甄 銳 黃艷娜 蔣宗勇 易宏波*
(1.廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所,畜禽育種國家重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)農(nóng)村部華南動(dòng)物營養(yǎng)與飼料重點(diǎn)實(shí)驗(yàn)室,廣東省畜禽育種與營養(yǎng)研究重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2.廣西大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,南寧 530004)
煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)也稱輔酶Ⅰ,是連接呼吸鏈和三羧酸循環(huán)的關(guān)鍵輔酶,可作為電子載體將H+傳遞至黃素蛋白參與糖異生、糖酵解和三羧酸循環(huán)等能量代謝過程。NAD不僅在能量代謝中發(fā)揮關(guān)鍵作用,還可以向細(xì)胞提供信號(hào)參與炎癥、衰老、腫瘤等病理過程,其代謝異常會(huì)引起動(dòng)物肌營養(yǎng)不良、神經(jīng)衰弱、糖尿病等疾病[1-4]。近年研究發(fā)現(xiàn),NAD代謝與動(dòng)物腸道免疫功能密切相關(guān),NAD代謝可調(diào)控巨噬細(xì)胞極化分型、蛋白質(zhì)乙?;揎椉澳c道菌群[5-6]。動(dòng)物腸道NAD代謝紊亂引起NAD消耗酶活性顯著下降,造成腸細(xì)胞功能代謝障礙,導(dǎo)致動(dòng)物腸道免疫穩(wěn)態(tài)失衡。然而,有關(guān)NAD代謝對(duì)畜禽腸道免疫功能的研究鮮有報(bào)道。因此,借鑒NAD在人體疾病以及小鼠等動(dòng)物模型中的應(yīng)用,本文闡述了NAD代謝介導(dǎo)動(dòng)物腸道免疫功能的可能機(jī)制,為其合理應(yīng)用于畜禽生產(chǎn)實(shí)踐提供理論依據(jù)。
NAD在動(dòng)物體內(nèi)含量豐富,其濃度可能以隔室特異性的方式調(diào)節(jié)且受細(xì)胞類型、應(yīng)激、個(gè)體年齡等因素的影響,進(jìn)而調(diào)節(jié)氧化還原功能以及NAD消耗酶[7-10]。盡管NAD半衰期短且其濃度不斷變化,但細(xì)胞內(nèi)NAD濃度在健康狀態(tài)下保持相對(duì)穩(wěn)定[11]。NAD在體內(nèi)器官組織中的濃度高低順序?yàn)楦闻K、腎臟、胰腺、心臟、腦、脾臟、小腸、骨骼肌、肺臟、白色脂肪,其中肝臟、腎臟中NAD濃度可達(dá)500 μmol/L以上[12]。
NAD的代謝途徑如圖1所示,其合成途徑主要有3種:從頭合成途徑、補(bǔ)救合成途徑和Preiss-Handler途徑[13]。3種合成途徑都是由NAD的前體物質(zhì)進(jìn)入細(xì)胞后再合成NAD參與細(xì)胞內(nèi)的代謝反應(yīng)。NAD從頭合成途徑通過犬尿氨酸途徑將色氨酸(tryptophan,Trp)轉(zhuǎn)化為喹啉酸(quinolinic acid,QA),隨后通過喹啉酸酯磷酸核糖基轉(zhuǎn)移酶(quinolinate phosphoribosyl transferase,QPRT)將其轉(zhuǎn)化為煙酸單核苷酸(nicotinic acid mononucleotide,NAMN);Preiss-Handler途徑利用犬尿氨酸途徑來源的NAMN或飲食來源的煙酸通過相關(guān)酶促反應(yīng)合成NAD;NAD補(bǔ)救合成途徑是炎癥狀態(tài)下維持NAD濃度的主要合成途徑,主要經(jīng)煙酰胺磷酸核糖基轉(zhuǎn)移酶(nicotinamide phosphoribosyl transferase,NAMPT)將煙酰胺(nicotinamide,NAM)轉(zhuǎn)化為煙酰胺單核苷酸 (nicotinamide mononucleotide,NMN),再轉(zhuǎn)化為NAD。
NAD消耗途徑主要經(jīng)多聚ADP核糖聚合酶(PARPs)、環(huán)狀A(yù)DP-核糖合成酶(cADPRs)、sirtuins(SIRTs)3種以NAD為唯一底物的酶促反應(yīng)消耗,從而產(chǎn)生NAM和以ADP核糖作為主要結(jié)構(gòu)的其他代謝產(chǎn)物[14]。這些消耗途徑主要與細(xì)胞增殖、凋亡、能量代謝及免疫等相關(guān)。
NAD代謝能夠調(diào)節(jié)動(dòng)物腸道免疫功能,在維持機(jī)體免疫穩(wěn)態(tài)中發(fā)揮重要作用。外源添加NAD可促進(jìn)腸道黏液層黏蛋白2(MUC2)分泌,增強(qiáng)抗菌感染能力[15]。NAD改善脂多糖(LPS)誘導(dǎo)的小鼠腸道屏障損傷,通過抑制核轉(zhuǎn)錄因子-κB(NF-κB)緩解腸道炎癥[16]。研究發(fā)現(xiàn),阻斷NAD合成會(huì)抑制PARPs和SIRTs的活性進(jìn)而使單核細(xì)胞數(shù)量下降,腸黏膜免疫功能降低[17]。以上研究提示,NAD代謝對(duì)維持動(dòng)物腸道黏膜免疫功能至關(guān)重要。同時(shí),NAD的前體物質(zhì)[NMN、煙酰胺核糖(NR)、煙酸、色氨酸等]具有抗炎作用。NMN減少小鼠骨骼肌中腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素-6(IL-6)表達(dá)[3],NR可以有效抑制自身免疫病小鼠的炎癥[4],外源補(bǔ)充NR可通過NAD途徑緩解小鼠腸炎[5]。研究表明,煙酸能夠抑制LPS誘導(dǎo)巨噬細(xì)胞分泌TNF-α、IL-6、白細(xì)胞介素-8(IL-8)和一氧化氮(NO)等炎性因子[18]。色氨酸可通過芳香烴受體(AHR)維持腸道菌群平衡和調(diào)節(jié)腸道免疫[19]。此外,NAD的代謝產(chǎn)物(NAM等)也具有調(diào)控腸道免疫的功能。食物中添加NAM顯著提高小腸上皮細(xì)胞抗菌肽的表達(dá),緩解色氨酸缺乏或者血管緊張素轉(zhuǎn)化酶2(ACE2)敲除小鼠腸道炎癥和腹瀉[20]。NAM具有抗結(jié)核分枝桿菌的作用,減弱中性粒細(xì)胞活性,能夠有效緩解炎癥[21-22]。人平均每天攝入色氨酸、煙酸、NAM、NR等NAD的前體物質(zhì)20 mg可滿足對(duì)NAD合成的基本需求,但促進(jìn)NAD合成有助于提高腸道免疫功能[23]。因此,各種NAD的前體物質(zhì)在動(dòng)物中的合理應(yīng)用至關(guān)重要。目前研究認(rèn)為NR是最佳的NAD補(bǔ)充劑之一,與其他補(bǔ)充劑相比,NR具有更高的生物利用度和生物安全性[23-24]。但糖苷鍵的不穩(wěn)定性使其合成成本較高,從而對(duì)其在動(dòng)物生產(chǎn)中的廣泛應(yīng)用造成阻礙[25]??偠灾?,NAD代謝在維持動(dòng)物腸道免疫功能中發(fā)揮著重要作用,深入研究其作用機(jī)制以及改善NAD補(bǔ)充劑的生產(chǎn)工藝對(duì)于保障動(dòng)物腸道健康具有重要的科學(xué)意義。
腸道免疫穩(wěn)態(tài)由腸道菌群、免疫細(xì)胞、細(xì)胞因子等共同調(diào)控。組蛋白乙酰化在細(xì)胞炎癥因子、抗菌肽等因子轉(zhuǎn)錄調(diào)控中發(fā)揮關(guān)鍵作用[26],而巨噬細(xì)胞是腸道抵抗細(xì)菌感染的重要免疫細(xì)胞。最近研究表明,NAD代謝調(diào)控動(dòng)物腸道免疫穩(wěn)態(tài)的作用機(jī)制可能與組蛋白乙?;揎?、巨噬細(xì)胞M1/M2分型及其與腸道菌群互作相關(guān)[5-6]。
組蛋白是染色質(zhì)重復(fù)單元核小體的重要組成部分[27],其乙?;癄顟B(tài)由組蛋白乙?;D(zhuǎn)移酶(HATs)和組蛋白去乙酰化酶(HDACs)共同控制。目前哺乳動(dòng)物中已發(fā)現(xiàn)18種HDACs,其中7種為NAD依賴性的SIRTs(去乙?;?[28]。NAD/還原型煙酰胺腺嘌呤二核苷酸(NADH)比值變化與SIRTs的活性呈正相關(guān),在炎癥過程中發(fā)揮調(diào)控能量代謝和免疫功能的關(guān)鍵作用。研究表明,NAD濃度降低會(huì)抑制SIRT1活性,而補(bǔ)充NAD前體物質(zhì)可提高NAD濃度,進(jìn)而恢復(fù)SIRT1活性[3]。在炎癥狀態(tài)下,增加NAD的合成可激活SIRT1,進(jìn)而調(diào)控核糖體S6激酶1(S6K1)去乙?;?,促進(jìn)腸道干細(xì)胞更新,改善腸道黏膜屏障損傷修復(fù)[29]。激活的SIRT1也可通過調(diào)控p65蛋白去乙?;种芅F-κB轉(zhuǎn)錄,抑制炎癥反應(yīng)[30]。但在膿毒癥等嚴(yán)重應(yīng)激狀態(tài)下,持續(xù)的NAD生成及SIRT1激活會(huì)使炎癥過度反應(yīng)乃至無法消退,抑制NAD合成可降低SIRT1活性,進(jìn)而緩解過度炎癥反應(yīng)[31]。SIRT1可以促進(jìn)免疫細(xì)胞的脂肪酸氧化和糖酵解反應(yīng),為機(jī)體免疫反應(yīng)提供主要能量來源[32]。此外,SIRTs與HDACs在調(diào)控細(xì)胞免疫反應(yīng)中存在交互作用,共同調(diào)控許多細(xì)胞和線粒體過程[33-34]。因此,NAD代謝可能通過SIRTs等去乙酰酶調(diào)節(jié)組蛋白乙?;揎?,從而調(diào)控動(dòng)物腸道免疫動(dòng)態(tài)變化。
巨噬細(xì)胞是腸道抵抗細(xì)菌感染的重要免疫細(xì)胞。巨噬細(xì)胞可根據(jù)外部環(huán)境和刺激物的不同極化為2種表型:促炎M1型和抗炎M2型。M1型巨噬細(xì)胞具有較高的吞噬活性和抗原呈遞能力,主要通過Th1型免疫途徑介導(dǎo)急性炎癥反應(yīng),清除胞內(nèi)病原體。M2型巨噬細(xì)胞可促進(jìn)CD4細(xì)胞向Th2型分化,誘導(dǎo)產(chǎn)生抑炎因子。2種不同極化巨噬細(xì)胞能夠相互轉(zhuǎn)化,發(fā)揮吞噬清除、加工提呈等免疫調(diào)節(jié)功能[35-36]。研究發(fā)現(xiàn),NAD在維持巨噬細(xì)胞的抗炎M2型中起到關(guān)鍵作用。若巨噬細(xì)胞內(nèi)的NAD濃度因炎癥反應(yīng)消耗而降低,則進(jìn)入線粒體呼吸鏈反應(yīng)的NAD濃度下降,引起線粒體跨內(nèi)膜的質(zhì)子梯度差降低,導(dǎo)致電子傳遞鏈復(fù)合物Ⅰ活性降低,加劇炎癥反應(yīng)[37]。然而,劇烈的炎癥反應(yīng)導(dǎo)致NAD被進(jìn)一步大量消耗后會(huì)誘導(dǎo)抗炎M2型巨噬細(xì)胞轉(zhuǎn)變?yōu)榇傺譓1型巨噬細(xì)胞,通過刺激NAMPT促進(jìn)補(bǔ)救合成途徑以維持NAD濃度,并使甘油醛-3-磷酸脫氫酶(GAPDH)活性升高,進(jìn)一步加劇炎癥反應(yīng)(圖2)[5]。過度炎癥刺激可上調(diào)SIRT1和SIRT6的表達(dá),進(jìn)而誘導(dǎo)M2型巨噬細(xì)胞和單核細(xì)胞的代謝類型從糖酵解轉(zhuǎn)變?yōu)橹舅嵫趸?,從而緩解過度炎癥反應(yīng)[31]。研究揭示,NAD消耗嚴(yán)重時(shí)易引起能量崩潰,會(huì)激活絲氨酸-蘇氨酸激酶3(RIPK3),活化后的RIPK3與凋亡抑制相關(guān)蛋白B細(xì)胞淋巴瘤-XL(Bcl-XL)形成復(fù)合物,從而特異性阻斷半胱天冬酶介導(dǎo)的細(xì)胞凋亡;同時(shí),RIPK3可促進(jìn)混合譜系激酶結(jié)構(gòu)域樣蛋白(MLKL)磷酸化,進(jìn)而引發(fā)巨噬細(xì)胞壞死[38]。然而,長期營養(yǎng)調(diào)控NAD代謝介導(dǎo)巨噬細(xì)胞極化分型,可能會(huì)引起慢性炎癥,故外源添加NAD補(bǔ)充劑應(yīng)避免長期過量使用。因此,NAD的正常代謝可避免巨噬細(xì)胞能量崩潰,對(duì)誘導(dǎo)巨噬細(xì)胞極化分型至關(guān)重要。
CⅠ/Ⅱ/Ⅲ/Ⅳ:電子傳遞鏈復(fù)合體Ⅰ/Ⅱ/Ⅲ/Ⅳ electron-transport chain complex Ⅰ/Ⅱ/Ⅲ/Ⅳ;Q:輔酶Q coenzyme Q;C:細(xì)胞色素C cytochrome C;Trp:色氨酸 tryptophan;QA:喹啉酸 quinolinic acid;QPRT:喹啉酸核糖轉(zhuǎn)移酶 quinolate phosphoribosyltransferase;NaMN:煙酸單核苷酸 nicotinic acid mononucleotide;NAD:煙酰胺腺嘌呤二核苷酸 nicotinamide adenine dinucleotide;NADH:還原態(tài)煙酰胺腺嘌呤二核苷酸 reduced nicotinamide adenine dinucleotide;NAM:煙酰胺 nicotinamide;NMN:煙酰胺單核苷酸 nicotinamide mononucleotide;NR:煙酰胺核苷 nicotinamide riboside;PARP:多聚ADP核糖聚合酶 poly (ADP ribose)polymerase;ROS:活性氧 reactive oxygen species;Aging:衰老;LPS:脂多糖 lipopolysaccharide;Inflammation:炎癥反應(yīng);Mitochodria:線粒體。圖2 NAD合成途徑調(diào)控免疫功能Fig.2 NAD synthetic pathways regulate immunity[5]
NAD代謝與腸道菌群存在互作,腸道菌群能夠通過激活腸上皮細(xì)胞受體和去酰胺化等途徑促進(jìn)動(dòng)物宿主體內(nèi)NAD代謝。最新研究表明,外源補(bǔ)充的NAD前體物質(zhì)(NAM或NR)主要經(jīng)腸道菌群依賴性的去酰胺化途徑促進(jìn)宿主體內(nèi)NAD合成;腸道菌群中的支原體可通過微生物煙酰胺酶(PncA)將腸道中的NAM或NR轉(zhuǎn)化為煙酸,再激活經(jīng)腸上皮細(xì)胞作用的去酰胺化途徑促進(jìn)煙酸轉(zhuǎn)化為NAD;此外,腸道菌群還可通過PncA提高腸上皮細(xì)胞對(duì)NAMPT抑制劑的耐受性,進(jìn)而加快NAD補(bǔ)救合成途徑限速步驟的反應(yīng)速率,促進(jìn)NAD的合成[6]。腸道菌群分泌的吲哚類、吩嗪、萘醌鄰苯二酚等產(chǎn)物可激活芳香烴受體(AHR),而AHR通過調(diào)節(jié)NAD代謝來調(diào)控SIRT1、SIRT3和SIRT6的活性,進(jìn)而調(diào)控脂質(zhì)代謝和腸道免疫功能[39]。反之,NAD代謝也會(huì)影響動(dòng)物腸道菌群的組成。SIRT1的缺失會(huì)導(dǎo)致腸道乳桿菌數(shù)量減少,而添加SIRT1激動(dòng)劑——白藜蘆醇可增加結(jié)腸炎疾病模型中的乳桿菌數(shù)量[40],提示NAD代謝有可能通過SIRTs調(diào)控腸道乳桿菌等介導(dǎo)腸道炎癥。同時(shí),NAD代謝可以通過影響腸道菌群代謝產(chǎn)物調(diào)控腸道免疫功能。膽汁酸受體(FXR)表達(dá)主要受SIRT1去乙?;{(diào)控,腸上皮細(xì)胞SIRT1的缺失會(huì)抑制肝細(xì)胞核因子1α(HNF1α)/FXR信號(hào)通路,減少回腸膽汁酸的吸收,引起腸道膽汁酸總量上升,從而導(dǎo)致腸道功能紊亂繼發(fā)慢性腸道炎癥[41]。以上研究表明,NAD代謝可通過SIRTs調(diào)控膽汁酸等途徑影響腸道菌群的數(shù)量和豐度,腸道菌群通過去酰胺化等途徑調(diào)節(jié)NAD代謝,這兩者間的互作可能是影響腸道免疫穩(wěn)態(tài)的重要因素。
綜上所述,NAD參與多種生物氧化過程,通過其合成途徑(從頭合成、補(bǔ)救合成和Preiss-Handler)和消耗途徑(PARPs、cADPRs、SIRTs等)維持體內(nèi)代謝穩(wěn)態(tài)。NAD代謝可能通過去乙酰酶SIRTs介導(dǎo)組蛋白乙?;⒄T導(dǎo)巨噬細(xì)胞極化分型以及與腸道菌群互作,進(jìn)而調(diào)控動(dòng)物腸道免疫動(dòng)態(tài)變化。因此,NAD代謝可能是介導(dǎo)動(dòng)物腸道免疫動(dòng)態(tài)變化的重要因素,在維持動(dòng)物健康方面具有重要意義(圖3)。然而,在畜禽上有關(guān)NAD代謝及其對(duì)腸道免疫功能的研究較少,且NAD補(bǔ)充劑、劑量及途徑等尚未清楚。為了使NAD補(bǔ)充劑更有效地應(yīng)用于畜禽生產(chǎn),后續(xù)研究可重點(diǎn)關(guān)注以下幾個(gè)方面:1)NAD及其補(bǔ)充劑在畜禽的代謝周轉(zhuǎn)規(guī)律;2)畜禽NAD代謝與腸道微生物的互作機(jī)理;3)NAD代謝介導(dǎo)畜禽腸黏膜免疫動(dòng)態(tài)變化的機(jī)制。
M1:M1型巨噬細(xì)胞 M1-like macrophages;M2:M2型巨噬細(xì)胞 M2-like macrophages;NA:煙酸 nicotinic acid;NAMN:煙酸單核苷酸 nicotinic acid mononucleotide;NAAD:煙酸腺嘌呤二核苷酸 nicotinic acid adenine dinucleotide;NAD:煙酰胺腺嘌呤二核苷酸 nicotinamide adenine dinucleotide;NAM:煙酰胺 nicotinamide;NMN:煙酰胺單核苷酸 nicotinamide mononucleotide;NAR:煙酸核苷 nicotinic acid riboside;SIRTs:去乙?;?sirtuins;S6K1:核糖體S6激酶1 ribosomal protein S6 kinase 1;NF-κB:核轉(zhuǎn)錄因子-κB nuclear factor-κB;PncA:微生物煙酰胺酶 microbial nicotinamidase;AHR:芳香烴受體 aromatic hydrocarbon receptor;FXR:法尼醇X受體/膽汁酸受體 farnesoid X receptor;Colonic lumen:結(jié)腸腔;Colonic epithelium:結(jié)腸上皮細(xì)胞;Portal blood:門靜脈血。圖3 NAD代謝調(diào)控腸道免疫的可能機(jī)制Fig.3 Possible mechanism of NAD metabolism regulating intestinal immune[6,34,36]
Denovobiosynthesis:從頭合成;Preiss-Handler pathway:Preiss-Handler途徑;Salvage pathway:補(bǔ)救合成途徑;Tryptophan:色氨酸;IDO:吲哚胺2,3-雙加氧酶 indoleamine 2,3-dioxygenase1;IDO inhibitors:IDO抑制劑;TDO:色氨酸2,3-雙加氧酶 tryptophan 2,3-dioxygenase;N-formylkynurenine:N-甲酰犬尿氨酸;ACMS:2-氨基-3-羧酸半醛 2-amino-3-carboxymuconate semialdehyde;ACMSD:ACMS脫羧酶 ACMS decarboxylase;AMS:丙烯酰胺 acrylamides;TCA cycle:三羧酸循環(huán) tricarboxylic acid cycle;Quinolinic acid:喹啉酸;QPRT:喹啉酸酯磷酸核糖基轉(zhuǎn)移酶 quinolinate phosphoribosyl transferase;NA:煙酸 nicotinic acid;NAMN:煙酸單核苷酸 nicotinic acid mononucleotide;NAPRT:煙酸磷酸核糖基轉(zhuǎn)移酶 nicotinic acid phosphoribosyl transferase;NMNAT:煙酰胺單核苷酸腺苷酰轉(zhuǎn)移酶 nicotinamide mononucleotide adenylyl transferase;NAAD:煙酸腺嘌呤二核苷酸 nicotinic acid adenine dinucleotide;NADS:煙酰胺腺嘌呤二核苷酸合酶 nicotinamide adenine dinucleotide synthase;NAD+:煙酰胺腺嘌呤二核苷酸 nicotinamide adenine dinucleotide;NADH:還原態(tài)煙酰胺腺嘌呤二核苷酸 reduced nicotinamide adenine dinucleotide;NAM:煙酰胺 nicotinamide;NMN:煙酰胺單核苷酸 nicotinamide mononucleotide;NR:煙酰胺核苷 nicotinamide riboside;NRK:煙酰胺核苷激酶 nicotinamide riboside kinase;NADK:煙酰胺腺嘌呤二核苷酸激酶 nicotinamide adenine dinucleotide kinase;NAMPT:煙酰胺磷酸核糖基轉(zhuǎn)移酶nicotinamide phosphoribosyl transferase;NAMPT inhibitors:NAMPT抑制劑;NADP:煙酰胺腺嘌呤二核苷酸磷酸 nicotinamide adenine dinucleotide phosphate;NADPH:還原態(tài)煙酰胺腺嘌呤二核苷酸磷酸 reduced nicotinamide adenine dinucleotide phosphate;SIRTs:去乙?;窼irtuins;PARPs:多聚ADP核糖聚合酶Poly (ADP ribose)polymerase;ARTs:二磷酸腺苷核糖轉(zhuǎn)移酶 ADP-ribose transferases;cADPRSs:環(huán)狀A(yù)DP-核糖合成酶 cyclic ADP-ribose synthases;CD38:分化簇38 cluster of differentiation 38;CD157:分化簇157 cluster of differentiation 157;NNMT:煙酰胺N-甲基轉(zhuǎn)移酶 nicotinamide N-methyltransferase;MNA:N′-亞甲基噻吩N′-methynicotianmaide。
圖1 NAD代謝途徑
Fig.1 NAD metabolic pathway[13]
[16] HAN X N,UCHIYAMA T,SAPPINGTON P L,et al.NAD+ameliorates inflammation-induced epithelial barrier dysfunction in cultured enterocytes and mouse ileal mucosa[J].The Journal of Pharmacology and Experimental Therapeutics,2003,307(2):443-449.
[17] GERNER R R,KLEPSCH V,MACHEINER S,et al.NAD metabolism fuels human and mouse intestinal inflammation[J].Gut,2018,67(10):1813-1823.
[18] GRANGE P A,RAINGEAUD J,CALVEZ V,et al.Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways[J].Journal of Dermatological Science,2009,56(2):106-112.
[19] GAO J,XU K,LIU H N,et al.Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism[J].Frontiers in Cellular and Infection Microbiology,2018,8:13.
[20] HASHIMOTO T,PERLOT T,REHMAN A,et al.ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation[J].Nature,2012,487(7408):477-481.
[21] FERREIRA R G,MATSUI T C,GODIN A M,et al.Neutrophil recruitment is inhibited by nicotinamide in experimental pleurisy in mice[J].European Journal of Pharmacology,2012,685(1/2/3):198-204.
[22] MURRAY M F.Nicotinamide:an oral antimicrobial agent with activity against bothMycobacteriumtuberculosisand human immunodeficiency virus[J].Clinical Infectious Diseases,2003,36(4):453-460.
[24] MARTENS C R,DENMAN B A,MAZZO M R,et al.Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+in healthy middle-aged and older adults[J].Nature Communications,2018,9(1):1286.
[25] MAKAROV M V,MIGAUD M E.Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives[J].Beilstein Journal of Organic Chemistry,2019,15:401-430.
[26] FISCHER N,SECHET E,FRIEDMAN R,et al.Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(21):E2993-E3001.
[27] ESKANDARIAN H A,IMPENS F,NAHORI M A,et al.A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection[J].Science,2013,341(6145):1238858.
[28] 易宏波,王麗,熊云霞,等.組蛋白去乙酰化酶調(diào)控腸道抗菌肽表達(dá)的研究進(jìn)展[J].動(dòng)物營養(yǎng)學(xué)報(bào),2019,31(10):4421-4426.
YI H B,WANG L,XIONG Y X,et al.Research advance on antimicrobial peptide expression regulated by histone deacetylase in intestines[J].Chinese Journal of Animal Nutrition,2019,31(10):4421-4426.(in Chinese)
[29] IGARASHI M,GUARENTE L.mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction[J].Cell,2016,166(2):436-450.
[30] CARUSO R,MARAFINI I,FRANZE,et al.Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut[J].Mucosal Immunology,2014,7(6):1467-1479.
[31] VACHHARAJANI V T,LIU T F,WANG X F,et al.Sirtuins link inflammation and metabolism[J].Journal of Immunology Research,2016,2016:8167273.
[32] LIU T F,VACHHARAJANI V T,YOZA B K,et al.NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response[J].The Journal of Biological Chemistry,2012,287(31):25758-25769.
[33] FOULADI M.Histone deacetylase inhibitors in cancer therapy[J].Cancer Investigation,2006,24(5):521-527.
[34] YASEEN A L,CHEN S,HOCK S,et al.Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway[J].Molecular Pharmacology,2012,82(6):1030-1041.
[35] 李智偉,丁劍冰.巨噬細(xì)胞極化特點(diǎn)及其在胞內(nèi)菌感染中免疫調(diào)節(jié)功能的研究進(jìn)展[J].中國免疫學(xué)雜志,2019,35(20):2554-2558.
LI Z W,DING J B.Polarization characteristics and immunoregulatory functions of macrophage in intracellular infections[J].Chinese Journal of Immunology,2019,35(20):2554-2558.(in Chinese)
[36] 付愛坤,胡勝蘭,杜威,等.益生菌對(duì)巨噬細(xì)胞的免疫調(diào)節(jié)作用[J].動(dòng)物營養(yǎng)學(xué)報(bào),2013,25(12):2833-2837.
FU A K,HU S L,DU W,et al.Immunomodulation effect of probiotics on macrophage[J].Chinese Journal of Animal Nutrition,2013,25(12):2833-2837.(in Chinese)
[37] MINHAS P S,LIU L,MOON P K,et al.Macrophage de novo NAD+synthesis specifies immune function in aging and inflammation[J].Nature Immunology,2019,20(1):50-63.
[38] PAJUELO D,GONZALEZ-JUARBE N,TAK U,et al.NAD+depletion triggers macrophage necroptosis,a cell death pathway exploited by mycobacterium tuberculosis[J].Cell Reports,2018,24(2):429-440.
[39] BOCK K W.Aryl hydrocarbon receptor (AHR)functions:balancing opposing processes including inflammatory reactions[J].Biochemical Pharmacology,2020,178:114093.
[40] LARROSA M,YAéZ-GASCN M J,SELMA M V,et al.Effect of a low dose of dietary resveratrol on colon microbiota,inflammation and tissue damage in a DSS-induced colitis rat model[J].Journal of Agricultural and Food Chemistry,2009,57(6):2211-2220.
[41] RIDLON J M,KANG D J,HYLEMON P B,et al.Bile acids and the gut microbiome[J].Current Opinion in Gastroenterology,2014,30(3):332-338.
動(dòng)物營養(yǎng)學(xué)報(bào)2021年11期