陳豆豆,關(guān)利平,賀亮亮,宋銀花,章鵬,劉三軍
葡萄無核基因分子標(biāo)記的通用性鑒定
陳豆豆,關(guān)利平,賀亮亮,宋銀花,章鵬,劉三軍
中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所,鄭州 450009
【目的】無核是鮮食葡萄的重要農(nóng)藝性狀,無核基因分子標(biāo)記的準(zhǔn)確性將影響無核葡萄早期選擇的效果。本研究對(duì)前人開發(fā)的5個(gè)葡萄無核基因分子標(biāo)記在183份葡萄材料中進(jìn)行通用性鑒定,旨在明確各個(gè)分子標(biāo)記的適用范圍,為利用分子標(biāo)記輔助無核葡萄育種提供參考依據(jù)。【方法】以96個(gè)葡萄品種(其中無核63個(gè),有核33個(gè))及‘紅地球’ב黎明無核’87個(gè)F1單株(其中無核61株,有核26株)的葉片DNA為模板,利用已報(bào)道的5個(gè)葡萄無核基因分子標(biāo)記(SCF27-2000、GSLP1-569、VMC7f2、p3_VvAGL11和5U_VviAGL11)的引物進(jìn)行PCR擴(kuò)增,采用1.5%瓊脂糖凝膠電泳、毛細(xì)管電泳和8%聚丙烯酰胺凝膠電泳技術(shù)檢測(cè)PCR產(chǎn)物,分析各個(gè)樣品的無核特異條帶,鑒定5個(gè)分子標(biāo)記的準(zhǔn)確率。【結(jié)果】SCAR標(biāo)記GSLP1-569對(duì)96個(gè)葡萄品種的檢測(cè)準(zhǔn)確率為40.6%,無核檢測(cè)率為63.6%。SCAR標(biāo)記SCF27-2000對(duì)96個(gè)葡萄品種及87個(gè)F1雜交單株的檢測(cè)準(zhǔn)確率分別為71.9%和76.54%,無核檢測(cè)率分別為70.5%和78.5%。SSR標(biāo)記VMC7f2在96個(gè)葡萄品種中鑒定出8個(gè)等位基因,經(jīng)卡方檢驗(yàn),189-bp等位基因與葡萄無核性狀顯著關(guān)聯(lián),其檢測(cè)準(zhǔn)確率為85.4%,無核檢測(cè)率為85.5%。SSR標(biāo)記p3_VvAGL11在96個(gè)葡萄品種中鑒定出7個(gè)等位基因,經(jīng)卡方檢驗(yàn),187-bp等位基因與葡萄無核性狀顯著關(guān)聯(lián),其檢測(cè)準(zhǔn)確率為89.6%,無核檢測(cè)率為90.7%,在F1雜交單株中其鑒定準(zhǔn)確率為87.65%,無核檢測(cè)率為91.1%,假陽性率為6.17%,假陰性率為6.17%。SSR標(biāo)記5U_VviAGL11在96個(gè)葡萄品種中鑒定出17個(gè)等位基因,經(jīng)卡方檢驗(yàn),306-bp等位基因與葡萄無核性狀顯著關(guān)聯(lián),其鑒定準(zhǔn)確率為88.5%,無核檢測(cè)率為90.6%,在F1雜交單株中檢測(cè)準(zhǔn)確率為88.89%,無核檢測(cè)率為92.7%,假陽性率為4.94%,假陰性率為6.17%?!窘Y(jié)論】SSR標(biāo)記p3_VvAGL11和5U_VviAGL11在葡萄種質(zhì)及遺傳群體中無核分型的準(zhǔn)確性及無核檢測(cè)的效率較高,適用范圍較廣,在無核基因分子標(biāo)記輔助選擇中可以考慮優(yōu)先使用。
葡萄;無核性;分子標(biāo)記;通用性;鑒定
【研究意義】無核葡萄是全世界葡萄育種的主要目標(biāo)之一。由于葡萄童期較長(zhǎng),而無核表型只能在成年葡萄植株中篩選,且無核遺傳機(jī)制尚不清楚,造成無核葡萄的育種進(jìn)程很慢[1]。DNA標(biāo)記技術(shù)為植物育種提供了廣闊的應(yīng)用前景,通過標(biāo)記輔助選擇(marker assisted-selection,MAS)可以提高植物育種的效率和精度[2],因此,篩選準(zhǔn)確性高、通用性廣的無核基因分子標(biāo)記對(duì)于無核葡萄育種具有重要的意義?!厩叭搜芯窟M(jìn)展】關(guān)于葡萄無核性狀遺傳規(guī)律,前人先后提出了多種假說[3-7]。目前普遍認(rèn)為,種子敗育無核性遺傳主要由顯性位點(diǎn)(seed development inhibitor,種子發(fā)育抑制)調(diào)控,位于18號(hào)染色體,調(diào)控3個(gè)獨(dú)立互補(bǔ)的隱性基因[7-9]。Mejía等[1]提出與位點(diǎn)接近的基因()是葡萄無核的主要功能候選基因,它屬于D類MADS-box基因,參與胚珠的發(fā)育。這一點(diǎn)在ROYO等[10]的研究中得到證實(shí),即種子形態(tài)調(diào)節(jié)基因中,導(dǎo)致Arg-197-Leu替代的點(diǎn)突變與種子敗育完全相關(guān)。目前,基于葡萄無核主要位點(diǎn)尤其是無核基因開發(fā)了一系列分子標(biāo)記,主要包括序列特征擴(kuò)增區(qū)(sequence characterized amplified region,SCAR)[9,11-12]及簡(jiǎn)單重復(fù)序列(simple sequence repeats,SSR)兩種標(biāo)記類型[1,8,13-16]。SCAR標(biāo)記是用特異引物進(jìn)行擴(kuò)增,操作簡(jiǎn)單,成本較低,結(jié)果穩(wěn)定性好。前人通過集群分離分析法(bulk segregant analysis,BSA)開發(fā)了與位點(diǎn)連鎖不平衡(linkage disequilibrium,LD)的SCAR標(biāo)記SCC8-1080[9]、SCF27-2000[11]和GSLP1-569[12]。SCF27-2000與無核×無核(‘Ruby Seedless’בSultanina’)后代的無核性狀高度相關(guān)(81%)[11],GSLP1-569標(biāo)記也已被廣泛用于分析無核性狀[17-19]。但相關(guān)研究表明,GSLP1-569適合于對(duì)‘無核白’及其親緣關(guān)系較近的無核品種的分子檢測(cè)[17-18]。這些標(biāo)記可以幫助預(yù)測(cè)無核后代,但也會(huì)因偶然出現(xiàn)的零等位基因或標(biāo)記與位點(diǎn)之間的不完全連鎖影響其預(yù)測(cè)能力[20]。SSR標(biāo)記是以特異引物PCR為基礎(chǔ)的分子標(biāo)記技術(shù),是一類由幾個(gè)核苷酸為重復(fù)單位組成的串聯(lián)重復(fù)序列,因其具有高多態(tài)性、多等位基因、共顯性遺傳等優(yōu)勢(shì)而被廣泛應(yīng)用[21]。SSR標(biāo)記VMC7f2和p3_VvAGL11被認(rèn)為是無核性狀早期選擇的良好候選標(biāo)記[1,22]。VMC7f2標(biāo)記位于所預(yù)測(cè)的ORF上游463 bp[1],QTL(quantitative trait locus)關(guān)聯(lián)分析表明VMC7f2標(biāo)記的198-bp等位基因與無核性狀顯著關(guān)聯(lián),可作為選擇無核基因型的潛在標(biāo)記[13,22]。但在不同遺傳背景下對(duì)VMC7f2進(jìn)行驗(yàn)證,其有效性會(huì)發(fā)生顯著變化[1,15,23-24]。p3_VvAGL11是位于基因啟動(dòng)子區(qū)的特異性標(biāo)記[1]。對(duì)p3_VvAGL11在不同遺傳背景下的測(cè)試結(jié)果表明,僅出現(xiàn)極低的假陽性率(1.68%)且沒有出現(xiàn)假陰性[2]。BENNICI等[25]的研究也表明最有效的標(biāo)記是VMC7f2和p3_VvAGL11。OCAREZ等[16]在簡(jiǎn)單重復(fù)序列p3_VvAGL11的同一區(qū)域開發(fā)出新的SSR標(biāo)記5U_VviAGL11,信息更豐富,更可靠。VMC7f2、p3_VvAGL11和5U_VviAGL11與位點(diǎn)的高度連鎖不平衡,使它們成為無核標(biāo)記輔助選擇的主要候選標(biāo)記,但也需要在其他遺傳背景中進(jìn)行驗(yàn)證?!颈狙芯壳腥朦c(diǎn)】基于遺傳圖譜和BSA等方法開發(fā)的這5個(gè)無核基因分子標(biāo)記,在不同遺傳背景的鑒定效率尚不明晰,因此,需要對(duì)它們的通用性做進(jìn)一步的鑒定。【擬解決的關(guān)鍵問題】本研究基于前人已開發(fā)的準(zhǔn)確性較高的5個(gè)無核基因分子標(biāo)記,通過在183份葡萄材料中進(jìn)行通用性鑒定,旨在理清它們的適用范圍及準(zhǔn)確性,從中篩選出鑒定準(zhǔn)確率高且檢測(cè)方法簡(jiǎn)單的分子標(biāo)記,為分子標(biāo)記輔助無核葡萄育種提供技術(shù)支持。
試驗(yàn)于2019—2020年在中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所進(jìn)行。
試驗(yàn)材料共183份,包括96個(gè)葡萄品種(其中無核63個(gè),有核33個(gè),電子附表1),保存于中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所國(guó)家葡萄種質(zhì)資源圃,87個(gè)F1(‘紅地球’ב黎明無核’)雜交單株(表1)保存于中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所尉氏基地。
取183份葡萄材料的健康幼嫩葉片,液氮研磨,采用CTAB植物基因組DNA快速提取試劑盒(北京艾德萊生物科技有限公司)提取葉片基因組DNA。利用1%瓊脂糖凝膠電泳和NanoDrop 1000 spectrophotometer(Themo Scientific)紫外分光光度計(jì)檢測(cè)DNA濃度和純度,然后將DNA濃度稀釋到工作液濃度(約10 ng·μL-1),保存于-20℃,用于后續(xù)的PCR擴(kuò)增。
選用5個(gè)已報(bào)道的與葡萄無核性狀相關(guān)的分子標(biāo)記(表2),對(duì)183份試材進(jìn)行標(biāo)記驗(yàn)證。引物由生工生物工程(上海)股份有限公司合成,含有FAM和HEX兩種熒光探針的SSR引物由北京閱微基因技術(shù)有限公司合成。
本試驗(yàn)在參考文獻(xiàn)的基礎(chǔ)上,對(duì)PCR反應(yīng)體系進(jìn)行優(yōu)化。SCAR標(biāo)記SCF27-2000及GSLP1-569的PCR反應(yīng)體系20 μL:2×Taq Master Mix 10 μL,正、反向引物各1 μL(10 μmol·L-1),2 μL DNA模板(10 ng·μL-1),ddH2O補(bǔ)至20 μL。反應(yīng)程序:94℃預(yù)變性5 min;94℃變性30 s,適宜Tm值退火30 s,72℃延伸2 min,35個(gè)循環(huán);72℃延伸5 min,擴(kuò)增產(chǎn)物4℃保存。
表1 ‘紅地球’ב黎明無核’F1代雜交單株的表型鑒定
續(xù)表1 Continued table 1
SL:無核,即成熟漿果中無種子或僅有不明顯的種痕;RS:殘核,即成熟漿果中殘核較明顯,但種皮未木質(zhì)化;SD:有核,即成熟漿果中的種子完全發(fā)育。其中6個(gè)子代因樣品質(zhì)量不佳無擴(kuò)增條帶,不予計(jì)數(shù)
SL: Seedless , there are no seeds or only imperceptible trace; RS: Rudimental seed, there are perceptible seed traces in the ripe berries, but seed coat is not lignified; SD: Seeded, the seeds in the ripe berries are fully developed. Six of the hybrids were not counted due to the poor quality of samples resulting in no amplification bands
表2 分子標(biāo)記對(duì)應(yīng)引物名稱及信息
SSR標(biāo)記的PCR反應(yīng)體系10 μL:2×Taq Master Mix for PAGE 5 μL,正、反向引物各0.5 μL(10 μmol·L-1),2 μL DNA模板(10 ng·μL-1),ddH2O補(bǔ)至10 μL。反應(yīng)程序:94℃預(yù)變性3 min;94℃變性30 s,適宜Tm值退火30 s,72℃延伸40 s,29個(gè)循環(huán);72℃延伸5 min,擴(kuò)增產(chǎn)物4℃保存。具體退火溫度根據(jù)引物設(shè)計(jì)進(jìn)行篩選。
SCAR標(biāo)記SCF27-2000及GSLP1-569的PCR產(chǎn)物采用1.5%瓊脂糖凝膠電泳25—30 min(恒壓150 V),使用UV凝膠成像儀拍照記錄。SSR標(biāo)記的擴(kuò)增產(chǎn)物采用熒光毛細(xì)管電泳及8%聚丙烯酰胺凝膠(PAGE)電泳進(jìn)行雙驗(yàn)證。
根據(jù)VIHINEN[26]和BALDI等[27]計(jì)算5項(xiàng)指標(biāo):真陽性(true positive,TP)、真陰性(true negative,TN)、假陽性(false positive,F(xiàn)P)、假陰性(false negative,F(xiàn)N)、準(zhǔn)確率(accuracy)。再根據(jù)馬亞茹等[15]的方法計(jì)算無核檢測(cè)率。假陽性即樣本攜帶無核等位基因,不表達(dá)無核表型;而假陰性即不攜帶無核等位基因,但表達(dá)無核表型。準(zhǔn)確率=(TP+TN)/(TP+FP+TN+FN),無核檢測(cè)率=TP/(TP+FP)。為評(píng)估表型與分子數(shù)據(jù)之間的關(guān)聯(lián),利用軟件SPSS 23.0對(duì)表型與SSR標(biāo)記的等位基因及基因型之間進(jìn)行卡方(χ2)獨(dú)立性檢驗(yàn)(<0.05)。
利用4個(gè)無核葡萄品種(‘紅寶石無核’‘黎明無核’‘瑞峰無核’‘中葡萄18號(hào)’)和4個(gè)有核葡萄品種(‘摩爾多瓦’‘紅地球’‘玫瑰香’‘先鋒’),對(duì)SSR標(biāo)記(p3_VvAGL11、VMC7f2、5U_VviAGL11)進(jìn)行PCR反應(yīng)體系優(yōu)化。如圖1-A所示,標(biāo)記p3_VvAGL11的最適退火溫度在58℃時(shí),不同品種的擴(kuò)增產(chǎn)物表現(xiàn)多態(tài)性;如圖1-B所示,標(biāo)記5U_VviAGL11的退火溫度在60℃時(shí),得到清晰的多態(tài)性條帶;如圖1-C,標(biāo)記VMC7f2的最適退火溫度為61℃,擴(kuò)增產(chǎn)物表現(xiàn)出清晰的多態(tài)性條帶。
2.2.1 SCAR標(biāo)記GSLP1-569和SCF27-2000的通用性 在96個(gè)葡萄品種(其中無核63個(gè),有核33個(gè))中驗(yàn)證無核標(biāo)記GSLP1-569和SCF27-2000的通用性。結(jié)果顯示,GSLP1-569分別在14個(gè)無核品種與8個(gè)有核品種中擴(kuò)增出569 bp的無核特異片段,而SCF27-2000分別在62個(gè)無核品種與26個(gè)有核品種中擴(kuò)增出2 000 bp的無核特異片段。經(jīng)統(tǒng)計(jì),分子標(biāo)記GSLP1-569和SCF27-2000在96個(gè)葡萄品種間的鑒定準(zhǔn)確率分別為40.6%和71.9%,無核檢測(cè)率分別為63.6%和70.5%(圖2、圖3)。由GSLP1-569無核標(biāo)記檢測(cè)出的14個(gè)無核品種包括‘鞏義無核白’‘白無核’‘布朗無核’‘長(zhǎng)穗無核白’‘火焰無核’‘美麗無核’‘寧夏無核白’‘無核白-阿富汗’‘早無核白’‘無核白’‘夏日陽光’‘鄭艷無核’‘黑愛默無核’‘波爾萊特’,其中11個(gè)由‘無核白’衍生而來(附表1、圖2)。除體細(xì)胞變異品種‘瑞鋒無核’外,SCF27-2000可以準(zhǔn)確鑒定98.4%的無核品種,表明其在無核×無核的適用范圍更廣(圖3)。
2.2.2 SSR標(biāo)記的鑒定結(jié)果 在96個(gè)葡萄品種中驗(yàn)證3個(gè)SSR標(biāo)記的通用性。結(jié)果表明,分子標(biāo)記p3_VvAGL11檢測(cè)到8個(gè)等位基因,分別為163、165、173、177、179、181、185、187;VMC7f2標(biāo)記檢測(cè)到7個(gè)等位基因,分別為187、189、191、193、195、197、201;5U_VviAGL11標(biāo)記檢測(cè)到17個(gè)等位基因,分別為260、262、266、270、272、278、280、282、288、294、296、298、302、304、306、308、312(表3)。在p3_VvAGL11標(biāo)記檢測(cè)到的等位基因中,187-bp(χ2=65.333,=6.32E-16)和177-bp(χ2=8.637,=0.003)與種子表型顯著關(guān)聯(lián),在63個(gè)無核(-)品種中,存在187-bp且表現(xiàn)為無核表型的個(gè)體有93.7%,存在187-bp的個(gè)體中90.7%表現(xiàn)為無核表型,表明187-bp與無核性狀最相關(guān);在33個(gè)有核(+)品種中,存在177-bp且表現(xiàn)為有核的個(gè)體占87.9%,表明177-bp與有核性狀關(guān)聯(lián)(表3)。分子標(biāo)記p3_VvAGL11檢測(cè)到13種基因型,其中177/187(χ2=46.061,=1.15E-11)、187/187(χ2=7.265,=0.007)和177/177(χ2=9.872,=0.002)與種子表型之間存在顯著關(guān)聯(lián)?;蛐?77/187在91.8%的無核和8.2%的有核個(gè)體中被檢測(cè)到;187/187在100%的無核個(gè)體中被檢測(cè)到,且在有核個(gè)體中缺失;177/177在84.2%有核和15.8%的無核植株中被檢測(cè)到(表4)。由此可知,基因型177/187和187/187與無核性狀顯著相關(guān),而177/177與有核性狀顯著相關(guān)。總體上,在具有分子標(biāo)記p3_VvAGL11的強(qiáng)連鎖不平衡中,等位基因187-bp的存在導(dǎo)致了無核表型,在96個(gè)葡萄品種中的鑒定準(zhǔn)確率達(dá)89.6%,無核檢測(cè)率為90.7%。
A:p3_VvAGL11標(biāo)記在退火溫度58℃;B:5U_VviAGL11標(biāo)記在退火溫度60℃;C:VMC7f2標(biāo)記在退火溫度61℃
圖2 SCAR標(biāo)記GSLP1-569對(duì)96個(gè)葡萄品種的驗(yàn)證
圖3 SCAR標(biāo)記SCF27-2000對(duì)96個(gè)葡萄品種的驗(yàn)證
表3 微衛(wèi)星等位基因分布與所收集葡萄品種中無核的相關(guān)性
與無核等位基因關(guān)聯(lián)的微衛(wèi)星等位基因用粗體表示。*顯著相關(guān)(<0.05),**極顯著相關(guān)(<0.01)。下同
Microsatellite alleles linked to the seedlessallele in cultivar Sultanina are indicated in bold. *Significant correlation (<0.05), ** Extremely significant correlation (<0.01). The same as below
在VMC7f2標(biāo)記的等位基因中,189-bp(χ2= 54.317,=1.71E-13)和191-bp(χ2=22.031,=0.0000)與種子表型顯著關(guān)聯(lián),存在189-bp且表現(xiàn)為無核表型的個(gè)體占無核品種的93.7%,存在189-bp的個(gè)體中85.5%為無核品種,表明189-bp與無核性狀關(guān)聯(lián)最顯著(表3)。分子標(biāo)記VMC7f2檢測(cè)到14種基因型,其中基因型187/189(χ2=4.085,=0.043)、189/191(χ2=52.092,=5.30E-13)、191/191(χ2=9.984,=0.0016)和195/195(χ2=4.085,=0.043)與種子表型顯著關(guān)聯(lián)(表4)。187/189在100%無核個(gè)體中被檢測(cè)到,在有核品種中缺失;189/191在95.7%的無核個(gè)體和4.3%的有核個(gè)體中被檢測(cè)到;191/191在92.3%的有核個(gè)體和7.7%的無核個(gè)體中被檢測(cè)到;195/195在100%的有核個(gè)體中被檢測(cè)到,但等位基因195-bp中與種子表型無相關(guān)性(表3、表4)。由此可知,基因型187/189和189/191與無核性狀顯著相關(guān),而191/191與有核性狀顯著相關(guān)。總體上,在具有分子標(biāo)記VMC7f2的強(qiáng)連鎖不平衡中,等位基因189-bp的存在導(dǎo)致了無核表型,而191-bp可能與有核性狀相關(guān),在96個(gè)葡萄品種中其鑒定準(zhǔn)確率為85.4%,無核檢測(cè)率為85.5%。
表4 微衛(wèi)星基因型分布與所收集品種中無核的相關(guān)性
在5U_VviAGL11標(biāo)記檢測(cè)的等位基因中,270-bp(χ2=4.085,=0.043)、278-bp(χ2=4.085,=0.043)、298-bp(χ2=7.005,=0.008)和306-bp(χ2=63.375,=1.71E-15)與種子表型顯著相關(guān)(表3)。雖然等位基因270-bp和298-bp與無核性狀關(guān)聯(lián),但由于只存在于少數(shù)無核品種中,不是最相關(guān)的無核等位基因;存在278-bp的個(gè)體100%為有核品種,表明其與有核性狀關(guān)聯(lián);存在306-bp且表現(xiàn)為無核表型的個(gè)體占無核品種的92.1%,存在306-bp的個(gè)體中有90.6%為無核品種,表明等位基因306-bp與無核性狀關(guān)聯(lián)最顯著。分子標(biāo)記5U_VviAGL11檢測(cè)到35種基因型,其中基因型294/306(χ2=14.521,=0.0001)、298/306(χ2=23.048,=0.000002)、270/306(χ2=4.085,=0.043)和306/308(χ2=4.085,=0.043)與種子表型顯著關(guān)聯(lián)?;蛐?94/306存在于94.1%的無核個(gè)體中;298/306存在于95.8%的無核個(gè)體中;270/306和306/308也存在于全部無核個(gè)體中(表4),由此可知,這4種基因型均與無核性狀關(guān)聯(lián),其中基因型294/306和298/306與無核性狀關(guān)聯(lián)極顯著。總體上,在具有分子標(biāo)記5U_VviAGL11的強(qiáng)連鎖不平衡中,等位基因306-bp的存在導(dǎo)致了無核表型,在96個(gè)葡萄品種中其鑒定準(zhǔn)確率為88.5%,無核檢測(cè)率為90.6%。
綜上所述,分子標(biāo)記p3_VvAGL11、VMC7f2和5U_VviAGL11可以分別利用其無核等位基因187-bp、189-bp和306-bp的存在與否對(duì)雜交群體進(jìn)行分子標(biāo)記輔助育種。
通過分析上述5個(gè)分子標(biāo)記在96個(gè)葡萄品種中的通用性和準(zhǔn)確率,進(jìn)一步利用SCAR標(biāo)記SCF27-2000及SSR標(biāo)記p3_VvAGL11、5U_VviAGL11對(duì)‘紅地球’ב黎明無核’的F1雜交單株進(jìn)行鑒定。F1代中有效的無核表型(SL)21個(gè),殘核表型(RS)35個(gè),有核表型(SD)25個(gè)(表1)。
SCF27-2000對(duì)F1代的鑒定結(jié)果(表5)顯示,在90.48%的SL和91.43%的RS單株中檢測(cè)到該標(biāo)記,而在SD個(gè)體中擴(kuò)增的相對(duì)頻率(假陽性)下降到17.28%。存在2000-bp且表現(xiàn)為RS或SL表型的單株有78.5%(χ2=13.419,=0.0012),在F1雜交單株中,該標(biāo)記的鑒定準(zhǔn)確率為76.54%,假陰性率為6.17%。
SSR標(biāo)記p3_VvAGL11在F1代的鑒定結(jié)果(表6)表明,等位基因187-bp與SL性狀顯著關(guān)聯(lián)(χ2= 41.188,=1.14E-9),177-bp與SD性狀有關(guān),是從‘紅地球’遺傳的。無核等位基因187-bp在95.24%的SL和88.57%的RS植株中被檢測(cè)到。存在187-bp且表現(xiàn)為RS或SL表型的雜交單株占91.1%。在F1雜交單株中,該標(biāo)記的鑒定準(zhǔn)確率為87.65%,假陽性、假陰性率分別為6.17%、6.17%。F1代中形成3種基因型,其中基因型163:177中有80%為SD性狀,177:187和163:177:187中有91.1%為RS或SL性狀,由此可知,無核等位基因187-bp為顯性基因,符合位點(diǎn)的顯性遺傳模型。
SSR標(biāo)記5U_VviAGL11對(duì)F1代的鑒定結(jié)果(表7)表明,等位基因306-bp與無核性狀顯著關(guān)聯(lián)(χ2=44.959,=1.73E-10),306-bp分別存在于95.24%的SL和88.57%的RS植株中。存在306-bp且表現(xiàn)為RS或SL表型的雜交單株占92.7%。該標(biāo)記的準(zhǔn)確率為88.89%,假陽性、假陰性率分別為4.94%、6.17%。
此外,3個(gè)標(biāo)記對(duì)No.61(RS)、No.62(RS)的鑒定結(jié)果一致,兩個(gè)樣品均不存在無核標(biāo)記。綜上,利用3個(gè)分子標(biāo)記對(duì)‘紅地球’ב黎明無核’的F1雜交單株鑒定時(shí),5U_VviAGL11與p3_VvAGL11的準(zhǔn)確率及無核檢測(cè)率較高,且都有較低的假陽性和假陰性率,鑒定結(jié)果基本一致,因此均可用于無核葡萄育種的分子標(biāo)記輔助育種。
葡萄是一種基因型高度雜合的多年生果樹,童期較長(zhǎng),育種速度慢。尤其對(duì)于無核表型的篩選,通過傳統(tǒng)手段只能等到植株成年才能進(jìn)行選育,而利用分子標(biāo)記對(duì)幼苗進(jìn)行早期驗(yàn)證可以提高育種效率,加快育種進(jìn)程。其中,選擇適用且準(zhǔn)確率高的分子標(biāo)記是有效進(jìn)行分子標(biāo)記輔助育種的關(guān)鍵。前人利用BSA、基因組測(cè)序、QTL關(guān)聯(lián)分析等方法先后開發(fā)了與無核主要位點(diǎn)連鎖的分子標(biāo)記[1,8,9,11-16,22,28-29]。由于每個(gè)分子標(biāo)記開發(fā)的遺傳背景不同,其鑒定準(zhǔn)確率及通用性無法進(jìn)行比較,且可操作性有差異,因此本試驗(yàn)選擇其中5個(gè)與位點(diǎn)連鎖緊密的分子標(biāo)記在183份材料中進(jìn)行鑒定。
表5 SCAR標(biāo)記SCF27-2000對(duì)‘紅地球’ב黎明無核’雜交后代的檢測(cè)結(jié)果
表6 SSR標(biāo)記p3_VvAGL11對(duì)‘紅地球’ב黎明無核’雜交后代的檢測(cè)結(jié)果
表7 SSR標(biāo)記5U_VviAGL11對(duì)‘紅地球’ב黎明無核’雜交后代的檢測(cè)結(jié)果
圖4 SSR標(biāo)記p3_VvAGL11對(duì)‘紅地球’ב黎明無核’雜交后代的檢測(cè)
Fig. 4 Detection of SSR marker p3_Vv for the progenies of Red Globe × Dawn Seedless
屈田田等[30]和LI等[17]研究發(fā)現(xiàn),SCAR標(biāo)記GSLP1-569在檢測(cè)‘無核白’的后代時(shí)顯示出更高的準(zhǔn)確性。本研究中,GSLP1-569檢測(cè)出的14個(gè)無核品種中有11個(gè)品種均由‘無核白’衍生而來,表明GSLP1-569更適合對(duì)‘無核白’及其親緣關(guān)系較近的無核品種進(jìn)行無核鑒定,這與前人研究結(jié)果類似。對(duì)于SCAR標(biāo)記SCF27-2000,AKKURT等[24]研究發(fā)現(xiàn)該標(biāo)記更適于無核×無核雜交后代中的無核性狀鑒定,LI等[17]的研究證實(shí)了這一點(diǎn)。在本研究中,SCF27-2000在無核品種中的鑒定準(zhǔn)確率高達(dá)98.4%,進(jìn)一步印證了前人的觀點(diǎn)。CABEZAS等[22]利用QTL定位到與葡萄無核性狀緊密連鎖的SSR標(biāo)記VMC7f2,且檢測(cè)到198-bp等位點(diǎn)與無核表型顯著關(guān)聯(lián),與MEJIA等[31]的研究結(jié)果相似。BENNICI等[25]的研究也表明,VMC7f2的198-bp與無核性相關(guān),200-bp等位點(diǎn)與有核表型相關(guān)。本研究中,用VMC7f2在96個(gè)品種中檢測(cè)到189-bp與無核性狀顯著關(guān)聯(lián),191-bp與有核表型相關(guān),但與前人擴(kuò)增片段長(zhǎng)度有所偏差,因此在后期結(jié)果比對(duì)時(shí)需要加上標(biāo)準(zhǔn)樣品,以避免儀器誤差。分子標(biāo)記座位與目標(biāo)基因座位之間的遺傳距離決定了分子標(biāo)記輔助選擇的準(zhǔn)確率。前人研究[8,22,31]表明SSR標(biāo)記VMC7f2為最接近位點(diǎn)的分子標(biāo)記。本研究中,與SCAR標(biāo)記GSLP1-569和SCF27-2000相比,VMC7f2在96個(gè)品種間鑒定的準(zhǔn)確率(85.4%)及無核檢測(cè)率(85.5%)均較高,說明VMC7f2更接近位點(diǎn)。在基因的啟動(dòng)子區(qū)域開發(fā)了與位點(diǎn)高度連鎖不平衡的分子標(biāo)記p3_VvAGL11,該標(biāo)記鑒定的表型—基因型間有很高的一致性[2],使它成為無核分子標(biāo)記輔助育種的主要候選標(biāo)記之一。OCAREZ等[16]研究發(fā)現(xiàn)p3_VvAGL11的等位點(diǎn)194-bp與無核表型顯著關(guān)聯(lián)。本研究中,檢測(cè)到187-bp與無核性狀顯著相關(guān),且其鑒定的準(zhǔn)確率(89.6%)及無核檢測(cè)率(90.7%)較高。另有研究表明[25],p3_VvAGL11對(duì)于‘Melissa’‘Crimson Seedless’‘Sugraeighteen’‘Early Gold’‘Sugrathirteen’及‘Pink Muscat’均表現(xiàn)出較好的預(yù)測(cè)能力。本研究用p3_VvAGL11對(duì)葡萄材料的檢測(cè)準(zhǔn)確率為89.6%,這與前人的結(jié)果相一致,也表明了p3_VvAGL11的通用性強(qiáng)。與p3_VvAGL11相似,5U_VviAGL11標(biāo)記也位于基因的啟動(dòng)子區(qū)域,其等位點(diǎn)306-bp與無核性狀極顯著相關(guān),雖然本研究中也觀察到270-bp和298-bp與無核相關(guān),但這可能是假基因型效應(yīng),由于攜帶270-bp的4個(gè)無核品種,也都攜帶無核等位點(diǎn)306-bp;攜帶298-bp的25個(gè)無核品種有23個(gè)均攜帶306-bp。OCAREZ等[16]在209個(gè)葡萄品種中進(jìn)行分子標(biāo)記5U_VviAGL11的驗(yàn)證,發(fā)現(xiàn)其準(zhǔn)確性為0.953,陽性預(yù)測(cè)值為0.836,陰性預(yù)測(cè)值為1.0,表現(xiàn)出較低的假陽性。同樣,在本研究中,5U_VviAGL11在96個(gè)葡萄品種的無核鑒定中準(zhǔn)確率為88.5%,無核檢測(cè)率為90.6%,也表明該標(biāo)記的通用性強(qiáng)。綜上,標(biāo)記p3_VvAGL11和5U_VviAGL11位于基因的啟動(dòng)子區(qū)域,推薦為首選的無核性鑒定標(biāo)記。分子標(biāo)記p3_VvAGL11和5U_VviAGL11在96個(gè)葡萄品種檢測(cè)中具有有效性,證實(shí)了無核性狀與之間密切關(guān)聯(lián),這2個(gè)標(biāo)記在無核育種中有潛在的應(yīng)用價(jià)值。另外,對(duì)于體細(xì)胞突變品種—‘瑞峰無核’,5個(gè)無核分子標(biāo)記均不能鑒定出來,這與KARAAGAC等[23]關(guān)于體細(xì)胞突變無核品種‘chasselas apyrene’的研究結(jié)果一致,推測(cè)體細(xì)胞突變導(dǎo)致的無核與‘無核白’的無核性機(jī)理可能不同,那么開發(fā)分子標(biāo)記區(qū)分體細(xì)胞突變體與親本無性系也將是今后的一個(gè)研究方向。
由于分子標(biāo)記為遺傳標(biāo)記,所以對(duì)雜交群體進(jìn)行MAS時(shí),要基于父母本的基因型,選擇適用的分子標(biāo)記。本研究中,雜交組合的無核親本‘黎明無核’中不存在分子標(biāo)記GSLP1-569,因此該標(biāo)記不適于對(duì)供試的雜交組合F1代檢測(cè)。SSR標(biāo)記VMC7f2在‘黎明無核’(189:197)中雖然有無核等位基因189-bp,且與‘紅地球’(191:191)間具有多態(tài)性,但等位基因189-bp和191-bp所對(duì)應(yīng)的帶型相距太近,采用聚丙烯酰胺凝膠電泳時(shí)不易區(qū)分。所以本試驗(yàn)利用分子標(biāo)記SCF27-2000、p3_VvAGL11和5U_VviAGL11對(duì)F1雜交單株進(jìn)行無核性狀檢測(cè),重點(diǎn)評(píng)估其預(yù)測(cè)能力。
BENNICI等[25]的研究表明分子標(biāo)記SCF27-2000表現(xiàn)出較高的假陽性(17.4%),在本研究中,SCF27-2000也顯示出較高的假陽性率(17.28%),與前人研究結(jié)果類似。有研究發(fā)現(xiàn)[21],SCF27-2000分子標(biāo)記在無核性鑒定中表現(xiàn)出較低的準(zhǔn)確率,是由于在供試樣品中出現(xiàn)零等位基因,且該分子標(biāo)記與位點(diǎn)之間不完全連鎖。另外,本研究利用F1雜交單株進(jìn)一步證實(shí)p3_VvAGL11的187-bp和5U_VviAGL11的306-bp等位基因與無核性狀顯著關(guān)聯(lián)。本研究中,p3_VvAGL11在F1雜交群體的無核性鑒定表現(xiàn)出較低的假陽性率(6.17%),這與OCAREZ等[16]在571個(gè)F1代和BERGAMINI等[2]在475個(gè)基因型進(jìn)行無核性鑒定的結(jié)果一致。BENNICI等[25]在97個(gè)F1基因型的鑒定結(jié)果表明,分子標(biāo)記p3_VvAGL11的無核性預(yù)測(cè)能力最強(qiáng),是最有效的無核分子標(biāo)記。本研究利用p3_VvAGL11進(jìn)行無核性鑒定時(shí),出現(xiàn)的假陽性率較低,鑒定的準(zhǔn)確率及無核檢測(cè)率高,說明p3_VvAGL11是良好的無核基因候選標(biāo)記。此外,利用5U_VviAGL11對(duì)F1雜交單株進(jìn)行無核性鑒定,該標(biāo)記的準(zhǔn)確率為88.89%,與p3_VvAGL11標(biāo)記基本一致,前者的假陽性率略低于后者。總體而言,通過對(duì)雜交群體的無核性鑒定,發(fā)現(xiàn)分子標(biāo)記p3_VvAGL11和5U_VviAGL11的無核鑒定準(zhǔn)確率較高,且采用傳統(tǒng)的電泳方法即可實(shí)現(xiàn)對(duì)這兩個(gè)標(biāo)記的檢測(cè),便于操作,成本低,是可靠的無核基因分子標(biāo)記。
SSR標(biāo)記p3_VvAGL11的187-bp、5U_VviAGL11的306-bp以及VMC7f2的189-bp與無核性狀顯 著相關(guān)。以p3_VvAGL11和5U_VviAGL11的準(zhǔn)確率和無核檢測(cè)率高,假陽/假陰性率低,且應(yīng)用成本低,是可靠的無核分子標(biāo)記,可應(yīng)用于無核葡萄育種。
附表1 96個(gè)葡萄品種的信息
Supplementary Table 1 The information of 96 grape cultivars
續(xù)附表1 Continued supplementary table 1
編號(hào) Code葡萄品種Grape cultivars種類Species種子表型SeedsphenotypeP3_VvAGL115U_VviAGL11VMC7f2 52紅無籽露Hongwuzilu(6-5-1)Vv無核Seedless187:187306:306189:189 53范訥薩無核VanessaVv-Vl無核Seedless177:187298:306189:191 54保一Baoyi未知無核Seedless177:187306:308189:191 55波爾萊特 PerletteVv無核Seedless177:187298:306189:191 56京可晶JingkejingVv無核Seedless177:187298:306189:191 57緊穗無紫露Jinsuiwuzilu未知無核Seedless181:187306:308189:195 58粒麗特LilitVv無核Seedless187:187306:306189:189 59無核玫瑰Meigui SeedlessVv無核Seedless179:187288:306189:189 60瓦特康無核Watekang WuheVv無核Seedless177:187294:306189:191 61蜜無核Honey Seedless(3N)Vv-Vl無核Seedless187:187270:306187:189 62京紫晶JingzijingVv無核Seedless177:187294:304189:191 63奇妙無核Fantasy SeedlessVv無核Seedless177:187298:306189:191 64無核白1號(hào)Wuhebai No.1Vv有核Seeded165:177278:298195:195 65無核白3號(hào)Wuhebai No.3Vv有核Seeded165:181278:308195:195 66京亞JingyaVv-Vl有核Seeded177:177262:298187:191 67摩爾多瓦M(jìn)oldovaVv-Vl有核Seeded173:187282:306189:201 68藤稔 FujiminoriVv-Vl有核Seeded177:177260:298187:191 69紅地球Red GlobeVv有核Seeded177:177294:298191:191 70京秀JingxiuVv有核Seeded177:177308:308191:191 71里扎馬特RizamatVv有核Seeded181:187302:306189:193 72玫瑰香Muscat HamburgVv有核Seeded163:177272:294191:197 73美人指Manicure FingerVv有核Seeded177:187296:306189:191 74牛奶N(yùn)iunaiVv有核Seeded165:177278:298195:195 75葡萄園皇后Queen of VineyardVv有核Seeded177:177294:298191:191 76圣誕玫瑰Christmas RoseVv有核Seeded177:177298:298191:191 77紅巴拉多Red BaladiVv有核Seeded177:177296:308191:191 78香妃XiangfeiVv有核Seeded177:177294:302191:191 79意大利ItaliaVv有核Seeded177:177294:308191:191 80金手指Golden FingerVv-Vl有核Seeded177:187294:306189:189 81黑巴拉多Black BaladiVv有核Seeded177:187296:306189:189 82陽光玫瑰Shine-MuscatVv-Vl有核Seeded177:179288:294189:189 83北醇BeichunVa-Vv有核Seeded177:177266:294187:187 84黑比諾Pinot NoirVv有核Seeded177:177294:308191:191 85神州紅Shenzhou RedVv有核Seeded177:177296:308191:191 86水晶紅ShuijinghongVv有核Seeded165:177278:296191:195 87夏至紅Xiazhi Hong Vv有核Seeded177:177294:298191:191 88先鋒Pioneer(4N)Vv-Vl有核Seeded177:177262:298187:191 89莎巴珍珠Pearl of CsabaVv有核Seeded177:185294:312189:189 90維多利亞VictoriaVv有核Seeded165:177280:294195:195 91謝花紅Muscat Mathiasz JanosneVv有核Seeded177:179288:302189:191 92京豐JingfengVv有核Seeded177:187298:306189:189 93鄭州早紅ZhengzhouzaohongVv有核Seeded177:177294:294191:191 94小白玫瑰Muscat Blanc a Petits GrainsVv有核Seeded179:185288:312189:189 95緋紅CardinalVv有核Seeded177:177294:302191:191 96康可ConcordVl有核Seeded165:177282:294193:193
表格中所指無核即漿果成熟時(shí)只留下不明顯的種痕或者種皮未木質(zhì)化的殘核。Vv:歐亞種;Vv-Vl:歐美雜種;Vl:美洲種;Va-Vv:山歐雜種。
The seedlessness in the table is that there are only imperceptible seed traces or rudimental seed without lignified seed coat.Vv:,Vv-Vl means, Vl means, Va-Vv means.
[1] MEJíA N, SOTO B, GUERRERO M, CASANUEVA X, HOUEL C, MICCONO M D L á, RAMOS R, LE CUNFF L, BOURSIQUOT J M, HINRICHSEN P, ADAM-BLONDON A F. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology, 2011, 11: 57.
[2] BERGAMINI C, CARDONE M F, ANACLERIO A, PERNIOLA R, PICHIERRI A, GENGHI R, ALBA V, FORLEO L R, CAPUTO A R, MONTEMURRO C, BLANCO A, ANTONACCI D. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy inL. Molecular Biotechnology, 2013, 54(3): 1021-1030.
[3] LEDBETTER C A, BURGOS L. Inheritance of stenospermocarpic seedlessness inL. Journal of Heredity, 1994, 85(2): 157-160.
[4] STOUT A B. Progress in breeding for seedless grapes. Proceeding American Society for Horticultural Science, 1939, 37: 627-629.
[5] SANDHU A S, JAWANDA J S, UPPAL D K. Inheritance of seed characters in hybrid population of intercultivar crosses of grapes (L.). Journal of Research-Punjab Agricultural University, 1984, 21(1): 39-44.
[6] SATO A, YAMANE H, YAMADA M, YOSHINAGA K. Inheritance of seedlessness in grapes. Journal of the Japanese Society for Horticultural Science, 1994, 63(1): 1-7.
[7] BOUQUET A, DANGLOT Y. Inheritance of seedlessness in grapevine (L.). Vitis, 1996, 35(1): 35-42.
[8] COSTANTINI L, BATTILANA J, LAMAJ F, FANIZZA G, GRANDO M S. Berry and phenology-related traits in grapevine (L.): from quantitative trait loci to underlying genes. BMC Plant Biology, 2008, 8: 38.
[9] LAHOGUE F, THIS P, BOUQUET A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics, 1998, 97(5): 950-959.
[10] ROYO C, TORRES-PéREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBá?EZ J, TORNEL M, CARRE?O J, MARTíNEZ-ZAPATER J M, CARBONELL-BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.
[11] MEJIA N, HINRICHSEN P. A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Horticulturae, 2003, 603(603): 559-564.
[12] 王躍進(jìn), Lamikanra Olusola. 檢測(cè)葡萄無核基因DNA探針的合成與應(yīng)用. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 30(3): 42-46.
WANG Y J, OLUSOLA L. Application and synthesis on the DNA probe for detecting seedless genes in grapevine. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2002, 30(3): 42-46. (in Chinese)
[13] PELLERONE F I, EDWARDS K J, THOMAS M R. Grapevine microsatellite repeats: Isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis Journal of Grapevine Research, 2001, 40(4):179-186.
[14] MERDINOGLU D, BUTTERLIN G, BEVILACQUA L, CHIQUET V, ADAM-BLONDON A F, DECROOCQ S. Development and characterization of a large set of microsatellite markers in grapevine (L.) suitable for multiplex PCR. Molecular Breeding, 2005, 15(4): 349-366.
[15] 馬亞茹, 馮建燦, 劉崇懷, 樊秀彩, 孫海生, 姜建福, 張穎. 葡萄無核性狀的SSR新分子標(biāo)記開發(fā)及應(yīng)用. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(13): 2622-2630.
MA Y R, FENG J C, LIU C H, FAN X C, SUN H S, JIANG J F, ZHANG Y. Development and application of SSR new molecular marker for seedless traits in grape. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630. (in Chinese)
[16] OCAREZ N, JIMENEZ N, NUNEZ R, PERNIOLA R, MARSICO A D, CARDONE M F, BERGAMINI C, MEJIA N. Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for-Based Gene-Assisted Selection. Genes, 2020, 11(2): 151.
[17] LI Z Q, LI T M, WANG Y J, XU Y. Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. In Vitro Cellular & Developmental Biology - Plant, 2015, 51(3): 241-248.
[18] LI T M, LI Z Q, YIN X, GUO Y R, WANG Y J, XU Y. Improved in vitroL. embryo development of F1progeny of 'Delight' × 'Ruby seedless' using putrescine and marker-assisted selection. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 291-301.
[19] LI S S, LI Z Y, ZHAO Y N, ZHAO J, LUO Q W, WANG Y J. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. 3 Biotech, 2019, 10(1): 4.
[20] KORPAS A, BARáNEK M, PIDRA M, HRADLíK J. Behaviour of two SCAR markers for seedlessness within Central European varieties of grapevine. Vitis, 2009, 48(1): 33-42.
[21] KUBOTA S, LIU Q, KESSUWAN K, OKAMOTO N, SAKAMOTO T, NAKAMURA Y, SHIGENOBU Y, SUGAYA T, SANO M, UJI S, NOMURA K, OZAKI A. High-throughput simple sequence repeat (SSR) markers development for the kelp grouper () and cross-species amplifications for Epinephelinae species. Advances in Bioscience and Biotechnology, 2014, 5(2): 117-130.
[22] CABEZAS J A, CERVERA M T, RUIZ-GARCíA L, CARRE?O J, MARTíNEZ-ZAPATER J M. A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49(12): 1572-1585.
[23] KARAAGAC E, ALBA M. VARGAS, ANDRES M T D, CARRENO I, IBANEZ J, CARRENO J, MARTINEZ-ZAPATER J M, CABEZAS J A. Marker assisted selection for seedlessness in table grape breeding. Tree Genetics & Genomes, 2012, 8(5): 1003-1015.
[24] AKKURT M, ?AK?R A, SHIDFAR M, ?ELIKKOL B P, S?YLEMEZO?LU G. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genetics and Molecular Research, 2012, 11(3): 2288-2294.
[25] BENNICI S, DI GUARDO M, DISTEFANO G, LA MALFA S, PUGLISI D, ARCIDIACONO F, FERLITO F, DENG Z N, GENTILE A, NICOLOSI E. Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Scientia Horticulturae, 2019, 252: 316-323.
[26] VIHINEN M. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 2012, 13(4): S2.
[27] BALDI P, BRUNAK S, CHAUVIN Y, ANDERSEN C A F, NIELSEN H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 2000, 16(5): 412-424.
[28] REVERS L F, WELTER L J, IRALA P B, Silva D, Garrido L R. Co-localization of QTLS for seedlessness and downy mildew resistance in grapevine. Acta Horticulturae, 2014, 1046: 449-456.
[29] GUO D L, ZHAO H L, LI Q, ZHANG G H, JIANG J F, LIU C H, YU Y H. Genome-wide association study of berry-related traits in grape [L.] based on genotyping-by-sequencing markers. Horticulture Research, 2019, 6: 11.
[30] 屈田田, 張劍俠, 駱強(qiáng)偉, 王躍進(jìn). 無核葡萄抗寒抗病胚挽救育種應(yīng)用研究. 果樹學(xué)報(bào), 2017, 34(2): 157-165.
QU T T, ZHANG J X, LUO Q W, WANG Y J. A study on the application of seedless grapevine breeding for cold-hardness and disease-resistance using embryo rescue. Journal of Fruit Science, 2017, 34(2): 157-165.(in Chinese)
[31] MEJIA N, GEBAUER M, MUNOZ L, HEWSTONE N, MUNOZ C, HINRICHSEN P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. American Journal of Enology & Viticulture, 2007, 58(4): 499-507.
Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape
CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
【Objective】Seedlessness is an important agronomic trait in table grape breeding studies. The accuracy of molecular markers linked to seedless genes will substantially influence the early selection of seedless grapes. In this study, five previously reported seedless molecular markers against 183 genotypes were assessed to determine their efficacy for the selection of seedless plants and to provide alternative strategies for the breeding of seedless grapevines based on marker-assisted selection. 【Method】Leaf samples for DNA extraction were obtained from 96 grape cultivars (63 seedless and 33 seeded cultivars) and 87 F1hybrids (61 seedless and 26 seeded hybrids) from a cross between ‘Red Globe’ and ‘Dawn Seedless’. The previously reported primer pairs for five markers (SCF27-2000, GSLP1-569, VMC7f2, p3_VvAGL11, and 5U_VviAGL11) were used for PCR amplification. The presence of markers in cultivars and hybrid genotypes was detected by running the PCR products on 1.5% agarose gels, 8% polyacrylamide gels, or by fluorescence capillary electrophoresis. 【Result】The primer for the SCAR marker GSLP1-569 amplified a 569-bp segment in the 96 grape cultivars, which showed 40.6% accuracy and 63.6% efficiency in the detection of seedless cultivars. The primers for the SCAR marker SCF27-2000 amplified a 2000-bp segment in the 96 grape cultivars and 87 F1hybrids, with an accuracy of 71.9% and an efficiency of 76.54% for detection of the seedless trait in the 96 cultivars, and an accuracy of 70.5% and efficiency of 78.5% in the 87 F1hybrids.Among the 96 assessed cultivars, the SSR marker VMC7f2 identified eight alleles, a 189-bp allele of which was found to be most significantly associated with seedlessness based on a Chi-square (χ2) independence test, and detected seedless genotypes with an accuracy of 85.4% and an efficiency of 85.5%. Among the 96 cultivars, the SSR marker p3_VvAGL11 identified seven alleles, among which, a 187-bp allele was found to be most significantly associated with seedlessnessand detected seedless genotypes with an accuracy of 89.6% and efficiency of90.7%. Among the F1hybrids, the accuracy and efficiency of this marker were 87.65% and 91.1%, respectively, whereasit showed false-positive and false-negative rates of 6.17% and 6.17%, respectively. Among the 96 grape cultivars, the SSR marker 5U_VviAGL11 identified 17 alleles, of which, a 306-bp allele was found to be most significantly associated with the detection of seedlessness, identifying seedless genotypes with an accuracy of 88.5% and an efficiency of 90.6%. Among the F1hybrids, the accuracy and efficiency of 5U_VviAGL11 were 88.89% and 92.7%, respectively, with false-positive and false-negative rates of 4.94% and 6.17%, respectively. 【Conclusion】The SSR markers 5U_VviAGL11 and p3_VvAGL11showed higher accuracy and efficiency with respect to the detection of grape germplasm and genetic population. These markers should be given priority for future molecular marker-assisted selection based on seedless genes in the grapevine.
L.; seedlessness; molecular marker; commonality; identification
2021-01-25;
2021-04-08
河南省科技攻關(guān)項(xiàng)目(202102110196)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-30-17)、中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程“葡萄資源及育種”(CAAS-ASTIP-2020-ZFRI)
陳豆豆,E-mail:chendoudou21@163.com。通信作者劉三軍,E-mail:liusanjun@caas.cn
(責(zé)任編輯 趙伶俐)