国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

猴歡喜葉綠體全基因組及杜英科系統(tǒng)地位分析

2022-03-17 01:05王一麾謝宜飛張志翔金佳怡邱相東童陽
廣西植物 2022年1期

王一麾 謝宜飛 張志翔 金佳怡 邱相東 童陽

摘 要:? 最新的分子系統(tǒng)發(fā)育(APG IV)研究中以猴歡喜屬(Sloanea L.)為代表的杜英科(Elaeocarpaceae)所在的酢漿草目(Oxalidales)被置于豆類分支(Fabids),且與衛(wèi)矛目(Celastrales)、金虎尾目(Malpighiales)組成一支(COM分支),但支持率較低。為提高COM分支支持率,該文以杜英科猴歡喜屬猴歡喜(Sloanea sinensis)為材料,應(yīng)用Illumina Hiseq 2500對(duì)猴歡喜葉綠體基因組進(jìn)行測(cè)序,并通過Geneious 11.0,PGA和Shiny軟件進(jìn)行組裝,注釋和繪制基因組圖譜,之后使用MISA和IRscope軟件對(duì)葉綠體基因組特征進(jìn)行分析,并使用PhyloSuite軟件構(gòu)建豆類分支系統(tǒng)發(fā)育樹。結(jié)果表明:(1)猴歡喜葉綠體基因組全長(zhǎng)157 546 bp,GC含量為37.0%,包含一對(duì)25 984 bp的反向重復(fù)區(qū)、大單拷貝區(qū)(87 903 bp)和小單拷貝區(qū)(17 675 bp)。(2)在猴歡喜葉綠體基因組中有113個(gè)非重復(fù)基因,包括79個(gè)蛋白質(zhì)編碼基因、4個(gè)rRNA基因和30個(gè)tRNA基因;共檢測(cè)到81個(gè)SSR位點(diǎn),其中大部分是單核苷酸重復(fù)序列;通過IR邊界區(qū)比較分析,發(fā)現(xiàn)日本杜英(Elaeocarpus japonicus)和猴歡喜在LSC/IRb和IRa/LSC邊界上存在明顯差異。(3)構(gòu)建豆類分支葉綠體全基因組最大似然法系統(tǒng)發(fā)育樹,猴歡喜同日本杜英親緣關(guān)系最近,與酢漿草科(Oxaliadaceae)陽桃(Averrhoa carambola)、紅花酢漿草(Oxalis corymbosa)和O. drummondii聚為一支,支持杜英科歸于酢漿草目并且處在豆類分支中,且衛(wèi)矛目、酢漿草目和金虎尾目演化支(COM分支)支持率高達(dá)100%。該研究基于猴歡喜葉綠體基因組進(jìn)一步確定了杜英科和COM分支的系統(tǒng)地位。

關(guān)鍵詞: 猴歡喜, 葉綠體基因組, 系統(tǒng)發(fā)育分析, 基因組比較, COM分支

中圖分類號(hào):? Q941

文獻(xiàn)標(biāo)識(shí)碼:? A

文章編號(hào):? 1000-3142(2022)01-0039-10

收稿日期:? 2021-04-23

基金項(xiàng)目:? 國(guó)家自然科學(xué)基金(31110103911, J1310002)[Supported by the National Natural Science Foundation of China(31110103911, J1310002)]。

第一作者: 王一麾(1997-),碩士研究生,主要從事被子植物系統(tǒng)發(fā)育學(xué)研究,(E-mail)535401842@qq.com。

*通信作者:? 謝宜飛,博士,講師,主要從事木本被子植物系統(tǒng)發(fā)育學(xué)研究,(E-mail)xiey-f@foxmail.com。

The complete chloroplast genome of Sloanea sinensis

and the systematic status of Elaeocarpaceae

WANG Yihui1, XIE Yifei1,2*, ZHANG Zhixiang3, JIN Jiayi1, QIU Xiangdong1, TONG Yang1

( 1. School of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China; 2. Nanling Herbarium, Gannan Normal University,

Ganzhou 341000, Jiangxi, China; 3. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China )

Abstract:? Angiosperm Phylogeny Group IV (APG IV) revealed Elaeocarpaceae represented by Sloanea sinensis belonging to Oxalidales includes the COM clade with Celastrales and Malpighiales,? while the status of COM clade is not well supported based on phylogenetic calculation results of multi-molecular fragments. In order to improve the bootstrap of COM clade, with Sloanea sinensis (genus Sloanea, family Elaeocarpaceae) as materials, we used Illumina Hiseq 2 500 platform to sequence, and then assembled, annotated, and analyzed by Geneious 11.0 PGA and Shiny. Analysis of chloroplast genome characteristics was used by MISA and IRscope. The phylogenetic tree of Fabids was reconstructed by using PhyloSuite. The results were as follows: (1) The complete chloroplast genome of Sloanea sinensis was 157 546 bp in length including two inverted repeats (IRs) of 25 984 bp, which were separated by large single copy (LSC) and short single copy (SSC) of 87 904 bp and 17 674 bp, respectively. The GC content was 37.0%. (2) The genome encoded 113 functional genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. 81 SSR loci were detected in the S. sinensis genome, and most of SSR was composed of nucleobase A and T. Through IR expansion and contraction analysis, we found that there were obvious differences between Elaeocarpus japonicus and Sloanea sinensis in LSC/IRB and IRA/LSC boundaries. (3) The whole chloroplast genome phylogenetic studies showed Sloanea sinensis and Elaeocarpus japonicus were sister to Averrhoa carambola, Oxalis corymbosa and O. drummondii. Sloanea sinensis and Elaeocarpus japonicus representing Elaeocarpaceae belonged to Oxalidales, Fabids, and a strongly support for COM clade in Fabids group. Based on the chloroplast genome of genus Sloanea, the phylogenetic status of Elaeocarpaceae and the COM clade is confirmed.

Key words: Sloanea sinensis, chloroplast genome, phylogenetic analysis, genome comparison, COM clade

葉綠體是色素、脂類物質(zhì)、激素和核糖體等合成的重要細(xì)胞器(Palmer 1985; Shinozaki et al., 1986)。葉綠體的遺傳物質(zhì)為葉綠體基因組,通常表現(xiàn)為四聯(lián)體結(jié)構(gòu),由兩個(gè)倒位形成的高度保守的重復(fù)區(qū)域(IRa和IRb),一個(gè)大單拷貝區(qū)域和另一個(gè)小單拷貝區(qū)域(分別為L(zhǎng)SC和SSC)組成(Pogson et al., 1847; Raman & Park, 2015; Cheng et al., 2017)。葉綠體基因組因其結(jié)構(gòu)保守,同核基因更易于獲得且葉綠體基因組一般是單親遺傳,易于分析(陶曉麗等,2017;Li et al., 2018;Zhang et al., 2018;Jeon & Kim, 2019)。隨著NCBI數(shù)據(jù)庫(kù)中葉綠體基因組數(shù)據(jù)的日益增長(zhǎng),為葉綠體比較基因組學(xué)提供了豐富的材料,特別是系統(tǒng)發(fā)育分析、分子系統(tǒng)地理學(xué)、單倍型分析和轉(zhuǎn)基因遺傳改良方面應(yīng)用潛力極大(Zhang et al., 2017)。楊亞蒙等(2019)基于34個(gè)葡萄屬(Vitis)葉綠體全基因組數(shù)據(jù)重建系統(tǒng)發(fā)育樹,結(jié)果與傳統(tǒng)分類一致;Bhati等(2018)應(yīng)用Illumina Miseq平臺(tái)對(duì)茴香(Foeniculum vulgare)葉綠體基因組進(jìn)行測(cè)序比較,共獲得23對(duì)分子標(biāo)記引物,其中21對(duì)引物是傘形科植物的有效微衛(wèi)星;Marechal & Brisson(2010)研究發(fā)現(xiàn)IR邊界區(qū)的擴(kuò)張與收縮是葉綠體基因組結(jié)構(gòu)的重要特征;Su等(2020)比較小麥屬的葉綠體基因組結(jié)構(gòu)中發(fā)現(xiàn)IR區(qū)較其他物種的遺傳差異大,變異明顯,這可能與二粒系小麥的遺傳多樣性相關(guān)。

以形態(tài)學(xué)特征為主的解剖學(xué)證據(jù)曾將杜英科歸屬于錦葵目、紅樹目等(Takhtajan, 1980;張宏達(dá), 1989;Thorne, 2000)。Crayn等(2006)基于分子數(shù)據(jù)推斷杜英科(Elaeocarpaceae)與瓶子草科(Cephalotaceae)、槽柱花科(Brunelliaceae)的親緣關(guān)系最近,應(yīng)隸屬于豆類酢漿草目。最新的APG IV系統(tǒng)把包括杜英科的酢漿草目、衛(wèi)矛目、金虎尾目(COM分支)放置于豆類中,但COM分支的支持率較低(Chase et al., 2016)。

近年來有學(xué)者開展了杜英科屬間的系統(tǒng)發(fā)育關(guān)系研究,利用rbcL片段和trnL-trnF間隔區(qū)構(gòu)建了杜英科Aceratium、Elaeocarpus、Plotytheca、Crinodendron、Valea和Sloanea 的屬間系統(tǒng)發(fā)育關(guān)系,劃分為(Crinodendron + Valea)+ Sloanea 分支和(Aceratium + Elaeocarpus)+ Plotytheca分支(Bradford & Barnes, 2011)。根據(jù)形態(tài)和分子證據(jù),將杜英科分為Sloanea alliance (Vallea, Aristotelia and Sloanea)、Tremandraceous genera (Platytheca, Tetratheca and Tremandra)和Elaeocarpus alliance (Sericolea, Aceratium and Elaeocarpus)三個(gè)分支(Phoon, 2015;謝宜飛, 2018)。Sloanea alliance (Vallea, Aristotelia and Sloanea) 分支主要分布在南美洲西部和北部、東南亞和澳洲東部。本研究以猴歡喜為材料,通過葉綠體基因組高通量測(cè)序、組裝和基因注釋,利用猴歡喜和日本杜英葉綠體全基因組系統(tǒng)發(fā)育樹進(jìn)一步確定杜英科和COM分支的位置。

1 材料與方法

1.1 實(shí)驗(yàn)材料

測(cè)序材料為猴歡喜(Sloanea sinensis),于2017年4月22日在云南省麻栗坡縣天保鄉(xiāng)(104°43′12″ E、23°0′36″ N)采摘其新鮮嫩葉。材料憑證標(biāo)本保存于北京林業(yè)大學(xué)標(biāo)本館(BJFC),采集號(hào)為謝宜飛、王磊XW1956,鑒定人為謝宜飛。

1.2 基因組DNA提取及測(cè)序

采用改良的十六烷基三甲基溴化銨(CTAB)法提取猴歡喜總DNA(Li et al., 2009),之后利用瓊脂糖凝膠電泳和NanoDrop-2000微量分光光度計(jì)檢測(cè)DNA純度和濃度并將猴歡喜的DNA送至北京睿博興科生物技術(shù)有限公司,并使用Illumina HiSeq (TM) 2000進(jìn)行高通量測(cè)序。將得到的原始圖像數(shù)據(jù)文件經(jīng)CASAVA堿基識(shí)別(base calling)分析轉(zhuǎn)化為原始測(cè)序序列(raw data),將原始測(cè)序序列過濾掉帶接頭的、低質(zhì)量的reads,獲得6.04 Gb的clean reads,并且命名為DMS14627-S.fq.gz文件(Cock et al., 2010; Hansen et al., 2010)。

1.3 基因組組裝與注釋

經(jīng)Geneious 11.0軟件Trim Ends去除接頭兩端低質(zhì)量序列后的高質(zhì)量分析序列,以Brunellia trianae (槽柱花科槽柱花屬,GenBank登錄號(hào):MN585217)葉綠體基因組為參考序列進(jìn)行組裝和注釋。利用SPAdes v3.6.1在默認(rèn)參數(shù)下進(jìn)行從頭拼接,并生成一系列Contigs (Prjibelski et al., 2020),將長(zhǎng)度大于1 000 bp的Contigs用于葉綠體基因組組裝,匹配連接構(gòu)建完整的葉綠體基因組序列(Kearse et al., 2012),二代測(cè)序技術(shù)補(bǔ)齊組裝后的空缺。使用PGA基因組注釋工具對(duì)猴歡喜葉綠體基因組進(jìn)行功能注釋,并使用Shiny軟件繪制猴歡喜葉綠體基因組圖譜(Liu et al., 2018; Zheng et al., 2020)。測(cè)序后的clean reads上傳至NCBI的SRA數(shù)據(jù)庫(kù)(PRJNA661695, SRR12599358),使用Bankit將注釋好的序列提交至NCBI,獲得Genbank登錄號(hào):MW004670。

1.4 葉綠體基因組特征分析

猴歡喜葉綠體基因組序列為材料,使用MISA軟件(http://pgrc.ipk-gatersleben.de/misa/misa.ht-ml)鑒定猴歡喜葉綠體基因組中簡(jiǎn)單重復(fù)序列(SSR),參數(shù)采用默認(rèn)值,即單核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸的最小重復(fù)次數(shù)分別為 10、6、5、5、5、5,2 個(gè) SSR之間的最小距離為 100 bp (Sahu et al., 2012)。使用IRscope (https: ∥irscope.shinyapps.io/irapp/) 繪制猴歡喜、陽桃、Oxalis corniculate、O. drummondii和日本杜英葉綠體基因組邊界(Amiryousefi et al., 2018)。

1.5 序列比對(duì)和系統(tǒng)發(fā)育分析

從NCBI數(shù)據(jù)庫(kù)下載榛(Corylus heterophylla)、天臺(tái)鵝耳櫪(Carpinus tientaiensis)、沼樺(Betula nana)等52個(gè)物種完整葉綠體基因組序列。其中,9個(gè)物種來自殼斗目,4個(gè)物種來自葫蘆目,9個(gè)物種來自薔薇目,2個(gè)物種來自豆目,4個(gè)物種來自酢漿草目,2個(gè)物種來自衛(wèi)矛目,19個(gè)物種來自金虎尾目,3個(gè)物種來自木蘭目(表1)。利用MEGA 7.0軟件比對(duì)序列,去除兩端不整齊序列(Kumar et al., 2016)。使用PhyloSuite軟件ModelFinder進(jìn)行模型分析,并構(gòu)建最大似然法系統(tǒng)發(fā)育樹。按照自展值bootstrap為1 000,運(yùn)行最長(zhǎng)時(shí)間為168 h,其他參數(shù)為默認(rèn)值進(jìn)行計(jì)算。Tree文件使用軟件FigTree v1.3讀?。≒rice et al., 2009; Zhang et al., 2020)。

2 結(jié)果與分析

2.1 基因組基本特征

猴歡喜葉綠體基因組全長(zhǎng)157 546 bp, LSC、SSC與IR的長(zhǎng)度分別為87 903 bp、17 675 bp、25 984 bp。全基因組的GC含量為37.0%,其中GC含量最高的是反向重復(fù)區(qū)(42.9%),大單拷貝區(qū)和小單拷貝區(qū)分別為35.1%和31.4%(表2,圖1)。猴歡喜葉綠體基因組共包括132個(gè)基因,非重復(fù)基因113個(gè)(表3)。

2.2 SSR分析

本研究發(fā)現(xiàn)猴歡喜葉綠體基因組中存在81個(gè)SSR(Simple Sequence Repeat,簡(jiǎn)單重復(fù)序列標(biāo)記),其中大部分是單核苷酸重復(fù)序列(76個(gè),93.83%),二核苷酸重復(fù)序列有4個(gè)(4.94%),三核苷酸重復(fù)序列只有1個(gè)(1.23%),未檢測(cè)到四核苷酸、五核苷酸和六核苷酸序列。88.89%的SSR由A或T組成,這表明SSR基因組偏向A/T基因。SSR以長(zhǎng)度10~12 bp的短序列為主,占全部的75.31%,16 bp以上的僅占9.88%(表4)。LSC區(qū)域內(nèi)核苷酸重復(fù)序列達(dá)65個(gè)(80.25%),其中大部分是單核苷酸重復(fù)序列。SSC區(qū)域內(nèi)核苷酸重復(fù)序列有10個(gè)(12.35%),且都是單核苷酸重復(fù)序列,而兩個(gè)IR區(qū)內(nèi)有6個(gè)(7.41%)單核苷酸重復(fù)序列。

2.3 IR邊界區(qū)分析

借助IRscope工具生成5種酢漿草目植物的邊界圖(圖2),5種植物IRa/SSC邊界的基因分布相似。其中,猴歡喜和日本杜英的ndhF基因距離IRb/SSC邊界較遠(yuǎn)。在LSC/IRb和IRa/LSC邊界上,猴歡喜同3種酢漿草屬植物所含基因相同(rps19和rpl2),而日本杜英在這兩個(gè)邊界上是rps3和rpl22。

2.4 系統(tǒng)發(fā)育分析

將猴歡喜、楊梅等53種植物葉綠體基因組序列利用最大似然法構(gòu)建系統(tǒng)發(fā)育樹(圖3),運(yùn)行的最佳模型為GTR+F+I+G4。系統(tǒng)發(fā)育分析表明猴歡喜同日本杜英聚在一支,分支支持率達(dá)100%,屬于杜英科。此外,猴歡喜與陽桃、紅花酢漿草和Oxalis drummondii聚為一支,分支支持率為100%,說明猴歡喜同酢漿草科具有較近的親緣關(guān)系。

3 討論與結(jié)論

猴歡喜葉綠體基因組包含157 546 bp堿基,IR的長(zhǎng)度為25 984 bp,GC含量為37.0%, 與被子植物葉綠體基因組已有數(shù)據(jù)(120 000 ~ 180 000 bp)相符(Wolf et al., 2010)。猴歡喜葉綠體基因組共注釋了113個(gè)基因,與被子植物葉綠體基因組通常為120個(gè)左右的基因接近(楊芳,2019)。對(duì)比日本杜英的葉綠體基因結(jié)構(gòu),發(fā)現(xiàn)猴歡喜存在infA和ndhK兩個(gè)基因。在被子植物中有部分物種的葉綠體基因組infA和ndh基因轉(zhuǎn)移到核糖體,如朝鮮唐松草(Thalictrum ichangense)葉綠體基因組中infA基因轉(zhuǎn)移至核糖體(Millen et al., 2001; Park & Jansen, 2015),蝴蝶蘭(Phaiaenopsis aphrodite)中三個(gè)ndh基因(ndhA, ndhF和ndhH)轉(zhuǎn)移到核糖體內(nèi)(Chang et al., 2006)。此外,ndh基因在鞭寄生屬(Hydnora)、菟絲子屬(Cuscuta)等寄生植物和部分蕨類植物中缺失,可能是進(jìn)化過程中適應(yīng)水分過多環(huán)境的結(jié)果(DePamphilis & Palmer, 1990; McNeal et al., 2007; Wickett, 2008; Wicke et al., 2011; Kim, 2015; Naumann, 2016)。日本杜英在適應(yīng)進(jìn)化過程中葉綠體全基因組丟失了ndhK和infA兩個(gè)基因,可能經(jīng)歷了不同的生境擴(kuò)張。

SSR比較分析發(fā)現(xiàn)猴歡喜A/T堿基重復(fù)比G/C堿基重復(fù)多,SSR在非編碼區(qū)比編碼區(qū)更多,符合真核生物的SSR分布(Toth et al., 2000; Morgante et al., 2002; Zhao et al., 2014; Srivastava et al., 2019)。猴歡喜A/T堿基重復(fù)較多可能與減數(shù)分裂的重組熱點(diǎn)有關(guān)(Heissl et al., 2018)。在基因組中,GC含量越高則DNA密度越大,基因序列越穩(wěn)定。猴歡喜IR區(qū)的GC含量為42.9%,SSC區(qū)的GC含量較LSC區(qū)和IR區(qū)低,推測(cè)其SSC區(qū)有更多的SSR突變位點(diǎn)(Ohme-Takagi et al., 2000)。不同物種的葉綠體基因組ycf基因通常存在高頻率的SSR,造成基因的高度變異,例如在爵床屬(Justicia)中出現(xiàn)多態(tài)性位點(diǎn)次數(shù)最多的是ycf1基因(Kim & Lee, 2004;鈕崢洋, 2020)。在猴歡喜葉綠體基因組的編碼區(qū)中,ycf3基因的多態(tài)性位點(diǎn)最多,存在T和A兩種重復(fù)類型,基因變異的幾率大。總體來看,猴歡喜的葉綠體SSR呈現(xiàn)出分布不均勻、具有豐富變異性的特點(diǎn),這些SSR可以作為猴歡喜屬植物種內(nèi)遺傳變異和物種鑒定的微衛(wèi)星分子標(biāo)記。因此,猴歡喜葉綠體基因組的發(fā)表有助于杜英科植物的QTL分析、親緣關(guān)系鑒定和遺傳多樣性研究(劉列釗和林吶,2004)。

有研究發(fā)現(xiàn)葉綠體基因組的大小不同會(huì)導(dǎo)致IR/SC邊界區(qū)出現(xiàn)擴(kuò)張或者收縮現(xiàn)象,而IR/SC邊界的擴(kuò)張與收縮又與植物進(jìn)化有密切的關(guān)系。IR邊界區(qū)大的擴(kuò)張或收縮可能與雙鏈DNA的斷裂修復(fù)有關(guān),小的擴(kuò)張或收縮與基因轉(zhuǎn)化有關(guān)(Kim & Lee, 2004;Khakhlova & Bock, 2006;Hansen et al., 2007;Wang et al., 2008;Ma et al., 2013;梁鳳萍等,2018;馬麗,2020)。通過比較酢漿草目5種植物葉綠體全基因組的IR邊界區(qū),發(fā)現(xiàn)猴歡喜在IR/SC邊界區(qū)存在較大的擴(kuò)張,這可能與雙鏈DNA的斷裂修復(fù)有關(guān);并且其邊界區(qū)域與日本杜英相比,反而同酢漿草科的邊界區(qū)域更加相似,可能反映猴歡喜屬與酢漿草科的起源時(shí)間更接近,經(jīng)歷了相似的地質(zhì)進(jìn)化事件。對(duì)比IR邊界區(qū),猴歡喜的rps19基因橫跨LSC/IRb區(qū),而日本杜英則是rps3基因。研究結(jié)果表明rps19、 rps3基因在單、 雙子葉植物葉綠體基因組中存在一定差異,在部分雙子葉植物中rps19基因僅部分存在于IR區(qū),而rps3基因橫跨LSC/IRb區(qū)的現(xiàn)象僅在重樓屬(Paris,藜蘆科)和黑藥花科(Melanthiaceae)植物中發(fā)現(xiàn)(Lin et al., 2012;Sarah et al., 2013;楊麗芳, 2019)。由此可見,杜英科的猴歡喜屬與杜英屬向東亞擴(kuò)散的過程中經(jīng)歷了完全不同的復(fù)雜進(jìn)化事件。

構(gòu)建的系統(tǒng)發(fā)育樹表明猴歡喜同日本杜英聚為一支,同屬于杜英科酢漿草目,與之前Heibl & Renner (2012)和Magallon等(2015)構(gòu)建的系統(tǒng)發(fā)育樹相吻合。酢漿草目、衛(wèi)矛目與金虎尾目聚為COM分支,與APG IV系統(tǒng)一致(Chase et al., 2016)。COM分支又與固氮分支(殼斗目、葫蘆目、薔薇目、豆目)同屬于豆類分支(Fabids),這一結(jié)果進(jìn)一步確定了COM分支的系統(tǒng)位置,也印證了葉綠體基因組系統(tǒng)發(fā)育分析方法在系統(tǒng)發(fā)育分析中的重要作用。

參考文獻(xiàn):

AMIRYOUSEFI A, HYVNEN J, POCZAI P, 2018. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

BHATI R, KUMAR S, PAREKH MJ, 2018. Development of genomic simple sequence repeat (gSSR) markers in cumin and their application in diversity analyses and cross-transferability [J]. Ind Crop Product, 111(1): 158-164.

BRADFORD JC, BARNES RW, 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology [J]. Syst Bot, 26(2): 354-385.

CHANG CC, LIN HC, LIN L, et al.,2006. The chloroplast genome of Phalaenopsis aphrodite(Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications [J]. Mol Biol Evol, 23(2): 279-291.

CHANG HT(ZHANG HD), 1989. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 49: 1-46. [張宏達(dá), 1989. 中國(guó)植物志 [M]. 北京: 科學(xué)出版社, 49: 1-46.]

CHASE MW, CHRISTENHUSZ MJ, FAY MF, et al., 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc,181(1): 1-20.

CHENG H, LI J, ZHANG H, et al.,2017. The complete chloroplast genome sequence of strawberry (Fragaria×ananassa Duch.) and comparison with related species of Rosaceae [J]. Peer J, 5(10): e3919-e3945.

COCK PJA, FIELDS CJ, GOTO N, et al.,2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants [J]. Nucl Acid Res, 38(6): 1767-1771.

CRAYN DM, DARREN M, ROSSETTO, et al.,2006. Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia [J]. Amer J Bot, 93(9): 1328-1342.

DEPAMPHILIS CW, PALMER JD, 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant [J]. Nature, 348(6299): 337-339.

HANSEN DR, DASTIDAR SG, CAI Z, et al., 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae) [J]. Mol Phylogenet Evol, 45(2): 547-563.

HANSEN KD, BRENNER SE, DUDOIT S, 2010. Biases in Illumina transcriptome sequencing caused by random hexamer priming [J]. Nucl Acid Res, 38(12): e131-e137.

HEIBL C, RENNER SS, 2012. Distribution models and a date phylogeny for chilean Oxalis species reveal occupation of new habits by different lineages, not rapid adaptive radiation [J]. Syst Biol, 61(5): 823-834.

HEISSL A, BETANCOURT AJ, HERMANN P, et al.,2018. Length asymmetry and heterozygosity strongly influences the evolution of poly-A microsatellites at meiotic recombination hotspots [J]. BioRxiv, 18(1): 431841-431871.

JEON JH, KIM SC, 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses (Rosa sect. Synstylae; Rosaceae) [J]. Genes, 10(1): 23-36.

KEARSE M, MOIR R, WILSON A, et al.,2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.

KHAKHLOVA O, BOCK R, 2006. Elimination of deleterious mutations in plastid genomes by gene conversion [J]. Plant J, 46(1): 85-94.

KIM HT, 2015. Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries [J]. PLoS ONE, 10(11): e0142215-e014232.

KIM KJ, LEE HL, 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants [J]. DNA Res, 11(4): 247-261.

KUMAR S, STECHER G, TAMURA K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 33(7): 1870-1874.

LI D, ZHOU X, LI D, 2009. Extraction of hyperoside from Hypericum perforatum L. using CTAB reversed micelles [J]. Can J Chem Eng, 87(4): 584-590.

LI YT, ZHANG J, LI LF, GAO LJ, et al., 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis—“wild plants with a tiny population”—and three other Pyrus species [J]. Int J Mol Sci, 19(10): 3262-3280.

LIANG FP, WEN XN, GAO HY, et al., 2018. Analysis of chloroplast genomes features of Asteraceae species [J]. Genom Appl Biol, 37(12): 5437-5447. [梁鳳萍, 文祥寧, 高赫一, 等, 2018. 菊科植物葉綠體基因組特征分析 [J]. 基因組學(xué)與應(yīng)用生物學(xué), 37(12): 5437-5447.]

LIN CP, WU CS, HUANG YY, et al., 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction [J]. Genome Bio Evol, 4(3): 374-381.

LIU H, HE J, DING C, et al., 2018. Comparative analysis of complete chloroplast genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica revealing structural variations among genera in tribe Anemoneae (Ranunculaceae) [J]. Front Plant Sci, 9(1): 1097-1112.

LIU LZ, LIN N, 2004. Research advance of SSR(simple sequence repeat) in canola [J]. Chin Bull Life Sci, 3(1): 173-176.? [劉列釗, 林吶, 2004. 油菜簡(jiǎn)單重復(fù)序列SSR(simple sequence repeat)研究進(jìn)展 [J]. 生命科學(xué), 3(1): 173-176.]

MA J, YANG B, ZHU W, et al., 2013. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms [J]. Gene, 528(2): 120-131.

MA L, 2020. Comparative chloroplast genomics and DNA barcoding of Lagerstroemia species [D]. Hangzhou: Zhejiang A & F University: 26-27.? [馬麗, 2020. 紫薇屬葉綠體比較基因組學(xué)及DNA條形碼研究 [D]. 杭州: 浙江農(nóng)林大學(xué): 26-27.]

MAGALLON S,GMEZ-ACEVEDO S, REYES LLS, et al., 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity [J]. New Phytol, 207(2): 437-453.

MARECHAL A, BRISSON N, 2010. Recombination and the maintenance of plant organelle genome stability [J].New Phytol, 186(2): 299-317.

MCNEAL JR, KUEHL JV, BOORE JL, et al., 2007. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta [J]. BMC Plant Biol, 7(1): 57-78.

MILLEN RS, OLMSTEAD RG, ADAMS KL, et al., 2001. Many parallel losses of infA from chloroplast angiosperm evolution with multiple independent transfers to the nucleus [J]. Plant Cell, 13(3): 645-658.

MORGANTE M, HANAFEY M, POWELL W, 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes [J]. Nat Genet, 30(1): 194-200.

NAUMANN J, 2016. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae) [J]. Genome Biol Evol, 8(2): 345-363.

NIU ZY, 2020. Phylogenomics of Asian Justicia L. based on complete chloroplast genomes [D]. Nanjing: Nanjing Forestry University: 61-65. [鈕崢洋, 2020. 亞洲廣義爵床屬葉綠體系統(tǒng)發(fā)育基因組學(xué)研究 [D]. 南京: 南京林業(yè)大學(xué): 61-65.]

OHME-TAKAGI M, SUZUKI K, SHINSHI H, 2000. Regulation of ethylene-induced transcription of defense genes [J]. Plant Cell Physiol, 41(11): 1187-1192.

PALMER JD, 1985. Comparative organization of chloroplast genomes [J]. Ann Rev Genet, 19(1): 325-354.

PARK S, JANSEN RK, 2015. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae [J]. BMC Plant Biol, 15(1): 40-52.

PHOON SN, 2015. Systematics and biogeography of Elaeocarpus (Elaeocarpaceae) [D]. Townsville: James Cook University: 82-85.

POGSON BJ, GANGULY D, ALBRECHT-BORTH V, 1847. Insights into chloroplast biogenesis and development [J]. BBA-Bioenergetics, 1847(9): 1017-1024.

PRICE MN, DEHAL PS, ARKIN AP, 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix [J]. Mol Biol Evol, 26(7): 1641-1650.

PRJIBELSKI A, ANTIPOV D, MELESHKO D, et al., 2020. Using SPAdes de novo assembler [J]. Curr Protoc Bioinform, 70(1): e102-e130.

RAMAN G, PARK S, 2015. Analysis of the complete chloroplast genome of a medicinal plant, Dianthus superbus var. longicalyncinus, from a comparative genomics perspective [J]. PLoS ONE, 10(10): e0141329-e0141349.

SAHU J, SARMAH R, DEHURY B, et al., 2012. Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis [J]. Bioinformation, 8(6): 260-266.

SARAH S, KIM JH, JUNG SK, et al., 2013. Complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): comparative genomics and evaluation of universal primers for Liliales [J]. Plant Mol Biol Rep, 31(6): 1407-1421.

SHINOZAKI K, OHME M, TANAKA M, et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2029-2043.

SRIVASTAVA S, AVVARU AK, SOWPATI DT, et al., 2019. Patterns of microsatellite distribution across eukaryotic genomes [J]. BMC Genomics, 20(1): 153-166.

SU N, HE ZF, OU PH, et al., 2020. Comparative analysis of the chloroplast genome in Triticum species [J]. J Tritic Crops, 40(1): 55-64. [蘇寧, 何兆峰, 歐平和, 等, 2020.小麥屬植物葉綠體基因組結(jié)構(gòu)的比較分析 [J].麥類作物學(xué)報(bào), 40(1):55-64.]

TAKHTAJAN AL, 1980. Outline of the classification of flowering plants (Magnoliophyta) [J]. Bot Rev, 46(3): 225-359.

TAO XL, MA LC, NIE B, et al., 2017. The draft and characterization of the complete chloroplast genome of Vicia sativa cv. Lanjian No.3 [J]. Prat Sci, 34(2): 321-330. [陶曉麗, 馬利超, 聶斌, 等, 2017. ‘蘭箭3號(hào)’春箭筈豌豆葉綠體全基因組草圖及特征分析 [J]. 草業(yè)科學(xué), 34(2): 321-330.]

THORNE RF, 2000. The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae [J]. Bot Rev, 66(4): 441-647.

TOTH G, GASPARI Z, JURKA J, 2000. Microsatellites in different eukaryotic genomes survey and analysis [J]. Genome Res, 10(7): 967-981.

WANG RJ, CHENG CL, CHANG CC, et al., 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots? [J]. BMC Evol Biol, 8(1): 36-49.

WICKE S, SCHNEEWEISS GM, DEPAMPHILIS CW, et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function [J]. Plant Mol Biol, 76(3): 273-297.

WICKETT NJ, 2008. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis [J]. Mol Biol Evol, 25(2): 393-401.

WOLF PG, DER J, DUFFY A, et al., 2010. The evolution of chloroplast genes and genomes in ferns [J]. Plant Mol Biol, 76(3): 251-261.

XIE YF, 2018. Ataxonomic study of Elaeocarpaceae in East Asia and the Pan-Himalayas [D]. Beijing: Beijing Forestry University: 14-15. [謝宜飛, 2018.東亞及泛喜馬拉雅地區(qū)杜英科的分類研究 [D]. 北京: 北京林業(yè)大學(xué): 14-15.]

YANG F, 2019. Sequencing andstuctural analysis of chloroplast genome in Rosa banksias [J]. Genom Appl Biol, 38(8): 3586-3594. [楊芳, 2019. 七里香薔薇葉綠體基因組測(cè)序及結(jié)構(gòu)分析 [J]. 基因組學(xué)與應(yīng)用生物學(xué), 38(8): 3586-3594.]

YANG LF, 2019. Plastid phyogenomics and biogeography of Paris [D]. Kunming: Yunnan University: 44-45. [楊麗芳, 2019. 重樓屬葉綠體系統(tǒng)發(fā)育基因組學(xué)與生物地理學(xué)研究 [D]. 昆明: 云南大學(xué): 44-45.]

YANG YM, JIAO J, FAN XC, et al., 2019. Complete chloroplast genome sequence and characteristics analysis of Vitis ficifolia [J]. Acta Hort Sin, 46(4): 635-648.? [楊亞蒙, 焦健, 樊秀彩, 等, 2019. 桑葉葡萄葉綠體基因組及其特征分析 [J]. 園藝學(xué)報(bào), 46(4): 635-648.]

ZHANG D, GAO F, JAKOVLI I, et al., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 20(1): 348-355.

ZHANG X, RONG C, QIN L, et al., 2018. Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships [J]. Molecules, 23(11): 2917-2929.

ZHANG X, ZHOU T, KANWAL N, et al., 2017. Completion of eight gynostemma bl. (cucurbitaceae) chloroplast genomes: characterization, comparative analysis, and phylogenetic relationships [J]. Front Plant Sci, 8(1): 1583-1595.

ZHAO ZX, GUO C, SUTHARZAN S, et al., 2014. Genome-wide analysis of tandem repeats in plants and green algae [J]. G3 Genes, 4(1): 67-78.

ZHENG SY, POCZAI P, HYVNENJ, et al., 2020. Chloroplot: an online program for the versatile plotting of organelle genomes [J]. Front Genet, 11(1): 1-8.

(責(zé)任編輯 何永艷)

1943501186371