史高玲 周東美 余向陽 婁來清 童非 樊廣萍 劉麗珠 高巖
摘要:? 農(nóng)作物可食用部位累積的鎘和砷是人體攝入鎘和砷的主要來源之一。研究農(nóng)作物對鎘和砷的累積機(jī)制,在此基礎(chǔ)上研發(fā)阻控農(nóng)作物對鎘和砷累積的方法和技術(shù),是保障被污染農(nóng)田的安全利用和農(nóng)產(chǎn)品質(zhì)量安全的最有效途徑,對解決農(nóng)田鎘、砷污染難題具有重大意義。鑒于水稻和小麥?zhǔn)侵袊钪饕募Z食作物,本文就水稻和小麥對鎘和砷的吸收、積累和轉(zhuǎn)運(yùn)機(jī)制進(jìn)行了綜述,比較和分析了鎘、砷在土壤-作物系統(tǒng)中遷移、轉(zhuǎn)化過程中的異同點(diǎn)及其相應(yīng)的阻控對策,并探討了該領(lǐng)域未來的研究方向。
關(guān)鍵詞:? 鎘; 砷; 水稻; 小麥; 吸收; 積累
中圖分類號:? X53??? 文獻(xiàn)標(biāo)識碼: A??? 文章編號:? 1000-4440(2021)05-1333-11
Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies
SHI Gao-ling 1, ZHOU Dong-mei? 2 , YU Xiang-yang? 1 , LOU Lai-qing 3, TONG Fei? 1 , FAN Guang-ping? 1 , LIU Li-zhu? 1 , GAO Yan? 1
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2.School of the Environment, Nanjing University, Nanjing 210023, China; 3.College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China)
Abstract:? Accumulation of cadmium (Cd) and arsenic (As) in the edible parts of crops is a major source of As and Cd intake by humans. Studying the mechanisms of Cd and As accumulation and developing methods and technology for controlling Cd and As uptake and accumulation in food crops is the most effective way for guaranteeing safe utilization of the contaminated farmland and quality safety of agricultural products, and is of great significance to solve the problems of Cd and As contamination in the farmland. Given that rice and wheat are the most important food crops in our country, in this review, we summarized the mechanisms responsible for Cd and As absorption, accumulation and transportation in rice and wheat plants. Similarities and differences between Cd and As migration and transformation process in soil-crops system and the strategies to mitigate Cd and As accumulation in rice and wheat grains were discussed. The future researches in this field were also prospected.
Key words:? cadmium; arsenic; rice; wheat; absorb; accumulation
隨著農(nóng)業(yè)和工業(yè)的迅速發(fā)展,中國耕地土壤重金屬污染和農(nóng)產(chǎn)品重金屬超標(biāo)問題日益突出。2014年發(fā)布的《全國土壤污染狀況調(diào)查公報》顯示,中國農(nóng)田土壤污染物點(diǎn)位超標(biāo)率為19.4%,其中鎘(Cd)、汞(Hg)、砷(As)、銅(Cu)、鉛(Pb)、鉻(Cr)、鋅(Zn)和鎳(Ni)的點(diǎn)位超標(biāo)率分別為7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%和4.8%? [1] 。因農(nóng)產(chǎn)品、水源重金屬超標(biāo)導(dǎo)致的人體健康問題時有發(fā)生,包括“鎘大米”、“鎘小麥”、血鉛超標(biāo)、郴州砷污染等事件。為保障中國農(nóng)田土壤環(huán)境質(zhì)量、農(nóng)產(chǎn)品質(zhì)量和人居環(huán)境安全,國務(wù)院于2016年發(fā)布了《土壤污染防治行動計(jì)劃》,其中指出,到2020年和2030年,被污染耕地的安全利用率需分別達(dá)到90%左右和95%以上,污染地塊安全利用率則需分別達(dá)到90%和95%以上的指標(biāo)。然而,由于中國農(nóng)田土壤重金屬污染面積較廣、污染元素眾多、土壤結(jié)構(gòu)類型復(fù)雜,農(nóng)田土壤污染治理將是一個長期的過程。此外,由于中國地少人多,很多輕度、中度污染農(nóng)田不得不繼續(xù)用于高強(qiáng)度的農(nóng)業(yè)生產(chǎn),導(dǎo)致類似“鎘大米”、“鎘小麥”等農(nóng)產(chǎn)品重金屬超標(biāo)事件頻繁發(fā)生。
在眾多有害元素中,類金屬砷和重金屬鎘因具有污染面積廣、毒性強(qiáng)、向農(nóng)作物轉(zhuǎn)移風(fēng)險高等特性而受到關(guān)注? [2] 。砷和鎘在美國有毒物質(zhì)與疾病登記署的有害物質(zhì)排名中分別排第一和第七位,均被國際癌癥研究機(jī)構(gòu)列為Ⅰ級致癌物? [3] 。攝食農(nóng)產(chǎn)品是人體暴露于鎘和砷的主要途徑之一,多數(shù)國家的部分人群正面臨著此類健康風(fēng)險? [4-6] 。鎘在人體內(nèi)滯留的半衰期可達(dá)30年之久? [7] ,具有累積效應(yīng),人體長期暴露于鎘會導(dǎo)致慢性腎臟疾病、骨質(zhì)礦化,增加肺癌、膀胱癌等癌癥患病風(fēng)險? [8] 。知名的日本“痛痛病”事件,正是因當(dāng)?shù)鼐用耖L期食用被鎘污染的土壤種植的稻米所引起的。長期暴露于砷會導(dǎo)致人體皮膚、胃、腸道、肝臟、腎臟等出現(xiàn)問題,增加多種癌癥的患病概率? [9] 。人體對鎘和砷的攝入安全閾值可能并不存在,應(yīng)當(dāng)盡量減少對鎘和砷的攝入? [10-11] 。因此,本研究基于鎘和砷的污染特性和中國人多地少的國情,分析主要糧食作物(水稻和小麥)對鎘和砷的累積機(jī)制,在此基礎(chǔ)上分析阻控作物對鎘和砷累積的方法和技術(shù),為保障污染農(nóng)田的安全利用和農(nóng)產(chǎn)品的質(zhì)量安全提供參考。
1 稻米和小麥籽粒對鎘、砷的累積
農(nóng)作物對重金屬的積累量與土壤中重金屬的生物有效性、根系對重金屬的吸收效率以及植物體內(nèi)重金屬的轉(zhuǎn)運(yùn)能力直接相關(guān)。與其他作物(如小麥和玉米)相比,水稻對鎘的吸收能力較強(qiáng),這也是稻米對鎘具有較高富集能力的一個主要原因? [12] 。目前中國市售大米鎘平均含量為 0.089~ 0.093 ?mg/kg ,其中超過中國規(guī)定的大米鎘含量限量標(biāo)準(zhǔn)(0.2 ?mg/kg )的比例為8%~10%? [6,13] 。中國南方地區(qū)稻米鎘超標(biāo)情況尤為嚴(yán)峻,稻米鎘超標(biāo)率在23%左右,部分稻米鎘含量甚至高達(dá)4.9 ?mg/kg?? ?[10] 。雖然小麥對鎘的吸收能力較水稻低,但小麥根系對鎘往地上部轉(zhuǎn)運(yùn)的能力要遠(yuǎn)高于水稻,平均是水稻的4倍左右,這使得小麥籽粒同樣對鎘具有較高的積累能力,在一些稻麥輪作區(qū)域,小麥籽粒對鎘的積累量甚至超過稻米? [14-15] 。目前中國黃淮海平原和長江中下游平原兩大主要小麥生產(chǎn)區(qū)小麥籽粒鎘超標(biāo)率分別為 0.7%和 9.0%? [16] ;江蘇、河南一些鎘污染區(qū)域小麥籽粒鎘超標(biāo)率通常為100%,部分樣品籽粒鎘含量高達(dá)4.3 ?mg/kg?? ?[17-19] 。
稻米不僅對鎘具有較強(qiáng)的富集能力,對砷的積累能力也很強(qiáng)。Williams等? [20] 在全球尺度上收集了多個區(qū)域的土壤、水稻、小麥和大麥樣品,對樣品中的砷含量進(jìn)行分析后發(fā)現(xiàn),水稻秸稈和籽粒對土壤中砷的生物富集系數(shù)的平均值分別為0.76和0.04,遠(yuǎn)高于小麥(0.018和0.004)和大麥(0.013和0.003)。稻米中總砷含量一般為 0.005~ 0.710 ?mg/kg ,不同地區(qū)所產(chǎn)稻米中總砷含量差異較大,中國市場上銷售的大米中總砷含量為 0.011~ 0.186 ?mg/kg ,平均約為0.085 ?mg/kg?? ?[6] 。種植在污染區(qū)的水稻籽粒中砷含量要明顯高于非污染區(qū)水稻籽粒中的砷含量,湖南某礦區(qū)附近農(nóng)田稻米砷平均含量為0.303 ?mg/kg?? [21] ,重度砷污染區(qū)的稻米砷積累量甚至高達(dá)7.500 ?mg/kg?? ?[22] 。稻米中砷的形態(tài)以無機(jī)三價砷[As(Ⅲ)]、無機(jī)五價砷[As(V)]和有機(jī)二甲基砷(DMA)為主,部分區(qū)域的稻米含有少量的一甲基砷(MMA)? [23-24] 。中國市場上大米中砷的形態(tài)主要為無機(jī)砷和DMA,其中以無機(jī)砷為主,約占砷總含量的69%? [6] ;美國大米中DMA的比例較高,約占砷總含量的58% ?[21] 。雖然小麥籽粒對砷的累積能力要遠(yuǎn)低于水稻,但小麥籽粒中砷的形態(tài)為無機(jī)砷? [25] ,而無機(jī)砷對人體的毒害作用要遠(yuǎn)高于DMA? [26-27] 。相關(guān)研究結(jié)果表明,小麥及其制品已成為印度某些區(qū)域居民暴露于無機(jī)砷的主要來源? [28] 。
綜上,當(dāng)水稻和小麥種植于非污染土壤中時,其籽粒中累積的鎘和砷的含量通常較低。然而,當(dāng)水稻和小麥種植于被砷、鎘污染的土壤中時,其籽粒中砷和鎘的含量會顯著增加。中國市售大米和面粉中砷的超標(biāo)比例較低,鎘的超標(biāo)比例則相對高一些。種植于污染區(qū)域的水稻和小麥籽粒對鎘和砷的累積及其對人體的潛在健康風(fēng)險應(yīng)受到密切關(guān)注。
2 土壤中鎘、砷的生物有效性
農(nóng)田土壤理化性質(zhì)和一些生物地球化學(xué)過程會顯著影響土壤中鎘和砷的生物有效性,進(jìn)而影響作物根系對鎘和砷的吸收。在眾多影響因素中,土壤氧化還原電位( Eh )是影響土壤中鎘、砷化學(xué)形態(tài)和溶解度的一個主要因素。通常,土壤氧化還原電位的降低會降低土壤中鎘的生物有效性,但是會增加砷的生物有效性? [29] 。這是因?yàn)樵谘退A段,土壤氧化還原電位降低,土壤中的硝酸根、鐵錳氧化物和硫酸根( SO? 2-? 4 )會相繼被還原, SO? 2- ?4 被還原所形成的S? 2- 能與鎘形成CdS沉淀,從而降低土壤中鎘的生物有效性? [30-31] 。而對于砷,土壤中的鐵氧化物是吸附As(V)的主要物質(zhì),土壤氧化還原電位降低所導(dǎo)致的鐵氧化物的還原與溶解會將吸附的As(V)釋放到土壤溶液中,增加土壤中砷的有效性,因此,稻田土壤溶液中砷含量變化通常與鐵的變化呈顯著正相關(guān)? [29] ;此外,當(dāng)土壤處于還原狀態(tài)時,土壤中的As(V)會被還原成As(Ⅲ),而As(Ⅲ)被土壤吸附的能力要低于As(V),這將進(jìn)一步增加土壤中砷的生物有效性? [32-33] ,這也是水稻對砷吸收能力較高的一個主要原因。
土壤pH是影響土壤中鎘和砷生物有效性的另一重要因素。土壤中含鎘礦物的溶解度會隨著pH的降低而增加,并且土壤pH的降低會增加土壤膠體表面的正電荷數(shù),降低土壤膠體對鎘的吸附能力,進(jìn)一步增加土壤中鎘的生物有效性,這是酸性土壤中鎘的生物有效性較高的主要原因? [34] 。根據(jù)測算,在正常pH范圍內(nèi),土壤pH每下降1個單位,土壤鎘生物有效性平均增加4倍? [2] 。與鎘不同,土壤pH的升高通常會增加土壤中砷的生物有效性? [29, 35] 。這是因?yàn)樵谡M寥纏H范圍內(nèi),土壤中的五價砷主要以砷酸根的形式存在,而土壤pH的升高會促進(jìn) OH? -? 與土壤物質(zhì)(鐵錳氧化物等)配位的砷酸根離子進(jìn)行交換,增加土壤溶液中砷的濃度,并且 OH? -? 會增加土壤膠體表面的負(fù)電荷數(shù),減少土壤膠體對砷酸根的吸附? [36-38] 。對于As(Ⅲ),在土壤pH小于8的情況下,As(Ⅲ)主要以非解離的H? 3 AsO? 3 的形式存在,這使得土壤pH對As(Ⅲ)的吸附或解吸附影響較小? [39] 。在一些長期淹水的稻田中,pH的升高可能并不會增加土壤中砷的有效性? [40] 。
綜上,通過改變土壤pH和土壤氧化還原電位的方法均可改變土壤中鎘和砷的生物有效性,但是二者的變化會出現(xiàn)相反的趨勢。在稻田常規(guī)管理過程中,排水和淹水會不斷改變土壤的pH和土壤氧化還原電位,導(dǎo)致土壤中砷和鎘的釋放呈現(xiàn)相反的規(guī)律,這可能也是稻米中砷和鎘含量通常呈現(xiàn)負(fù)相關(guān)的一個主要原因? [29,41] 。由于土壤中砷含量、鎘含量相反的變化規(guī)律,使得如何同時阻控農(nóng)作物對砷和鎘的累積成為農(nóng)業(yè)環(huán)境領(lǐng)域的一個難點(diǎn)問題。
3 水稻和小麥對砷、鎘的吸收
鎘和砷從土壤中進(jìn)入植物體內(nèi),首先要經(jīng)過植物根系的吸收。植物對不同形態(tài)砷的吸收途徑不同,旱地土壤中的砷主要以As(V)的形態(tài)存在,As(V)的化學(xué)結(jié)構(gòu)性質(zhì)與磷酸鹽非常相似,植物對As(V)的吸收主要是通過磷酸鹽轉(zhuǎn)運(yùn)途徑進(jìn)行,植物根際環(huán)境中磷酸鹽與As(V)的比例會影響植物對As(V)的吸收? [42] 。在水稻上的研究結(jié)果已經(jīng)證實(shí),水稻磷轉(zhuǎn)運(yùn)蛋白OsPT1、OsPT4和OsPT8均直接參與根系對As(V)的吸收。與對照(野生型)相比,水稻? OsPT1? 和? OsPT4? 突變體對As(V)和磷的吸收量顯著降低,而過表達(dá)? OsPT8? 和? OsPT1? 則會大幅度提高水稻對As(V)和磷的吸收量? [43-45] 。雖然As(V)與磷共享磷轉(zhuǎn)運(yùn)途徑,但是水稻和小麥根系通常對磷具有更高的親和性? [42,45] ,因此很難在不影響磷吸收的前提下通過基因編輯技術(shù)降低作物對As(V)的吸收量。對于小麥來說,雖然目前的一些生理試驗(yàn)結(jié)果表明小麥對As(V)的吸收可能也是通過磷轉(zhuǎn)運(yùn)蛋白進(jìn)行的? [42, 46] ,然而由于普通栽培小麥為異源六倍體,基因組龐大且高度復(fù)雜,其功能基因的研究難度要遠(yuǎn)高于水稻,到目前為止,小麥根系磷轉(zhuǎn)運(yùn)蛋白Pht1家族中的哪個或哪幾個磷轉(zhuǎn)運(yùn)蛋白參與了小麥對砷的吸收仍是未知。
淹水條件下,稻田土壤溶液中砷的形態(tài)以As(Ⅲ)為主,通常占砷總含量的 70%~ 90%,剩下的以As(V)和甲基砷的形態(tài)存在。亞砷酸(H? 3 AsO? 3 )具有較高的解離常數(shù)( pK?? a =9.2),在常規(guī)pH (pH< 8.0)條件下,As(Ⅲ)主要以非解離的中性分子的形式存在? [47] 。與As(V)不同,水稻根系對As(Ⅲ)的吸收是通過硅酸轉(zhuǎn)運(yùn)通道(水通道)進(jìn)行的? [48] 。Ma等? [49] 報道了1個硅轉(zhuǎn)運(yùn)蛋白OsNIP2;1(Lsi1)調(diào)控水稻對硅和砷的吸收與積累,Lsi1屬于水通道蛋白家族中的類根瘤素-26主要內(nèi)在蛋白Ⅲ(NIP Ⅲ)亞家族,是一個定位于質(zhì)膜上、具有內(nèi)流轉(zhuǎn)運(yùn)活性的轉(zhuǎn)運(yùn)體,主要在根的外皮層和內(nèi)皮層細(xì)胞膜的外側(cè)表達(dá),負(fù)責(zé)將硅酸和三價砷向細(xì)胞內(nèi)運(yùn)輸。隨后,Ma等? [50] 又報道了一個水稻硅轉(zhuǎn)運(yùn)相關(guān)基因 ?Lsi2? ,與硅轉(zhuǎn)運(yùn)蛋白Lsi1的功能完全不同,Lsi2是一個硅外排轉(zhuǎn)運(yùn)蛋白,主要在根的外皮層和內(nèi)皮層細(xì)胞膜的內(nèi)側(cè)表達(dá),負(fù)責(zé)將細(xì)胞內(nèi)的硅和As(Ⅲ)往中柱方向的質(zhì)外體輸送,進(jìn)而進(jìn)入木質(zhì)部? [48] 。因此,As(Ⅲ)可借助硅的吸收轉(zhuǎn)運(yùn)蛋白Lsi1和Lsi2進(jìn)入根系。然而,與野生型相比,? Lsi1? 突變體對水稻籽粒砷含量的影響較小? [48] 。這可能與Lsi1的雙向功能(吸收功能和外排功能)有關(guān),Zhao等? [51] 發(fā)現(xiàn)Lsi1也是水稻根系將As(Ⅲ)外排至外界環(huán)境的一個轉(zhuǎn)運(yùn)蛋白,不過Lsi1對As(Ⅲ)外排的貢獻(xiàn)率只有 15%~ 20%。因此,? Lsi1? 突變體一方面會降低水稻根系對As(Ⅲ)的吸收,另一方面也會降低水稻根系對As(Ⅲ)的外排,最終是增加還是降低植物體內(nèi)砷的含量可能取決于根系環(huán)境中As(V)和As(Ⅲ)的比例。與Lsi1相比,Lsi2對水稻秸稈和籽粒砷累積的作用要更為顯著? [48] ,說明砷往木質(zhì)部的運(yùn)輸是影響地上部砷累積的一個關(guān)鍵過程。稻米之所以對砷的累積能力強(qiáng),一方面是因?yàn)榈咎锏难退€原條件導(dǎo)致土壤中As(Ⅲ)活化,另一方面是因?yàn)樗臼窍补柚参铮祿碛邪l(fā)達(dá)的Si/As(Ⅲ)吸收系統(tǒng)? [47] 。
甲基砷也是稻米中較為常見的一種砷形態(tài)。研究結(jié)果表明,植物自身是不具備砷甲基化功能的,植物體內(nèi)的甲基砷主要來自于土壤或環(huán)境中微生物的甲基化作用? [52] 。與無機(jī)砷相比,植物對甲基砷的吸收速率較低,但是甲基砷在植物體內(nèi)的遷移效率卻遠(yuǎn)大于無機(jī)砷? [53-54] 。由于DMA和MMA的 pK?? a 較低(分別為4.2和6.1),土壤中的DMA和MMA通常以解離和非解離的形式共存于土壤溶液中? [55] 。目前已知水稻對非解離DMA和MMA的吸收是通過硅轉(zhuǎn)運(yùn)蛋白Lsi1進(jìn)行的,而Lsi2轉(zhuǎn)運(yùn)蛋白則不參與甲基砷的吸收和運(yùn)輸,水稻對解離的甲基砷的吸收機(jī)制尚不明確? [55] 。
目前普遍認(rèn)為,鎘是借助Mn、Zn、Fe、Ca等元素的轉(zhuǎn)運(yùn)體或通道進(jìn)入根系細(xì)胞的? [56-57] 。在水稻中,調(diào)控Mn、Fe吸收的? OsNramp5? (抗性巨噬細(xì)胞蛋白)基因參與水稻對鎘的吸收? [58-59] 。水稻Nramp5轉(zhuǎn)運(yùn)蛋白主要位于根外皮層和內(nèi)皮層細(xì)胞質(zhì)膜上,并且呈外側(cè)極性分布。降低? OsNramp5? 的表達(dá)量能顯著降低水稻對Mn和Cd的吸收量,進(jìn)而降低水稻秸稈和籽粒中Mn和Cd的含量? [58-59] 。近期的研究結(jié)果表明,小麥根系 ?TaNramp5? 基因也會受到外源鎘處理的誘導(dǎo)表達(dá)? [60] ,酵母中異源表達(dá) ?TaNramp5? 會增加酵母對鎘的敏感性以及對鎘的吸收量? [12] ,表明 ?TaNramp5? 可能也參與調(diào)控小麥根系對鎘的吸收。與小麥相比,? Nramp5? 基因在水稻中具有更高的表達(dá)水平,并且OsNramp5轉(zhuǎn)運(yùn)蛋白對鎘的運(yùn)輸能力更強(qiáng),這也是水稻Cd吸收能力較高的一個主要原因? [12] 。Yan等? [61] 在水稻第3號染色體上鑒定到1個新的鎘吸收轉(zhuǎn)運(yùn)蛋白OsCd1,該蛋白質(zhì)屬于主要協(xié)助轉(zhuǎn)運(yùn)蛋白超家族(Major facilitator superfamily,MFS)。OsCd1主要在水稻根的細(xì)胞質(zhì)膜上表達(dá),通過調(diào)控根系對鎘的吸收而影響籽粒中鎘的積累,敲除該基因可顯著降低水稻對鎘的吸收效率。此外,鋅鐵轉(zhuǎn)運(yùn)蛋白(ZIP)家族中的一些鋅轉(zhuǎn)運(yùn)蛋白在水稻鎘吸收過程中也扮演著重要的角色。存在于水稻第5號染色體上的2個串聯(lián)基因? OsZIP5和OsZIP9? 被發(fā)現(xiàn)具有協(xié)同調(diào)控水稻根系對鎘和鋅吸收的能力,? oszip5oszip9? 雙突變體植株對鎘和鋅的吸收效率要顯著低于野生型植株? [62] ; ?OsZIP1? 也被證明具有調(diào)控水稻根系對鎘吸收的作用,與OsZIP9的功能不同,OsZIP1是1個重金屬外排轉(zhuǎn)運(yùn)蛋白,主要負(fù)責(zé)將植物根系細(xì)胞中累積過多的鋅和鎘外排至外界環(huán)境,通過降低重金屬在植物體內(nèi)的積累量而降低重金屬對植物的毒害? [63] 。其他一些轉(zhuǎn)運(yùn)蛋白如OsIRT1、OsIRT2和OsNramp1等也參與水稻根系對鎘的吸收,但這些轉(zhuǎn)運(yùn)蛋白對水稻鎘吸收的貢獻(xiàn)要低于OsNramp5? [59] 。
4 水稻和小麥對砷、鎘的轉(zhuǎn)運(yùn)
4.1 木質(zhì)部的裝載與運(yùn)輸
由木質(zhì)部介導(dǎo)的砷、鎘從根系向地上部的轉(zhuǎn)運(yùn)是決定水稻、小麥莖稈和籽粒中砷、鎘含量的一個關(guān)鍵過程。砷、鎘經(jīng)根系吸收進(jìn)入植物體內(nèi)后,會橫向運(yùn)輸至木質(zhì)部,這一過程受根系細(xì)胞液泡區(qū)室化的限制。As(V)被植物根系吸收后,超過90%以上的As(V)會在砷酸還原酶(? HAC1? )的作用下被快速地還原成As(Ⅲ),大量的As(Ⅲ)(約占吸收總量的 60%~ 80%)會被排到根外環(huán)境? [64-66] 。剩余的As(Ⅲ)有很大一部分會在根系與植物螯合肽(PCs)結(jié)合形成As(Ⅲ)-PCs絡(luò)合物,進(jìn)而在ABCC轉(zhuǎn)運(yùn)蛋白的作用下被運(yùn)輸進(jìn)入液泡中儲存,已知OsABCC1是水稻液泡膜上運(yùn)輸PCs或As(Ⅲ)-PCs的轉(zhuǎn)運(yùn)體? [67] 。As(Ⅲ)-PCs結(jié)合物在液泡中的儲存不僅可以降低砷對植物的毒害,還可以在一定程度上降低砷在植物體內(nèi)的移動性,減少砷往木質(zhì)部的裝載,從而降低砷往地上部的運(yùn)輸? [68-69] 。雖然外排和液泡區(qū)隔化將大量的砷限制在了植物的根系或根外,但仍有一部分砷會進(jìn)入木質(zhì)部,被運(yùn)往地上部。已知水通道蛋白是負(fù)責(zé)As(Ⅲ)進(jìn)出木質(zhì)部的主要轉(zhuǎn)運(yùn)蛋白,其中OsLsi2主要負(fù)責(zé)將砷從根系外皮層和內(nèi)皮層運(yùn)輸進(jìn)入木質(zhì)部,增加砷往地上部的轉(zhuǎn)運(yùn)量? [48] ,而過量表達(dá)水通道蛋白OsNIP1;1和OsNIP3;3則會降低砷向木質(zhì)部的裝載? [70] 。此外,Tang等? [71] 在水稻中的研究發(fā)現(xiàn),OsABCC7轉(zhuǎn)運(yùn)蛋白可以將As(Ⅲ)-PCs運(yùn)輸至木質(zhì)部,促進(jìn)砷從根系往地上部的轉(zhuǎn)運(yùn)。與OsLsi2相比,OsABCC7對促進(jìn)砷向木質(zhì)部運(yùn)輸?shù)呢暙I(xiàn)較小,因?yàn)槟举|(zhì)部汁液中的砷以游離的As(Ⅲ)為主。
PCs不僅能與砷螯合,還可以在擬南芥中與鎘形成Cd-PCs復(fù)合物,進(jìn)而被ABCC1/2轉(zhuǎn)運(yùn)蛋白運(yùn)輸至液泡中儲存。然而,類似的轉(zhuǎn)運(yùn)過程在水稻中還未見報道。在水稻中,1個編碼P? 1B -ATPase轉(zhuǎn)運(yùn)蛋白的基因? OsHMA3? 具有調(diào)控鎘往液泡運(yùn)輸?shù)墓δ埽? OsHMA3? 在液泡膜上表達(dá),將根細(xì)胞中的鎘從細(xì)胞質(zhì)運(yùn)輸進(jìn)液泡,從而降低鎘往地上部的轉(zhuǎn)運(yùn)量? [72-73] 。雖然 ?OsHMA3? 在水稻鎘轉(zhuǎn)運(yùn)中起著非常關(guān)鍵的作用,但在小麥中,TaHMA3轉(zhuǎn)運(yùn)體可能喪失了將鎘運(yùn)往液泡的能力,這也是導(dǎo)致小麥根系對鎘往地上部轉(zhuǎn)運(yùn)能力較高的一個主要原因? [74] 。OsHMA3、OsHMA2和OsZIP7被證明具有轉(zhuǎn)運(yùn)鎘的能力,與OsHMA3不同的是,OsHMA2和OsZIP7主要定位于質(zhì)膜,負(fù)責(zé)鎘向木質(zhì)部的裝載,降低? OsHMA2? 或? OsZIP7? 的表達(dá)量會顯著降低水稻地上部鎘的含量? [75-76] 。此外,Luo等? [77] 在水稻中發(fā)現(xiàn)了另一個新的重要蛋白質(zhì)CAL1,調(diào)控鎘向木質(zhì)部的裝載運(yùn)輸,? CAL1? 基因主要在根、葉鞘表達(dá),在根中,? CAL1? 主要在外皮層和木質(zhì)部薄壁細(xì)胞中表達(dá)。CAL1蛋白可以在細(xì)胞質(zhì)中與鎘結(jié)合形成復(fù)合物并將鎘排到細(xì)胞外,從而達(dá)到降低細(xì)胞中鎘濃度、驅(qū)動鎘通過木質(zhì)部往地上部運(yùn)輸?shù)哪康摹V档靡惶岬氖?,該?xiàng)研究結(jié)果表明,CAL1并不影響水稻籽粒中鎘的含量,只增加水稻莖稈和葉片中的鎘含量。因此,CAL1在培育修復(fù)型水稻品種中具有較高的實(shí)際應(yīng)用價值。
4.2 韌皮部介導(dǎo)的砷、鎘的轉(zhuǎn)運(yùn)
韌皮部運(yùn)輸是決定水稻和小麥籽粒砷、鎘含量的另一重要環(huán)節(jié)。砷、鎘經(jīng)植物根系吸收轉(zhuǎn)運(yùn)至地上部后,大量的砷、鎘會在莖節(jié)處由木質(zhì)部運(yùn)輸至韌皮部,進(jìn)而由韌皮部向上重新分配和運(yùn)輸,最終進(jìn)入籽粒。因此,莖節(jié)是木質(zhì)部中砷、鎘向韌皮部轉(zhuǎn)運(yùn)的重要組織,并且在砷、鎘往上分配的過程中起著重要作用? [54,78-80] 。在水稻中,一些在莖節(jié)上表達(dá)并能介導(dǎo)韌皮部鎘轉(zhuǎn)運(yùn)的蛋白質(zhì)編碼基因也相繼被報道。Uraguchi等? [79] 在水稻中發(fā)現(xiàn)了1個鎘轉(zhuǎn)運(yùn)相關(guān)的基因? OsLCT1? ,該基因編碼鎘外排蛋白,為小麥低親和性陽離子轉(zhuǎn)運(yùn)蛋白(Low-affinity cation transport, LCT)同系物,在水稻的生殖生長期,該基因大量表達(dá)在水稻莖節(jié)和葉片中,參與調(diào)控鎘向水稻韌皮部的裝載和運(yùn)輸。通過RNA干擾技術(shù)降低? OsLCT1? 的表達(dá)量不影響木質(zhì)部介導(dǎo)的鎘的運(yùn)輸,但是會顯著抑制韌皮部途徑鎘的運(yùn)輸,最終使水稻籽粒鎘含量降低50%。? OsHMA2? 也被發(fā)現(xiàn)參與調(diào)控鎘從木質(zhì)部向韌皮部的運(yùn)輸,雖然? OsHMA2? 基因主要在水稻根系中表達(dá),但是在生殖生長期,? OsHMA2? 在水稻莖節(jié)中具有較高的表達(dá)量? [81] 。在莖節(jié)中,OsHMA2定位于擴(kuò)大和擴(kuò)散維管束的木質(zhì)部導(dǎo)管伴胞和韌皮部薄壁細(xì)胞上,主要負(fù)責(zé)將Cd和Zn運(yùn)往韌皮部? [81-82] 。與OsHMA2的作用機(jī)制相似,OsZIP3也主要定位于水稻莖節(jié)上的擴(kuò)大維管束,負(fù)責(zé)將木質(zhì)部中的鋅和鎘卸載,促進(jìn)其往韌皮部的運(yùn)輸? [83-84] 。而OsZIP7不僅參與調(diào)控鎘從根系往地上部的運(yùn)輸,其在莖節(jié)上還參與調(diào)控鎘從木質(zhì)部往韌皮部的運(yùn)輸,可能與OsHMA2和OsZIP7具有協(xié)同作用? [76] 。與木質(zhì)部轉(zhuǎn)運(yùn)相比,韌皮部介導(dǎo)的砷的轉(zhuǎn)運(yùn)研究還很欠缺。Duan等? [85] 在擬南芥中的研究中發(fā)現(xiàn),肌醇通道AtINT2和AtINT4是植物韌皮部裝載砷的主要通道。然而,類似的功能基因在水稻和小麥上還未見報道。
5 阻控水稻和小麥對砷、鎘積累的措施
大量研究結(jié)果表明,水稻和小麥籽粒對砷、鎘的累積存在較大的基因型差異。Duan等? [41] 比較了471份高產(chǎn)水稻在不同環(huán)境下籽粒中砷、鎘含量的差異,發(fā)現(xiàn)水稻籽粒砷含量在這471份水稻品種間的差異為 2.5~ 4.0倍,籽粒鎘含量在不同水稻品種間的差異為 10~ 32倍。Liu等? [86] 對黃淮海麥區(qū)的72份主栽小麥品種鎘積累能力進(jìn)行了比較,發(fā)現(xiàn)供試的72份小麥籽粒鎘含量差異為 2.6~ 3.1倍。因此,通過大量的種質(zhì)資源篩選可以獲得一些低砷、低鎘積累品種,種植低砷、低鎘積累品種也是利用中輕度污染農(nóng)田的一種安全、綠色、經(jīng)濟(jì)有效的方法。然而,不同水稻品種籽粒砷和鎘的含量通常存在顯著的負(fù)相關(guān)性,很難篩選到同時對砷和鎘具有低積累特性的水稻品種? [41] 。Duan等? [41] 的研究結(jié)果表明,不同水稻品種籽粒鎘、砷含量與水稻抽穗期顯著相關(guān),抽穗期早的水稻品種籽粒鎘含量較低,而抽穗期晚的水稻品種籽粒砷含量通常較低。這可能與水稻的栽培管理相關(guān),通常水稻在灌漿后期都會進(jìn)行排水曬田,而同一區(qū)域通常是統(tǒng)一排水,因此抽穗期早的品種會有更多的灌漿過程是在淹水條件下進(jìn)行的,這會導(dǎo)致稻米在灌漿期積累較少的鎘,但是會積累較多的砷,而抽穗期較晚的品種則會積累較少的砷和較多的鎘。與水稻不同,小麥通常為旱作,小麥籽粒中砷和鎘的含量無顯著相關(guān)性,從豐富的小麥種質(zhì)資源中篩選出一些同時低積累砷、鎘的小麥品種是可行的? [87] 。
通過稻田水分管理調(diào)控土壤氧化還原電位以及通過施用石灰等措施調(diào)控土壤pH的方式均可改變土壤中鎘和砷的生物有效性,可以有效控制水稻和小麥籽粒對鎘和砷的積累。與長期淹水相比,旱作、干濕交替方式均可降低稻田土壤中砷的生物有效性,減少水稻對砷的吸收,但是會增加土壤中鎘的生物有效性? [29,88] 。在酸性土壤中,施用石灰和生物炭均能有效降低鎘的生物有效性,但是存在增加砷的生物有效性的風(fēng)險? [89-92] 。
水稻對鎘的吸收主要是通過Mn、Zn等轉(zhuǎn)運(yùn)體,利用Mn、Zn與Cd的拮抗原理,調(diào)節(jié)土壤中Mn與Cd以及Zn與Cd的比例被認(rèn)為是減少水稻對Cd吸收的有效方式,但是不同土壤的Mn與Cd和Zn與Cd的比例存在差異,具體效果還需大田試驗(yàn)進(jìn)一步驗(yàn)證? [93-95] 。硅是水稻的重要養(yǎng)分,三價砷主要是通過硅酸鹽吸收途徑進(jìn)入植物體內(nèi),利用硅與砷的競爭機(jī)制,施用硅肥也許可以有效抑制水稻對砷的吸收,并且這一猜想已經(jīng)在盆栽試驗(yàn)中獲得證實(shí)? [96] 。然而雖然硅肥一方面會與砷在吸收過程中存在競爭抑制的關(guān)系,但是另一方面常規(guī)的硅肥施用也會增加土壤中砷的生物有效性,因此,硅肥在大田中的應(yīng)用還需進(jìn)一步的田間試驗(yàn)驗(yàn)證,具體效果可能與土壤pH和土壤本身硅的濃度相關(guān)。硫是巰基和雙硫鍵的重要組成元素,增加作物對硫的吸收可以促進(jìn)作物體內(nèi)谷胱甘肽(GSH)和PCs的合成,從而降低砷和鎘往農(nóng)作物可食用部位的轉(zhuǎn)移,降低水稻和小麥籽粒中砷和鎘的含量? [97-98] 。
葉面施肥技術(shù)因具有操作簡單、利用率高、成本低等優(yōu)點(diǎn)而在近年來被廣泛運(yùn)用于重金屬污染農(nóng)田安全生產(chǎn)中。利用硅與砷的共轉(zhuǎn)運(yùn)特性,葉面噴施硅肥可以抑制Si/As吸收轉(zhuǎn)運(yùn)蛋白的表達(dá),降低作物對砷的吸收;此外,Si與As(Ⅲ)在植物體內(nèi)的轉(zhuǎn)運(yùn)具有競爭關(guān)系,葉面噴施硅肥可以降低砷從水稻根系、秸稈向籽粒轉(zhuǎn)運(yùn)? [99] 。與硅和砷的竟?fàn)幵硐嗨疲~面噴施鋅肥可以抑制作物對鎘的吸收與轉(zhuǎn)運(yùn),降低可食部位中鎘的含量? [100] 。此外,近期的一些研究結(jié)果表明,葉面噴施硒肥可以抑制鎘從水稻(小麥)根系、秸稈向籽粒轉(zhuǎn)運(yùn),從而降低水稻和小麥籽粒中鎘的含量,其機(jī)理表現(xiàn)為硒的施加改變了鎘相關(guān)轉(zhuǎn)運(yùn)蛋白基因( ?HMA3? 和? HMA2? )的表達(dá)? [101-102] 。
對水稻的鎘、砷吸收與轉(zhuǎn)運(yùn)分子機(jī)制的解析為阻控作物對砷和鎘的積累提供了科學(xué)方向,通過分子手段可以有效降低農(nóng)作物對砷、鎘的積累。例如,通過 CRISPR/Cas9 技術(shù)敲除? OsNramp5? 能降低水稻對鎘的吸收,籽粒Cd的含量能降低90%以上? [103-104] 。通常 ?OsNramp5? 突變體也會降低對元素錳的吸收,但降低的幅度對水稻產(chǎn)量影響不顯著,因?yàn)殄i在淹水條件下具有較高的生物有效性? [103-104] ;值得注意的是,在錳含量較低的土壤中, ?OsNramp5? 突變體可能會造成水稻產(chǎn)量的大幅下降? [59] 。另外,過表達(dá) ?OsHMA3或降低OsCd1、OsHMA2? 、? OsLCT1? 等的表達(dá)均能降低水稻籽粒中鎘的積累? [61, 72, 75, 79] ,過表達(dá) ?CAL1? 也許可以在田間培育出秸稈鎘高積累而籽粒鎘不超標(biāo)的修復(fù)型水稻? [77] 。敲除 ?Oslsi2? 可以有效降低水稻籽粒砷含量,但同時也會降低水稻地上部硅的含量,從而導(dǎo)致水稻減產(chǎn),而過表達(dá)? OsNIP1;1和OsNIP3;3? 可以在水稻不減產(chǎn)的情況下,有效降低水稻籽粒中砷的含量? [70] 。
植物修復(fù)技術(shù)是利用超積累植物地上部對重金屬具有超強(qiáng)富集能力的特性,通過多年的種植與收割,從根本上降低土壤中重金屬的總量和生物有效性。鎘/鋅超積累植物伴礦景天( Sedum plumbizincicola )和東南景天( Sedum alfredii )已被報道用于小范圍農(nóng)田鎘污染土壤的修復(fù)? [105-106] 。人們已利用砷超積累植物蜈蚣草修復(fù)砷污染土壤開展了大量研究? [107] 。盆栽試驗(yàn)條件下,在砷污染程度不同的土壤中種植蜈蚣草9個月可使土壤總砷和有效態(tài)砷含量分別降低 3.5%~ 11.0%和 11%~ 38%,水稻籽粒砷含量降低 22%~ 58%? [108] 。經(jīng)過多年的研究,中國一些地區(qū)已形成一套成熟的砷污染土壤植物修復(fù)技術(shù)? [109] 。
6 展 望
因農(nóng)田土壤重金屬污染引起的糧食安全問題已引起人們的廣泛關(guān)注,中國農(nóng)田土壤鎘和砷的污染以中、輕度為主,在當(dāng)前中國耕地資源比較稀缺的情況下,如何保障中、輕度鎘、砷污染農(nóng)田的安全利用是當(dāng)前研究的熱點(diǎn)和難點(diǎn)。近幾十年來,國內(nèi)外學(xué)者就土壤中鎘和砷的遷移、轉(zhuǎn)化過程以及植物對鎘和砷吸收累積的生理及分子機(jī)制進(jìn)行了大量研究,并取得了較好的研究成果。在此基礎(chǔ)上研發(fā)出了一系列的土壤污染修復(fù)技術(shù),并且部分技術(shù)成果在農(nóng)田生產(chǎn)中得到了應(yīng)用推廣。然而,由于中國農(nóng)田土壤的多樣性及農(nóng)作物品種的區(qū)域適應(yīng)性等因素,導(dǎo)致目前可在大范圍內(nèi)推廣應(yīng)用的技術(shù)還相對不足。
結(jié)合中國農(nóng)業(yè)生產(chǎn)的實(shí)際情況,今后的研究工作在以下幾個方面還有待加強(qiáng):(1)中國農(nóng)田土壤類型眾多,不同土壤理化性質(zhì)差異較大,導(dǎo)致土壤中砷、鎘的生物有效性及其影響因素千差萬別,尤其是在稻田淹水和排水過程中的吸附與解吸附過程。因此需要深入研究影響土壤中砷、鎘生物有效性的主控因素,解析影響砷、鎘生物有效性的生物學(xué)與非生物學(xué)機(jī)制。(2)小麥根系對鎘向地上部轉(zhuǎn)運(yùn)的能力較強(qiáng),目前,調(diào)控小麥根系中鎘向地上部轉(zhuǎn)運(yùn)的功能基因還未被挖掘,需加強(qiáng)小麥鎘吸收、轉(zhuǎn)運(yùn)的分子機(jī)制研究,挖掘主控鎘向地上部轉(zhuǎn)運(yùn)的功能基因,為培育低鎘小麥品種提供理論和技術(shù)指導(dǎo)。(3)繼續(xù)挖掘調(diào)控水稻砷、鎘吸收和轉(zhuǎn)運(yùn)的功能基因,明確砷、鎘在水稻地上部各器官間的分配規(guī)律及其分子機(jī)制,為培育籽粒低積累、秸稈高積累的修復(fù)型水稻打下基礎(chǔ)。(4)中國水稻和小麥種質(zhì)資源豐富,在水稻和小麥自然變異群里篩選控制砷、鎘吸收與轉(zhuǎn)運(yùn)的優(yōu)異等位基因,開展低積累品種的選育工作。(5)中國一些農(nóng)田土壤中存在砷、鎘復(fù)合污染,而砷、鎘在土壤中的化學(xué)行徑通常相反,一些農(nóng)田安全利用措施如水分管理、撒石灰、種植低積累水稻品種等在降低稻米對其中一種元素積累的同時會增加稻米對另一種元素的積累,目前關(guān)于農(nóng)田砷、鎘復(fù)合污染修復(fù)的研究還很欠缺,需進(jìn)一步加強(qiáng)。
參考文獻(xiàn):
[1]? 環(huán)境保護(hù)部, 國土資源部. 全國土壤污染狀況調(diào)查公報[R/OL]. (2014-04-17)[2020-08-12]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[2] ZHAO F J, WANG P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
[3] ATSDR. Detailed data table for the 2019 priority list of hazardous substances, the subject of toxicological profiles[R/OL]. (2020-1-17) [2020-08-12]. https://www.atsdr.cdc.gov/SPL/.
[4] MEHARG A A, NORTON G, DEACON C, et al. Variation in rice cadmium related to human exposure[J]. Environmental Science and Technology, 2013, 47(11): 5613-5618.
[5] SEYFFERTH A L, MCCURDY S, SCHAEFER M V, et al. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia[J]. Environmental Science and Technology, 2014, 48(9): 4699-4706.
[6] CHEN H P, TANG Z, WANG P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490.
[7] PHUC H D, KIDO T, OANH N T P, et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology, 2017, 37(9): 1046-1052.
[8] KESSON A, BARREGARD L, BERGDAHL I A, et al. Non-renal effects and the risk assessment of environmental cadmium exposure[J]. Environmental Health Perspectives, 2014, 122(5): 431-438.
[9] SMITH A H, STEINMAUS C M. Health effects of arsenic and chromium in drinking water: recent human findings[J]. Annual Review of Public Health, 2009, 30: 107-122.
[10] 汪 鵬,王 靜,陳宏坪,等. 我國稻田系統(tǒng)鎘污染風(fēng)險與阻控[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37 (7): 1409-1417.
[11] TANG Z, ZHAO F J . The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants[J]. Critical Reviews in Environmental Science and Technology, 2020(3):1-36.
[12] SUI F Q, CHANG J D, TANG Z, et al.?? Nramp5?? expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil, 2018, 433(1/2): 377-389.
[13] MU T T, WU T Z, ZHOU T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the ajor rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381.
[14] LI X, ZHOU D M. A meta-analysis on phenotypic variation in cadmium accumulation of rice and wheat: implications for food cadmium risk control[J]. Pedosphere, 2019, 29(5): 545-553.
[15] YANG J L, CANG L, WANG X, et al. Field survey study on the difference in Cd accumulation capacity of rice and wheat in rice-wheat rotation area[J]. Journal of Soils and Sediments, 2020, 20(4): 2082-2092.
[16] 陸美斌,陳志軍,李為喜,等. 中國兩大優(yōu)勢產(chǎn)區(qū)小麥重金屬鎘含量調(diào)查與膳食暴露評估[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(19): 3866-3876.
[17] 朱桂芬,張春燕,王建玲,等. 新鄉(xiāng)市寺莊頂污灌區(qū)土壤及小麥重金屬污染特征的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2009, 28(2): 263-268.
[18] XING W Q, ZHANG H Y, SCHECKEL et al. Heavy metal and metalloid concentrations in components of 25 wheat ( Triticum aestivum ) varieties in the vicinity of lead smelters in Henan province, China[J]. Environmental Monitoring and Assessment, 2016, 188(1): 23.
[19] ZHAO D, LIU R Y, XIANG P, et al. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers[J]. Environmental Science and Technology, 2017, 51(12): 6756-6764.
[20] WILLIAMS P N, VILLADA A, DEACON C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science and Technology, 2007, 41(19): 6854-6859.
[21]? ZHU Y G, SUN G X, LEI M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science and Technology, 2008, 42(13): 5008-5013.
[22] LIAO X Y, CHEN T B, XIE H, et al. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China[J]. Environment International, 2005, 31(6): 791-798.
[23] BATISTA B L, SOUZA J M O, SOUZA S S D, et al. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption[J]. Journal of Hazardous Materials, 2011, 19(1): 342-348.
[24] MEHARG A A, LOMBI E, WILLIAMS K G, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environmental Science and Technology, 2008, 42(4): 1051-1057.
[25] SHI G L, LOU L Q, ZHANG S, et al. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China[J]. Environmental Science and Pollution Research, 2013, 20(12): 8435-8445.
[26] DEL RAZO L M, QUINTANILLA-VEGA B, BRAMBILA-COLOMBRES E, et al. Stress proteins induced by arsenic[J]. Toxicology and Applied Pharmacology, 2001, 177(2): 132-148.
[27] HIRANO S, KOBAYASHI Y, CUI X, et al. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds[J]. Toxicology and Applied Pharmacology, 2004,198(3): 458-467.
[28] SUMAN S, SHARMA P K, SIDDIQUE A B, et al. Wheat is an emerging exposure route for arsenic in Bihar, India[J]. Science of the Total Environment, 2020, 703:134774.
[29] HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science and Technology, 2016, 50(8): 4178-4185.
[30] DE LIVERA J, MCLAUGHLIN M J, HETTIARACHCHI G M, et al. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497.
[31] WANG J, WANG P M, GU Y, et al. Iron-manganese ( oxyhydro ) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508.
[32] TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science and Technology, 2004, 38(4):1038-1044.
[33] YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 2011, 83(7): 925-932.
[34] BOLAN N S, ADRIANO D C, MANI P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. Ⅱ. Effect of lime addition[J]. Plant and Soil, 2003, 251(2): 187-198.
[35] MARIN A R, MASSCHELEYN P H, PATRICK W H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J]. Plant and Soil, 1993, 152(2): 245-253.
[36] MANNING B A, GOLDBERG S. Arsenic (Ⅲ) and arsenic (V) adsorption on three California soils[J]. Soil Science, 1997, 162(12): 886-895.
[37] 余 躍,王 濟(jì),張 浩,等. 土壤-植物系統(tǒng)中砷的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué), 2009, 37(7): 3210-3215.
[38] 陳 靜,王學(xué)軍,朱立軍. pH對砷在貴州紅壤中的吸附的影響[J]. 土壤, 2004, 36(2): 211-214.
[39] DIXIT S, HERING J G. Comparison of arsenic (V) and arsenic (Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science and Technology, 2003, 37(18): 4182-4189.
[40] CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707.
[41] DUAN G, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
[42] ZHU Y G, GENG C N, TONG Y P, et al. Phosphate (Pi) and arsenate uptake by two wheat ( Triticum aestivum ) cultivars and their doubled haploid lines[J]. Annals of Botany, 2006, 98(3): 631-636.
[43] WU Z C, REN, H Y, MCGRATH S P, et al. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J]. Plant Physiology, 2011, 157(1): 498-508.
[44] KAMIYA T, ISLAM R, DUAN G, et al. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Science and Plant Nutrition, 2013, 59(4): 580-590.
[45] CAO Y, SUN D, AI H, et al. Knocking out?? OsPT4?? gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains[J]. Environmental Science and Technology, 2017, 51(21): 12131-12138.
[46] SHI G L, MA H X, CHEN Y L, et al. Low arsenate influx rate and high phosphorus concentration in wheat ( Triticum aestivum ?L.): a mechanism for arsenate tolerance in wheat plants[J]. Chemosphere, 2019, 214: 94-102.
[47] ZHAO F J, MEHARG A A, MCGATH S P. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61: 535-559.
[48] MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935.
[49] MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
[50] MA J F, YAMAJI N, MITANI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-213.
[51] ZHAO F J, AGO Y, MITANI N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytologist, 2010, 186(2): 392-399.
[52] LOMAX C, LIU W J, WU L Y, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
[53] RAAB A, WILLIAMS P N, MEHARG A A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environmental Chemistry, 2007, 4(3): 197-203.
[54] ZHENG M Z, CAI C, HU Y, et al. Spatial distribution of arsenic and temporal variation of its concentration in rice[J]. New Phytologist, 2011, 189(1): 200-209.
[55] LI R Y, AGO Y, LIU W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiology, 2009, 150(4): 2071-2080.
[56] NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe? 2+ ?transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
[57] LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630.
[58] ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(1): 989-993.
[59] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2155-5167.
[60] WU J W, MOCK H P, GIEHL R F H, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants[J]. Journal of Hazardous Materials, 2019, 364: 581-590.
[61] YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10(1): 2562.
[62] TANG L, QU M, ZHU Y, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake[J]. Plant Physiology, 2020, 183(3): 1235-1249.
[63] LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019,19(1): 283.
[64] CHAO D Y, CHEN Y, CHEN J G, et al. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants[J]. PLoS Biology, 2014, 12(12): e1002009.
[65] SHI G L, ZHU S, MENG J R, et al. Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings[J]. Journal of Hazardous Materials, 2015, 289: 190-196.
[66] SHI S L, WANG T, CHEN Z R, et al. OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiology, 2016, 172(3): 1708-1719.
[67] SONG W Y, YAMAKI T, YAMAJI N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J]. Proceedings of the National Academy of Sciences, 2014, 111(44): 15699-15704.
[68] LIU W, WOOD B A, RAAB A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis[J]. Plant Physiology, 2010, 152(4): 2211-2221.
[69] PARK J, SONG W Y, KO D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 2012, 69(2): 278-288.
[70] SUN S K, CHEN Y, CHE J, et al. Decreasing arsenic accumulation in rice by overexpressing OsNIP 1; 1 and OsNIP 3; 3 through disrupting arsenite radial transport in roots[J]. New Phytologist, 2018, 219(2): 641-653.
[71] TANG Z, CHEN Y, MILLER A J, et al. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice[J]. Plant and Cell Physiology, 2019, 60(7): 1525-1535.
[72] UENO D, YAMAJI N, KONO I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505.
[73] MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P? 1B -type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199.
[74] ZHANG L, GAO C, CHEN C, et al. Overexpression of rice?? OsHMA3?? in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environmental Science and Technology, 2020, 54(16): 10100-10108.
[75] TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell and Environment, 2012, 35(11): 1948-1957.
[76] TAN L, ZHU Y, FAN T, et al.?? OsZIP7?? functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118.
[77] LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1): 645.
[78] FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806.
[79] URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 2011, 108(52): 20959-20964.
[80] HUANG G X, DING C F, GUO F Y, et al. The role of node restriction on cadmium accumulation in the brown rice of 12 Chinese rice ( Oryza sativa ?L.) cultivars[J]. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10157-10164.
[81] YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939.
[82] SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice ( Oryza sativa ) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224.
[83] SASAKI A, YAMAJI N, MITANI-UNEO N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374-384.
[84] TIAN S, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice ( Oryza sativa )[J]. Journal of Hazardous Materials, 2019, 380: 120853.
[85] DUAN G L, HU Y, SCHNEIDER S, et al. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in ?Arabidopsis ?seeds[J]. Nature Plants, 2016, 2: 15202.
[86] LIU N, HUANG X M, SUN L M, et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241: 125065.
[87] SHI G L, ZHU S, BAI S N, et al. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other[J]. Journal of Hazardous Materials, 2015, 299: 94-102.
[88] WEN E G, YANG X, CHEN H B, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials, 2021, 407: 124344.
[89] ZHENG R L, CAI C, LIANG J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice ( Oryza sativa ?L.) seedlings[J]. Chemosphere, 2012, 89(10): 856-862.
[90] BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils[J]. Journal of Hazardous Materials, 2013, 261: 725-732.
[91] ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106.
[92] WANG N, XUE X M, JUHASZ A L, et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution, 2017, 220: 514-522.
[93] CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake[J]. Environmental Pollution, 2019, 253: 959-965.
[94] YANG Y, LI Y L, CHEN W P, et al. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling[J]. Environmental Pollution, 2020, 267: 115613.
[95] HUSSAIN B, LI J, MA Y, et al. Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment[J]. PLoS One, 2020, 15(12): e0243174.
[96] LI R Y, STROUD J L, MA J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science and Technology, 2009, 43(10): 3778-3783.
[97] ZHENG H, WANG M, CHEN S B, et al. Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe + pH conditions[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109641.
[98] SHI G L, LU H Y, LIU H, et al. Sulfate application decreases translocation of arsenic and cadmium within wheat ( Triticum aestivum ?L.) plant[J]. Science of the Total Environment, 2020, 713: 136665.
[99] ZHANG S J, GENG L P, FAN L M, et al. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil[J]. Science of the Total Environment, 2020,704:135239.
[100] WANG H, XU C, LUO Z C, et al. Foliar application of Zn can reduce Cd concentrations in rice ( Oryza sativa ?L.) under field conditions[J]. Environmental Science and Pollution Research, 2018, 25(29): 29287-29294.
[101] HUANG H L, LI M, RIZWAN M, et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials, 2021, 401: 123393.
[102] ZHOU J, ZHANG C, DU B Y, et al. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties[J]. Journal of Hazardous Materials, 2020, 402: 123546.
[103] TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438
[104] 龍起樟, 黃永蘭, 唐秀英, 等. 利用CRISPR/Cas9敲除? OsNramp5? 基因創(chuàng)制低鎘秈稻[J]. 中國水稻科學(xué), 2019, 33(5): 407-420.
[105] DENG L, LI Z, WANG J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by ?Sedum plumbizincicola ?under different agronomic strategies[J]. International Journal of Phytoremediation, 2016, 18(2):134-140.
[106] 朱凰榕, 周良華, 陽 峰, 等. 兩種景天修復(fù)Cd/Zn污染土壤效果的比較[J]. 生態(tài)環(huán)境學(xué)報, 2019, 28(2): 403-410.
[107] FAYIGA A O, SAHA U K. Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils[J]. Geoderma, 2016, 284: 132-143.
[108] YE W L, KHAN M A, MCGRATH S P, et al. Phytoremediation of arsenic contaminated paddy soils with ?Pteris vittata ?markedly reduces arsenic uptake by rice[J]. Environmental Pollution, 2011, 159(12): 3739-3743.
[109] YANG J, GUO Y, YAN Y X, et al. Phytoaccumulation of As by ?Pteris vittata ?supplied with phosphorus fertilizers under different soil moisture regimes-A field case[J]. Ecological Engineering, 2019, 138: 274-280.
(責(zé)任編輯:陳海霞)