滿貴,朱方容,黃深惠. 2012. 一株從家蠶體內(nèi)分離獲得的微孢子蟲GXM2的生物學(xué)特性[J]. 南方農(nóng)業(yè)學(xué)報(bào),43(7):1049-1053. doi:10.3969/j:issn.2095-1191.2012.07.1049. [Huang X H,Qi G J,Tang Q K,Pan Z X,Luo M L,Jiang M G,Zhu F R,Huang S H. 2012. Biological characteristics of a strain of microsporidia GXM2 isolated from silkworm[J]. Journal of Southern Agriculture,43(7):1049-1053.]
黃旭華,湯慶坤,羅梅蘭,黃深惠,蔣師東,夏青,黃景灘,李安華,魯成,陳小青,毛洪斌,潘志新. 2018. 廣西昆蟲微孢子蟲資源調(diào)查及其特性分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(8):1541-1547. doi:10.3969/j.issn.2095-1191.2018.08.11. [Huang X H,Tang Q K,Luo M L,Huang S H,Jiang S D,Xia Q,Huang J T,Li A H,Lu C,Chen X Q,Mao H B,Pan Z X. 2018. Investigation on resource of insect microsporidan in Guangxi and its characters[J]. Journal of Southern Agriculture,49(8):1541-1547.]
李曉婷,周緒正,李冰,張繼瑜. 2019. 廣譜抗蠕蟲藥阿苯達(dá)唑研究進(jìn)展[J]. 中獸醫(yī)醫(yī)藥雜志,38(3):26-29. doi:10. 13823/j.cnki.jtcvm.2019.03.008. [Li X T,Zhou X Z,Li B,Zhang J Y. 2019. Reviewed on research of albendazole[J]. Journal of Traditional Chinese Veterinary Medicine,38(3):26-29.]
廖森泰,楊瓊,邢東旭,肖陽,葉明強(qiáng),李慶榮. 2016. 家蠶微粒子病全程防控技術(shù)體系簡述[J]. 蠶業(yè)科學(xué),42(1):148-151. doi:10.13441/j.cnki.cykx.2016.01.021. [Liao S T,Yang Q,Xing D X,Xiao Y,Ye M Q,Li Q R. 2016. A brief introduction to the whole control and prevention technology system against Bombyx mori pebrine disease[J]. Science of Sericulture,42(1):148-151.]
劉仕賢,方定堅(jiān),廖森泰,鄭祥明,朱德貞,農(nóng)朝志,余愛群,黃起鵬,季鳳英. 1993. 防微靈治療家蠶微粒子病研究[J]. 廣東農(nóng)業(yè)科學(xué),(4):40-43. doi:10.16768/j.issn.1004-874x. 1993.04.016. [Liu S X,F(xiàn)ang D J,Liao S T,Zheng X M,Zhu D Z,Nong C Z,Yu A Q,Huang Q P,Ji F Y. 1993. Study on the treatment of pebrine with Fangweiling[J]. Guangdong Agricultural Sciences,(4):40-43.]
魯興萌,金偉,吳一舟,吳金美. 2000. 丙硫苯咪唑等藥劑對家蠶微粒子病的治療作用[J]. 中國蠶業(yè),(1):19-21. doi: 10.16839/j.cnki.zgcy.2000.01.008. [Lu X M,Jin W,Wu Y Z,Wu J M. 2000. Therapeutic effect of albendazole on pebrine of Bombyx mori[J]. China Sericulture,(1):19-21.]
魯興萌,邵勇奇. 2016. 家蠶微粒子病防控技術(shù)研究的發(fā)展現(xiàn)狀與趨勢[J]. 蠶業(yè)科學(xué),42(6):945-952. doi:10.13441/j.cnki.cykx.2016.06.001. [Lu X M,Shao Y Q. 2016. A review on current status and development trend of pebrine prevention and control technology[J]. Acta Sericologica Sinica,42(6):945-952.]
錢永華,魯興萌,金偉,王建芳,黃金山,李宏. 2001. 幾種化學(xué)藥物對家蠶微粒子病的治療效果[J]. 北方蠶業(yè),22(4):14-16. doi:10.3969/j.issn.1673-9922.2001.04.004. [Qian Y H,Lu X M,Jin W,Wang J F,Huang J S,Li H. 2001. Therapeutic effect of several chemical drugs on pebrine disease of Bombyx mori[J]. North Sericulture,22(4):14-16.]
沈中元,徐莉,張志芳,黃可威. 1997. 克微1號(hào)治療家蠶微粒子病研究[J]. 中國蠶業(yè),(3):11-13. doi:10.16839/j.cnki. zgcy.1997.03.005. [Shen Z Y,Xu L,Zhang Z F,Huang K W. 1997. Study on the treatment of pebrine disease with Kewei No.1[J]. China Sericulture,(3):11-13.]
田發(fā)芳,吳越昊,殷益明,邢建康,薛坤榮,吳懷民. 2020. “克微1號(hào)”應(yīng)用于蠶種生產(chǎn)防治家蠶微粒子病的成效評價(jià)[J]. 中國蠶業(yè),41(2):60-63. doi:10.16839/j.cnki.zgcy. 2020.02.015. [Tian F F,Wu Y H,Yin Y M,Xing J K,Xue K R,Wu H M. 2020. Effect evaluation of“Kewei No.1”applied to silkworm egg production to control the pebrine disease[J]. China Sericulture,41(2):60-63.]
楊瓊,邢東旭,廖森泰,羅國慶,吳福泉,唐翠明,肖陽. 2010. 家蠶微粒子病治療藥物的研究I. 藥物篩選[J]. 廣東蠶業(yè),44(3):35-37. [Yang Q,Xing D X,Liao S T,Luo G Q,Wu F Q,Tang C M,Xiao Y. 2010. Studies on drugs for the treatment of pebrine disease of Bombyx moriⅠ. Drug screening[J]. Guangdong Sericulture,44(3):35-37.]
Akiyoshi D E,Weiss L M,F(xiàn)eng X C,Williams B A P,Kee-ling P J,Zhang Q S,Tzipori S. 2007. Analysis of the β-tubulin genes from Enterocytozoon bieneusi isolates from a human and rhesus macaque[J]. The Journal of Eukaryo-tic Microbiology,54(1):38-41. doi:10.1111/j.1550-7408. 2006.00140.x.
Boohene C K,Geden C J,Becnel J J. 2003. Evaluation of remediation methods for Nosema disease in Muscidifurax raptor (Hymenoptera:Pteromalidae)[J]. Environmental En-tomology,32(5):1146-1153. doi:10.1603/0046-225X-32. 5.1146.
Botías C,Martín-Hernández R,Meana A,Higes M. 2013. Screening alternative therapies to control nosemosis type C in honey bee(Apis mellifera iberiensis) colonies[J]. Research in Veterinary Science,95(3):1041-1045. doi:10. 1016/j.rvsc.2013.09.012.
Chen Q M,Liu X Y,Zhao P,Sun Y H,Zhao X J,Xiong Y,Xu G W,Xia Q Y. 2015. GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm,Bombyx mori[J]. Insect Biochemistry and Molecular Biology,57:41-50. doi:10.1016/j.ibmb. 2014.12.007.
Elbein A D,Pan Y T,Pastuszak I,Carroll D. 2003. New insights on trehalose:A multifunctional molecule[J]. Glycobiology,13(4):17R-27R. doi:10.1093/glycob/cwg047.
Fuchs S,Behrends V,Bundy J G,Crisanti A,Nolan T. 2014. Phenylalanine metabolism regulates reproduction and para-site melanization in the malaria mosquito[J]. PLoS One,9(1):e84865. doi:10.1371/journal.pone.0084865.
Goyal K,Sharma A,Arya R,Sharma R,Gupta G K,Sharma A K. 2018. Double edge sword behavior of carbendazim:A potent fungicide with anti-cancer therapeutic properties[J]. Anti-cancer Agents in Medicinal Chemistry,18(1):38-45. doi:10.2174/1871520616666161221113623.
Haque A,Hollister W S,Willcox A,Canning E U. 1993. The antimicrosporidial activity of albendazole[J]. Journal of Invertebrate Pathology,62(2):171-177. doi:10.1006/jipa. 1993.1092.
Higes M,Nozal M J,Alvaro A,Barrios L,Meana A,Martín-Hernández R,del Nozal J B. 2011. The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees(Apis mellifera) under laboratory and field conditions[J]. Apidologie,42(3):364-377. doi:10.1007/s13592-011-0003-2.
Johny S,Nimmo A S,F(xiàn)isher M A,Inks E S,Kirkpatrick R M,Miller P A,Johnson A L,Lites K R,Whitehouse C C,Whitman D W. 2009. Testing intra-hemocelic injection of antimicrobials against Encephalitozoon sp.(microspori-dia) in an insect host[J]. Parasitology Research,104(2):419-424. doi:10.1007/s00436-008-1214-y.
Li L,Xing D X,Li Q R,Xiao Y,Ye M Q,Yang Q. 2014. Determination of albendazole and metabolites in silkworm Bombyx mori hemolymph by ultrafast liquid chromatography tandem triple quadrupole mass spectrometry[J]. PLoS One,9(9):e105637. doi:10.1371/journal.pone.010 5637.
Lom J,Nilsen F. 2003. Fish microsporidia:Fine structural diversity and phylogeny[J]. International Journal for Parasitology,33(2):107-127. doi:10.1016/S0020-7519(02)00252-7.
Michalczyk M,Sokó? R. 2018. Estimation of the influence of selected products on coinfection with N. apis/N. ceranae in Apis mellifera using real-time PCR[J]. Invertebrate Reproduction & Development,62(2):92-97. doi:10.1080/07 924259.2018.1433726.
Movahedi F,Li L,Gu W Y,Xu Z P. 2017. Nanoformulations of albendazole as effective anticancer and antiparasite agents[J]. Nanomedicine,12(20):2555-2574. doi:10.2217/nnm-2017-0102.
Nanetti A,Rodriguez-García C,Meana A,Martín-Hernández R,Higes M. 2015. Effect of oxalic acid on Nosema ceranae infection[J]. Research in Veterinary Science,102:167-172. doi:10.1016/j.rvsc.2015.08.003.
Nicholson J K,Lindon J C,Holmes E. 1999. ‘Metabonomics:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 29(11):1181-1189. doi:https://doi.org/10.1080/004982599238047.
Pan G Q,Xu J S,Li T,Xia Q Y,Liu S L,Zhang G J,Li S G,Li C F,Liu H D,Yang L,Liu T,Zhang X,Wu Z L,F(xiàn)an W,Dang X Q,Xiang H,Tao M L,Li Y H,Hu J H,Li Z,Lin L P,Luo J,Geng L N,Wang L L,Long M X,Wan Y J,He N J,Zhang Z,Lu C,Keeling P J,Wang J,Xiang Z H,Zhou Z Y. 2013. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation[J]. BMC Geno-mics,14:186. doi:10.1186/1471-2164-14-186.
Shukla E,Thorat L J,Nath B B,Gaikwad S M. 2015. Insect trehalase:Physiological significance and potential applications[J]. Glycobiology,25(4):357-367. doi:10.1093/glycob/cwu125.
Williams B A P,Haferkamp I,Keeling P J. 2008. An ADP/ATP-specific mitochondrial carrier protein the microsporidian Antonospora locustae[J]. Journal of Molecular Biology,375(5):1249-1257. doi:10.1016/j.jmb.2007.11.005.
Xing D X,Li L,Liao S T,Luo G Q,Li Q R,Xiao Y,Dai F W,Yang Q. 2014. Identification of a microspordium isolated from Megacopta cribraria (Hemiptera:Plataspidae) and characterization of its pathogenicity in silkworms[J]. Antonie van Leeuwenhoek,106(5):1061-1069. doi:10. 1007/s10482-014-0269-2.
(責(zé)任編輯 蘭宗寶)