麻雅潔 趙 鑫 賀相春 任麗萍
社交媒體使用對執(zhí)行功能的影響:有益還是有害?*
麻雅潔1,2趙 鑫1,2賀相春3任麗萍1,2
(1甘肅省行為與心理健康重點實驗室;2西北師范大學心理學院;3西北師范大學教育技術學院, 蘭州 730070)
社交媒體使用對執(zhí)行功能的影響尚存爭議, 這與社交媒體使用強度起到的調節(jié)作用有關。中等強度的社交媒體使用會產(chǎn)生社交媒體心流體驗, 使注意集中于目標信息, 并為個體提供了持續(xù)不斷的社會獎勵和情感支持, 對執(zhí)行功能有益, 但高、低強度社交媒體使用則會損害執(zhí)行功能。今后該領域的研究應該探討社交媒體使用影響執(zhí)行功能的“劑量效應”以及社交媒體使用類型對執(zhí)行功能的具體影響, 還應關注不同認知水平的個體, 以進一步明確社交媒體使用與執(zhí)行功能發(fā)展的關系。
社交媒體, 執(zhí)行功能, 心流體驗
社交媒體(social media)是一種建立在互聯(lián)網(wǎng)技術, 特別是Web 2.0基礎之上的用以構建社會關系和獲取信息的應用平臺(Andreas & Michael, 2010)。社交媒體使用則是基于社交媒體開展的各種活動的總稱, 目前研究者主要從使用頻率、使用時間、使用強度及使用成癮等角度來衡量社交媒體的使用程度(Mieczkowski et al., 2020; 張亞利等, 2021)。已有研究表明, 社交媒體的使用可以幫助個體形成積極的自我概念(Gentile et al., 2012)、促進人際交流(Torous & Keshavan, 2016)、獲得社會支持(Huang & Liu, 2017), 發(fā)展社會資本(Bucci et al., 2019)。但是, 社交媒體使用也會給個體帶來一系列負面的影響, 如, 可能會導致抑郁癥狀(Lin et al., 2016;Twenge & Campbell, 2019)、自尊水平下降(Sherlock & Wagstaff, 2018)、睡眠障礙(van der Schuur et al., 2019)、外貌焦慮(Vannucci et al., 2017)和身材焦慮(Frost & Rickwood, 2017; Sherlock & Wagstaff, 2018)等不良結果。同時, 社交媒體使用還會導致個體的認知能力下降, 尤其是對個體的執(zhí)行功能(executive function, EF)有消極影響(Baumgartner et al., 2014; Parry & le Roux, 2019)。執(zhí)行功能是指以目標為導向對多種認知加工進行監(jiān)控和管理的能力(Miller & Cohen, 2001; Miyake et al., 2000), 包括一系列的高級認知加工過程, 其中轉換(“switching ”or “shifting”)、刷新(updating)、抑制(inhibition)三個獨立的成分一直受到研究者的諸多關注。但近期有研究發(fā)現(xiàn), 使用社交媒體反而對個體的執(zhí)行功能有益, 如練習使用社交媒體的新手用戶在刷新和抑制能力上表現(xiàn)出顯著提高(Myhre et al., 2017; Quinn, 2018)。而Shin等人(2020)認為, 社交媒體使用可能與個體的執(zhí)行功能之間呈倒U型關系, 即中等程度的社交媒體使用是促進執(zhí)行功能的最佳水平。因此, 社交媒體使用對執(zhí)行功能的影響還存在一定的爭議, 本文旨在系統(tǒng)回顧社交媒體使用對個體執(zhí)行功能影響的研究現(xiàn)狀, 為未來針對如何降低社交媒體使用對執(zhí)行功能的消極影響, 促進其積極作用提供思路。
雖然已有研究發(fā)現(xiàn)社交媒體使用會對個體的執(zhí)行功能有促進作用, 但是另外一些研究發(fā)現(xiàn), 社交媒體使用會損害個體的執(zhí)行功能(van der Schuur et al., 2019; Wiradhany & Nieuwenstein, 2017; Wiradhany & Koerts, 2019; Madore et al., 2020; Parry et al., 2020)。通過縱向研究發(fā)現(xiàn), 由于越來越多的社交媒體使用取代了對幼兒認知發(fā)展有重要作用的活動, 例如操縱游戲和想象力游戲等, 從而可能導致日后幼兒的執(zhí)行功能整體的發(fā)展受到永久性的負面影響(Mcharg et al., 2020)。有研究對185名學齡前兒童進行為期一年的追蹤, 發(fā)現(xiàn)在控制相關協(xié)變量之后, 大量使用應用程序(≥30分鐘/天)的學齡前兒童與少量使用應用程序(< 30分鐘/天)的相比, 抑制控制能力更差(Mcneill et al., 2019)。針對青少年群體進一步展開研究, 結果表明, 較高的媒體多任務處理得分與個體執(zhí)行功能的表現(xiàn)(包括工作記憶、轉換和抑制任務)均呈負相關(Baumgartner et al., 2014; Cain et al., 2016)。高強度媒體多任務的大學生在完成Eriksen Filter任務、AX-CPT任務、2-back和3-back任務時, 其反應速度和準確性均差于低強度組, 難以將注意力集中在當前的任務上, 并且具有更多自下而上的注意偏向(Ophir et al., 2009)。Magen (2017)以18~36歲個體為研究對象, 使用健康成人執(zhí)行功能行為評分量表(BRIEF-A, Roth et al., 2013)測驗發(fā)現(xiàn), 頻繁在電子媒體上同時處理多項任務與較差的執(zhí)行功能有關, 并且社交媒體使用頻率越高, 執(zhí)行功能方面存在越多的困難(Zurcher et al., 2020), 尤其表現(xiàn)在反應抑制能力上(Murphy & Creux, 2021)。研究者發(fā)現(xiàn), 高強度媒體多任務者比低強度媒體多任務者傾向于更多地使用直覺反應系統(tǒng), 并且關注即時滿足而非延遲滿足(Schutten et al., 2017), 這表明媒體多任務處理可能損害個體的抑制控制能力(Baumgartner & Wiradhany, 2021)。
大多數(shù)研究表明, 社交媒體使用與認知能力之間存在線性關系(Ophir et al., 2009; Alzahabi & Becker, 2013; Ralph & Smilek, 2017; Elbe et al., 2019; Zurcher et al., 2020; Murphy & Creux, 2021), 而有研究者提出, 社交媒體使用可能與個體的執(zhí)行功能水平之間呈倒U型關系, 社交媒體使用并不是一味地損害或促進執(zhí)行功能的發(fā)展, 而是在二者之間存在一個最佳臨界點。研究表明, 在n-back任務中, 中等強度媒體多任務者比高、低強度媒體多任務者表現(xiàn)更好(Minear et al., 2013; Shin et al., 2020), 中等強度的媒體多任務處理與最佳水平的認知控制相關(例如, 刷新工作記憶中的信息, 過濾干擾刺激) (Cardoso-Leite et al., 2016)。高強度媒體多任務者在n-back任務中更容易出現(xiàn)注意力缺失, 更難以專注于任務, 這導致他們停止刷新短時記憶中的字母, 因此更難記住字母順序, 抑制控制能力更差(Ralph & Smilek, 2017)。低強度媒體多任務者在執(zhí)行功能任務中的表現(xiàn)比中等媒體多任務者更差, 與高強度媒體多任務者無顯著差異(Cardoso-Leite et al., 2016)。研究者認為, 這可能是由于低強度媒體多任務處理與消極情緒狀態(tài)有關,使個體自我控制能力和成就感降低, 進而阻礙執(zhí)行功能的發(fā)展(Sanbonmatsu et al., 2013)。
社交媒體使用與個體的執(zhí)行功能呈倒U型關系, 中等程度的社交媒體使用之所以是促進執(zhí)行功能的最佳水平, 一個重要原因可能是, 相比于高強度或低強度的社交媒體使用水平, 中等強度的社交媒體使用會引發(fā)更高水平的社交媒體心流(Katahira et al., 2018; de Sampaio Barros et al., 2018; Harmat et al., 2015; Keller & Bless, 2008; Keller et al., 2011; Yoshida et al., 2014)。社交媒體心流(social media flow, SM flow)是當人們完全沉浸于使用智能手機等電子工具進行娛樂、信息搜索和社交活動時, 所產(chǎn)生的一種最佳體驗, 表現(xiàn)為在使用社交媒體時持續(xù)專注和愉悅的心理狀態(tài)(Leung, 2020)。通常采用專注、時間失真、臨場呈現(xiàn)、享受和好奇五個維度來評估社交媒體心流的程度(Kwak et al., 2014)。當社交媒體使用強度處于適中水平時, 社交媒體心流處于一種無需任何心理努力的特殊注意狀態(tài)(Ullén et al., 2010), 與個體高水平的認知控制、專注投入有關(Katahira et al., 2018; Wu et al., 2013), 使得個體在面對社交媒體中各種復雜的信息刺激時, 過濾各種干擾信息, 將注意集中于有用的信息, 目標信息則不斷地被儲存和更新, 個體的執(zhí)行功能(尤其是刷新功能)在這樣的要求下得到長期而反復的鍛煉, 最終得以提升(Alloway et al., 2013)。此外, 社交媒體使用所產(chǎn)生的心流體驗可以作為一種內在使用動機, 通過增加社交網(wǎng)絡的互動, 使得人際關系的積極變化(Kwak et al., 2014), 這也為個體提供了持續(xù)不斷的社會獎勵, 包括各種關于社交聯(lián)系或聲譽提升的功能(Meshi et al., 2015)。形成和維持社會互動與獎賞相關的神經(jīng)系統(tǒng)有關, 當個體接收來自社交媒體的積極社會反饋時(例如, 得到別人的點贊、評論等)可以激活有關社會獎勵的大腦區(qū)域(Sherman et al., 2016), 包括紋狀體和腹側被蓋區(qū)(Fareri & Delgado, 2014; Ruff & Fehr, 2014; Sherman et al., 2018)。因此, 當個體適度使用社交媒體, 作為改善其現(xiàn)有社會資本的工具時, 則會對執(zhí)行功能起到保護作用(Sanbonmatsu et al., 2013; Khoo & Yang, 2020; Baumgartner & Wiradhany, 2021), 能在一定程度上緩沖過度使用社交媒體對認知功能的消極影響, 減緩與年齡有關的執(zhí)行功能衰退(Myhre et al., 2017; Quinn, 2018; Glaser et al., 2018)。社交媒體心流可以擴大和維護社會關系來獲得更多的情感支持, 從而對執(zhí)行功能(尤其是抑制能力)有益(Zuelsdorff et al., 2019)。
因此, 中等強度的社交媒體使用會產(chǎn)生更高水平的社交媒體心流, 使注意集中于目標信息, 并為個體提供了持續(xù)不斷的社會獎勵和情感支持, 從而使得執(zhí)行功能最終得以提升。
前人通過研究發(fā)現(xiàn), 社交媒體心流與注意活動的神經(jīng)生理學指標高度相關(Yoshida et al., 2014), 即個體在社交媒體使用時所產(chǎn)生的心流體驗與外側額葉皮層(額下回)的激活增加和內側前額葉皮層的激活減少有關(Ulrich et al., 2014; Yoshida et al., 2014), 由于額頂葉網(wǎng)絡的外側部分通常參與自上而下的注意和任務中的持續(xù)注意(Corbetta & Schulman, 2002), 而內側額葉皮層經(jīng)常與任務中出現(xiàn)的思維游離和自我專注有關(Esterman et al., 2014), 當自我控制資源由于執(zhí)行其他媒體任務而處于損耗狀態(tài)時, 這種自上而下的認知控制損耗會降低前額葉功能的相對優(yōu)勢, 進而導致執(zhí)行功能失敗(Berkman & Miller-Ziegler, 2012), 從而導致個體無法控制自己的注意力或自我調節(jié)行為, 而注意力的集中以及忽視干擾刺激的能力是執(zhí)行功能的核心(Farah, 2017)。因此在頻繁進行媒體多任務的過程中, 個體會接收和處理大量雜亂且分散的信息, 這種高強度的社交媒體使用導致個體擔心他們在任務中的表現(xiàn)(de Sampaio Barros et al., 2018), 從而形成一定的注意偏好(認知傾向), 即保持更廣的注意范圍, 傾向于同時平行加工多個信息(包括無關信息), 這使個體更容易受到無關信息的干擾(Ophir et al., 2009; Cain & Mitroff, 2011)。在這種易受干擾的狀態(tài)下, 個體難以將注意集中于目標信息, 從而對個體執(zhí)行功能有消極影響(Magen, 2017)。
而低強度社交媒體使用與低感覺尋求有關(Chang, 2017), 不僅會降低社交媒體心流水平, 導致個體處于缺乏積極主動性的狀態(tài), 缺乏愉悅感, 負面情緒增加(Lin et al., 2016; Brailovskaia et al., 2020; Dube et al., 2020), 并且因為社交媒體本身就具有存儲信息的功能, 個體會更少地加工和存儲信息, 這使得信息加工的心理努力過程縮減甚至消失(Sparrow et al., 2011), 任務投入度降低(Wu et al., 2013), 人們只需記住一些關于信息的線索而無需記住信息本身, 個體大腦的認知功能被社交媒體所替代, 久而久之, 個體的認知功能失去訓練的機會, 當脫離了社交媒體后, 便無法對當前信息進行有效地存儲和加工, 信息處理不足, 從而對個體的執(zhí)行功能有負面影響(Kahn & Martinez, 2020)。
因此, 高強度的社交媒體使用導致個體擔心他們在任務中的表現(xiàn), 從而傾向于保持更廣的注意范圍, 更易受到無關信息的干擾, 而低強度的社交媒體使用導致個體處于缺乏積極主動性的狀態(tài), 信息加工的心理努力過程縮減甚至消失, 從而對執(zhí)行功能產(chǎn)生消極影響。
綜上所述, 社交媒體使用對執(zhí)行功能的影響尚存爭議, 使用強度可能在二者關系中起調節(jié)作用, 未來仍有一些問題需要進一步探索。
首先, 關注社交媒體使用對執(zhí)行功能的“劑量效應”, 即社交媒體使用不同測量指標(社交媒體使用成癮; 使用時間; 使用頻率; 使用強度)單獨和交互作用對執(zhí)行功能的影響。研究發(fā)現(xiàn), 社交媒體縱向地以“特質”的方式, 而不是簡單地以短期的“狀態(tài)”效應影響執(zhí)行功能發(fā)展(McHarg et al., 2020), 如果個體保持適度的使用時間和頻率, 社交媒體使用對執(zhí)行功能的消極影響可能不會出現(xiàn)(Mcneill et al., 2019)。因此, 社交媒體使用對執(zhí)行功能的積極影響可能需要一個相對較長和持續(xù)使用社交媒體的過程(Khoo & Yang, 2020)。是否能確定一個最佳的社交媒體使用水平, 使得個體的執(zhí)行功能得到最大提升? 今后可以展開更多的追蹤研究, 考察社交媒體使用作為連續(xù)變量時對執(zhí)行功能的影響。
其次, 進一步明晰不同類型的社交媒體使用與執(zhí)行功能子成分之間的關系。目前研究主要側重于社交媒體使用頻率對個體日常生活中執(zhí)行功能的影響研究(Cardoso-Leite et al., 2016; Khoo & Yang, 2020), 而缺乏對社交媒體使用類型對執(zhí)行功能中的單個子成分發(fā)展變化的考察。已有研究發(fā)現(xiàn), 主動性社交媒體使用有助于個體的認知發(fā)展(Wang et al, 2014; Xie, 2014), 而被動性社交媒體使用會對個體的認知發(fā)展有害(Tandoc et al., 2015), 致使這種分離效應的原因在于二者的“目的性”明確與否。此外, 媒體多任務處理作為個體在日常生活中的一種習慣化媒體使用模式, 具有很高的自主選擇性(Seddon et al., 2021), 個體如何根據(jù)個人的注意中心和認知資源選擇高效率的媒體多任務類型, 避免媒體多任務間的相互影響, 最大化利用媒體多任務處理達到社交媒體心流狀態(tài), 從而對個體的執(zhí)行功能具有促進作用?未來的研究應進一步細化探究社交媒體使用類型對執(zhí)行功能的具體影響, 為改善個體的認知狀況, 提高執(zhí)行功能提供相應的建議。
最后, 未來研究需要關注不同認知水平的個體, 以進一步明確社交媒體使用與執(zhí)行功能發(fā)展的關系。已有研究表明, 執(zhí)行功能與前額葉密切相關(Gianaros et al., 2007), 社交媒體使用與前額葉的關聯(lián)在不同的年齡階段存在差異, 社交媒體使用的提升效應可能在大腦結構處于變化時期的群體中更為顯著, 例如, 相較于大腦結構相對穩(wěn)定的成年人, 處于發(fā)育階段的學齡前兒童和處于退化階段的老年人在使用社交媒體后, 執(zhí)行功能獲益更多(Chan et al., 2016; McNeill et al., 2019; Myhre et al, 2017; Quinn, 2018; Huber et al., 2018; Khoo & Yang, 2020)。以往研究大多只表明了社交媒體使用會改變個體的神經(jīng)通路或大腦的反應模式(Meshi et al., 2015; Sherman et al., 2018; Kei et al., 2020), 而對于有關執(zhí)行功能的生理結構變化是否存在社交媒體使用者認知水平的影響知之甚少, 因此, 未來研究應結合行為與認知神經(jīng)方法, 考察不同認知水平社交媒體使用者在執(zhí)行功能特定任務中腦區(qū)激活的差異, 從而使社交媒體使用影響執(zhí)行功能的神經(jīng)機制研究更精確也更全面。
張亞利, 李森, 俞國良. (2021). 社交媒體使用與錯失焦慮的關系:一項元分析.(3), 273–290.
Alloway, T. P., Horton, J., Alloway, R. G., & Dawson, C. (2013). Social networking sites and cognitive abilities: Do they make you smarter?,, 10–16.
Alzahabi, R., & Becker, M. W. (2013). The association betweenmedia multitasking, task-switching, and dual-task performance.:,(5), 1485–1495.
Andreas, M. K., & Michael, H. (2010). Users of the world, unite! The challenges and opportunities of Social Media.,(1), 59–68.
Baumgartner, S. E., Weeda, W. D., van der Heijden, L. L., & Huizinga, M. (2014). The relationship between media multitasking and executive function in early adolescents.,(8), 1120–1144.
Baumgartner, S. E., & Wiradhany, W. (2021). Not all media multitasking is the same: The frequency of media multitaskingdepends on cognitive and affective characteristics of media combinations.. Advance online publication. http://dx.doi.org/10.1037/ppm0000338.
Berkman, E. T., & Miller-Ziegler, J. S. (2012). Imaging depletion: FMRI provides new insights into the processes underlying ego depletion.,(4), 359–361.
Brailovskaia, J., Schillack, H., & Margraf, J. (2020). Tell me why are you using social media (SM)! Relationship between reasons for use of SM, SM flow, daily stress, depression, anxiety, and addictive SM use - An exploratory investigation of young adults in Germany - sciencedirect.,, Article e106511. https://doi.org/10.1016/j.chb.2020.106511.
Brasel, S. A., & Gips, J. (2011). Media multitasking behavior: Concurrent television and computer usage.,(9), 527–534.
Bucci, S., Schwannauer, M., & Berry, N. (2019). The digital revolution and its impact on mental health care.,(2), 277–297.
Cain, M. S., Leonard, J. A., Gabrieli, J. D. E., & Finn, A. S. (2016). Media multitasking in adolescence.,(6), 1932–1941.
Cain, M. S., & Mitroff, S. R. (2011). Distractor filtering in media multitaskers.,(10), 1183–1192.
Cardoso-Leite, P., Kludt, R., Vignola, G., Ma, W. J., Green, C. S., & Bavelier, D. (2016). Technology consumption and cognitive control: Contrasting action video game experiencewith media multitasking.,(1), 218–241.
Chan, M. Y., Haber, S., Drew, L. M., & Park, D. C. (2016). Training older adults to use tablet computers: Does it enhance cognitive function?,(3), 475–484.
Chang, Y. (2017). Why do young people multitask with multiple media? Explicating the relationships among sensation seeking, needs, and media multitasking behavior.,(4), 685–703.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain.,(3), 201–215.
de Sampaio Barros, M. F., Araújo-Moreira, F. M., Trevelin, L. C., & Radel, R. (2018). Flow experience and the mobilization of attentional resources.,(4), 810–823.
Dube, S. L., Sigmon, S., Althoff, R. R., Dittus, K., Gaalema, D. E., Ogden, D. E., … Potter, A. S. (2020). Association of self-reported executive function and mood with executive function task performance across adult populations.. Article e23279095. https://doi.org/10.1080/23279095.2020.1794869.
Elbe, P., S?rman, D. E., Mellqvist, E., Br?ndstr?m, J., & Ljungberg, J. K. (2019). Predicting attention shifting abilities from self-reported media multitasking.,(4), 1257–1265.
Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic fluctuations in sustained attention and distractor processing.,(5), 1724–1730.
Farah, M. J. (2017). The neuroscience of socioeconomic status: Correlates, causes, and consequences.,(1), 56–71.
Fareri, D. S., & Delgado, M. R. (2014). Social rewards and social networks in the human brain.,(4), 387–402.
Frost, R. L., & Rickwood, D. J. (2017). A systematic review of the mental health outcomes associated with Facebook use.,, 576–600.
Gentile, B., Twenge, J. M., Freeman, E. C., & Campbell, W. K. (2012). The effect of social networking websites on positive self-views: An experimental investigation.,(5), 1929–1933.
Gianaros, P. J., Horenstein, J. A., Cohen, S., Matthews, K. A., Brown, S. M., Flory, J. D. … Hariri, A. R. (2007). Perigenual anterior cingulate morphology covaries with perceived social standing.,(3), 161–173.
Glaser, P., Liu, J. H., Hakim, M. A., Vilar, R., & Zhang, R. (2018). Is social media use for networking positive or negative? Offline social capital and internet addiction as mediators for the relationship between social media use and mental health.,(3), 11–17.
Harmat, L., de Manzano, ?., Theorell, T., H?gman, L., Fischer, H., & Ullén, F. (2015). Physiological correlates of the flow experience during computer game playing.,(1), 1–7.
Huang, L. V., & Liu, P. L. (2017). Ties that work: Investigating the relationships among coworker connections, work-related facebook utility, online social capital, and employee outcomes.,, 512–524.
Huber, B., Yeates, M., Meyer, D., Fleckhammer, L., & Kaufman, J. (2018). The effects of screen media content on young children’s executive functioning.,, 72–85.
Judd, T., & Kennedy, G. (2011). Measurement and evidence of computer-based task switching and multitasking by ‘Net generation’ students.,(3), 625–631.
Kahn, A. S., & Martinez, T. M. (2020). Text and you might miss it? Snap and you might remember? Exploring “Google effects on memory” and cognitive self-esteem in the context of Snapchat and text messaging.,, Article e106166. https://doi.org/ 10.1016/j.chb.2019.106166.
Katahira, K., Yamazaki, Y., Yamaoka, C., Ozaki, H., Nakagawa, S., & Nagata, N. (2018). EEG correlates of the flow state: A combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task.,, 1–11.
Kei, K., Naoya, O., Sayaka, Y., Tsukasa, U., Takashi, M., Toshiya, M., & Hironobu, F. (2020). Relationship between media multitasking and functional connectivity in the dorsal attention network.,(1), 17992. http://dx.doi.org/10.1038/s41598-020-75091-9.
Keller, J., & Bless, H. (2008). Flow and regulatory compatibility: An experimental approach to the flow model of intrinsic motivation.,(2), 196–209.
Keller, J., Bless, H., Blomann, F., & Kleinb?hl, D. (2011). Physiological aspects of flow experiences: Skills-demand- compatibility effects on heart rate variability and salivary cortisol.,(4), 849–852.
Khoo, S. S., & Yang, H. (2020). Social media use improves executive functions in middle-aged and older adults: A structural equation modeling analysis.,, Article e106388. https://doi.org/10. 1016/j.chb.2020.106388.
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user.,, 294–304.
Leung, L. (2020). Exploring the relationship between smartphone activities, flow experience, and boredom in free time.,, 130–139.
Lin, L. Y., Sidani, J. E., Shensa, A., Radovic, A., Miller, E., Colditz, J. B., … Primack, B. A. (2016). Association between social media use and depression among U.S. young adults.,(4), 323–331.
Lui, K. F. H., & Wong, A. C. -N. (2012). Does media multitasking always hurt? A positive correlation between multitasking and multisensory integration.,(4), 647–653.
Madore, K. P., Khazenzon, A. M., Backes, C. W., Jiang, J., Uncapher, M. R., Norcia, A. M., & Wagner, A. D. (2020). Memory failure predicted by attention lapsing and media multitasking.(7832), 87–91.
Magen, H. (2017). The relations between executive functions, media multitasking and polychronicity.,, 1–9.
Mcharg, G., Ribner, A. D., Devine, R. T., & Hughes, C. (2020). Screen time and executive function in toddlerhood: A longitudinal study.,, Article e570392.https://doi.org/10.3389/fpsyg.2020.570392.
Mcneill, J., Howard, S. J., Vella, S. A., & Cliff, D. P. (2019). Longitudinal associations of electronic application use and media program viewing with cognitive and psychosocial development in preschoolers.,(5), 520?528.
Meshi, D., Tamir, D. I., & Heekeren, H. R. (2015). The emerging neuroscience of social media.,(12), 771–782.
Mieczkowski, H., Lee, A. Y., & Hancock, J. T. (2020). Priming effects of social media use scales on well-being outcomes: The influence of intensity and addiction scales on self-reported depression.,(4), 1–15.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.,(1), 167–202.
Minear, M., Brasher, F., McCurdy, M., Lewis, J., & Younggren, A. (2013). Working memory, fluid intelligence, and impulsiveness in heavy media multitaskers.,(6), 1274–1281.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis.,(1), 49–100.
Monsell, S. (2003). Task switching.,(3), 134–140.
Murphy, K., & Creux, O. (2021). Examining the association between media multitasking, and performance on working memory and inhibition tasks.,, Article e106532. https://doi.org/10.1016/ j.chb.2020.106532.
Myhre, J. W., Mehl, M. R., & Glisky, E. L. (2017). Cognitive benefits of online social networking for healthy older adults.,(5), 752–760.
Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers.,(37), 15583–15587.
Parry, D. A., & le Roux, D. B. (2019). Media multitasking and cognitive control: A systematic review of interventions.,, 316–327.
Parry, D. A., le Roux, D. B., & Bantjes, J. R. (2020). Testing the feasibility of a media multitasking self-regulation intervention for students: Behaviour change, attention, and self-perception.,, Article e106182. https://doi.org/10.1016/j.chb.2019.106182.
Quinn, K. (2018). Cognitive effects of social media use: A case of older adults.,(3), Article e20563051. https://doi.org/10.1177/2056305118787203.
Ralph, B. C. W., & Smilek, D. (2017). Individual differences in media multitasking and performance on the-back.,(2), 582–592.
Rogobete, D. A., Ionescu, T., & Miclea, M. (2020). The relationship between media multitasking behaviorand executive function in adolescence: A replication study.,(5), 725–753.
Roth, R. M., Lance, C. E., Isquith, P. K., Fischer, A. S., & Giancola, P. R. (2013). Confirmatory factor analysis of the behavior rating inventory of executive function-adult version in healthy adults and application to attention-deficit/ hyperactivity disorder.,(5), 425–434.
Ruff, C. C. & Fehr, E. (2014). The neurobiology of rewards and values in social decision making..(8), 549–562.
Sanbonmatsu, D., Strayer, D., Medeiros-Ward, N., & Watson, J. (2013). Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking.,(1), Article e0054402. https://doi. org/10.1371/journal.pone.0054402.
Schutten, D., Stokes, K. A., & Arnell, K. M. (2017). I want to media multitask and I want to do it now: Individual differences in media multitasking predict delay of gratification and system-1 thinking.,(1), 8–18.
Seddon, A. L., Law, A. S., Adams, A. M., & Simmons, F. R. (2021). Individual differences in media multitasking ability: The importance of cognitive flexibility.,(1), Article e100068. https:// doi.org/10.1016/j.chbr.2021.100068.
Sherlock, M., & Wagstaff, D. L. (2018). Exploring the relationship between frequency of instagram use, exposure to idealized images, and psychological well-being in women.,(4). 482–490.
Sherman, L. E., Hernandez, L. M., Greenfield, P. M., & Dapretto, M. (2018). What the brain ‘likes’: Neural correlates of providing feedback on social media.,(7), 699–707.
Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M., & Dapretto, M. (2016). The power of the like in adolescence: Effects of peer influence on neural and behavioral responses to social media.,(7), 1027–1035.
Shin, M., Linke, A., & Kemps, E. (2020). Moderate amounts of media multitasking are associated with optimal task performance and minimal mind wandering.,, Article e106422. https://doi.org/ 10.1016/j.chb.2020.106422.
Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips.,(6043), 776–778.
Tandoc, E. C., Ferrucci, P., & Duffy, M. (2015). Facebook use, envy, and depression among college students: is facebooking depressing?,, 139–146.
Torous, J., & Keshavan, M. (2016). The role of social media in schizophrenia: Evaluating risks, benefits, and potential.,(3), 190–195.
Twenge, J. M., & Campbell, W. K. (2019). Media use is linked to lower psychological well-being: Evidence from three datasets.,(2), 311–331.
Ullén, F., de Manzano, ?., Theorell, T., & Harmat, L. (2010). The physiology of effortless attention: Correlates of state flow and flow proneness. In B. Bruya (Ed.),(pp. 205?217, Chapter viii). MIT Press, Cambridge, MA.
Ulrich, M., Keller, J., Hoenig, K., Waller, C., & Gr?n, G. (2014). Neural correlates of experimentally induced flow experiences.,, 194–202.
Uncapher, M. R., & Wagner, A. D. (2018). Minds and brains of media multitaskers: Current findings and future directions.,(40), 9889–9896.
van der Schuur, W. A., Baumgartner, S. E., & Sumter, S. R. (2019). Social media use, social media stress, and sleep: Examining cross-sectional and longitudinal relationships in adolescents.,(5), 552–559.
Vannucci, A., Flannery, K. M., & Ohannessian, C. M. (2017). Social media use and anxiety in emerging adults.,, 163–166.
Wang, J., Jackson, L. A., Gaskin, J., & Wang, H. (2014). The effects of social networking site (SNS) use on college students’ friendship and well-being.,, 229–236.
Wiradhany, W., & Koerts, J. (2019). Everyday functioning-related cognitive correlates of media multitasking: A mini meta- analysis.,(2), 276–303. http://dx.doi. org/10.1080/15213269.2019.1685393.
Wiradhany, W., & Nieuwenstein, M. R. (2017). Cognitive control in media multitaskers: Two replication studies and a meta-analysis.,(8), 2620–2641.
Wu, T. C., Scott D., & Yang, C. (2013). Advanced or addicted? Exploring the relationship of recreation specialization to flow experiences and online game addiction.,(3), 203–217.
Xie, W. (2014). Social network site use, mobile personal talk and social capital among teenagers.,, 228–235.
Yoshida, K., Sawamura, D., Inagaki, Y., Ogawa, K., Ikoma, K., & Sakai, S. (2014). Brain activity during the flow experience: A functional near-infrared spectroscopy study.,, 30–34.
Zuelsdorff, M. L., Koscik, R. L., Okonkwo, O. C., Peppard, P. E., Hermann, B. P., Sager, M. A., … Engelman, C. D. (2019). Social support and verbal interaction are differentially associated with cognitive function in midlife and older age.,(2), 144–160.
Zurcher, J. D., King, J., Callister, M., Stockdale, L., & Coyne, S. M. (2020). “I can multitask”: The mediating role of media consumption on executive function’s relationship to technoference attitudes.,, Article e106498.http://dx.doi.org/10.1016/j.chb.2020.106498.
The impact of social media on executive functions:Beneficial or harmful?
MA Yajie1,2, ZHAO Xin1,2, HE Xiangchun3, REN Liping1,2
(1Key Laboratory of Behavioral and Mental Health of Gansu province, Northwest Normal University, Lanzhou 730070, China)(2School of Psychology, Northwest Normal University, Lanzhou 730070, China)(3School of Educational Technical, Northwest Normal University, Lanzhou 730070, China)
The effect of social media on executive functions remain controversial. it has to do with social media use intensity inverted U-shaped regulating effect on moderate social media use will generate social media flow, make the attention focused on the target information, and provides individuals with ongoing social rewards and emotional support, beneficial to perform functions, but high and low intensity use social media will damage the executive function. Future research in this area should examine the implications of using social media to further clarify the link between social media use and the development of executive functions. The research should include the dose-effect of social media on executive functions and the use of social media to perform functions, taking individuals' different cognitive levels into account.
social media, executive function, flow experience
B849: C91
2021-04-28
* 國家自然科學基金(31560283, 62167007), 教育部人文社會科學研究項目(21XJA190005), 甘肅省“雙一流”科研重點項目(GSSYLXM-01)和西北師范大學重大科研項目培育計劃(NWNU-SKZD2021-06)資助。
趙鑫, E-mail: psyzhaoxin@nwnu.edu.cn; 賀相春, E-mail: hxc@nwnu.edu.cn。