孫匯彬 袁秋 楊陽(yáng) 魏立群 唐明 饒濤
摘要:數(shù)值分析方法在攪拌摩擦焊接頭溫度場(chǎng)和材料流動(dòng)場(chǎng)研究中的應(yīng)用越來(lái)越廣泛。綜述了在攪拌摩擦焊接頭溫度場(chǎng)和材料流動(dòng)場(chǎng)研究中常用的計(jì)算流體力學(xué)(CFD)、任意拉格朗日-歐拉(ALE)、耦合歐拉-拉格朗日(CEL)三種數(shù)值分析模型。三種模型各有特點(diǎn),計(jì)算流體力學(xué)模型(CFD)采用較早,但是該模型忽略了母材的硬化行為和從攪拌頭上的剝離行為。任意拉格朗日-歐拉模型(ALE)可以避免求解過程中網(wǎng)格的過度扭曲,但本質(zhì)上仍然是拉格朗日網(wǎng)格。耦合的歐拉-拉格朗日模型(CEL)采用歐拉分析對(duì)母材流動(dòng)預(yù)測(cè)較為符合,但是計(jì)算花費(fèi)較大。應(yīng)根據(jù)研究重點(diǎn)進(jìn)行模型的選取。指出了數(shù)值分析方法在攪拌摩擦焊研究中存在的一些普遍問題及未來(lái)發(fā)展方向。
關(guān)鍵詞:攪拌摩擦焊;數(shù)值計(jì)算;計(jì)算流體力學(xué);拉格朗日分析;歐拉分析
中圖分類號(hào): TG453+.9????? 文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào):1001-2303(2022)02-0049-08
A Review of Numerical Analysis Method of Friction Stir Welding
SUN Huibin1, YUAN Qiu1, YANG Yang1, WEI Liqun1, TANG Ming2, RAO Tao3
1. Chongqing Vocational and Technical University of Mechatronics , Chongqing 402760,China
2. Chongqing SIIE Product Testing Co. ,Ltd. , Chongqing 400010,China
3. Chongqing city Bishan District Maoyu Machinery Manufacture Co. ,Ltd. , Chongqing 402760,China
Abstract: Numerical simulation analysis has been widely used in temperature and material flow study relate to FSW pro‐ cess. In this paper, three numerical simulation analysis methods—— Computational Fluid Dynamics method, Arbitrary La‐ grangianEulerian? method, Couple Eulerian Lagrangian method——widely used in recent years is reviewed. The three meth‐ ods have their own characteristics. The CFD method was adopted earlier, but this method ignores the hardening behavior of the base metal and the peeling behavior . ALE method avoid excessive distortion of the mesh during solution, but are still es‐ sentiallyLagrangian meshes. The CEL method using Euler analysis is more consistent with the prediction of base metal flow, but the calculation cost is relatively high.The researcher should select the model according to the focus 。Some issues in FSW study with numerical simulation method are pointed out. Finally, the development trends of numerical simulation in FSW study were also predicted.
Keywords: friction stir welding; numerical simulation; Computational Fluid Dynamics; Lagrangian formulation; Eulerian formulation
引用格式:孫匯彬,袁秋,楊陽(yáng),等.攪拌摩擦焊數(shù)值分析方法概述[J].電焊機(jī),2022,52(2):49-56.
Citation:SUNHuibin, YUAN Qiu, YANG Yang, et al. A Review of Numerical Analysis Method of Friction Stir Welding[J]. Electric Welding Ma‐ chine, 2022, 52(2):49-56.
0? 前言
攪拌摩擦焊(Friction Stirring Welding,F(xiàn)SW)是一種廣泛應(yīng)用于鋁合金、鎂合金等同種或異種材料連接的固相焊接新技術(shù)。與傳統(tǒng)熔化焊相比,F(xiàn)SW具有熱輸入低、接頭殘余應(yīng)力小、接頭缺陷少等優(yōu)點(diǎn)[1-3]。根據(jù)攪拌頭的運(yùn)動(dòng),F(xiàn)SW一般可分為下壓、保壓、橫向移動(dòng)和拔出四個(gè)階段。焊接過程中,攪拌頭軸肩與母材表面摩擦產(chǎn)生的熱量與母材塑性變形產(chǎn)熱的共同作用使攪拌頭前方的母材塑化,塑化金屬通過攪拌頭的運(yùn)動(dòng)形成穩(wěn)定的焊縫[4-5]。
FSW焊接過程是一個(gè)多物理場(chǎng)耦合的復(fù)雜過程,溫度場(chǎng)的分布規(guī)律和材料的流動(dòng)情況對(duì)焊后狀態(tài)以及焊縫質(zhì)量有著重要影響。而上述物理場(chǎng)會(huì)受到攪拌頭旋轉(zhuǎn)速度、移動(dòng)速度等焊接工藝參數(shù)的影響。因此,準(zhǔn)確了解接頭溫度場(chǎng)和材料流動(dòng)場(chǎng)的分布和演化規(guī)律極其重要[6-7]。長(zhǎng)期以來(lái),溫度場(chǎng)和材料流動(dòng)場(chǎng)的研究多采用實(shí)驗(yàn)的方法[8-11]。隨著計(jì)算機(jī)分析技術(shù)的發(fā)展,數(shù)值分析方法的應(yīng)用越來(lái)越廣泛[12-15]。
1? 計(jì)算流體力學(xué)分析(CFD)
基于粘塑性流體模型的計(jì)算流體動(dòng)力學(xué)(Com?putational Fluid Dynamics,CFD)率先被應(yīng)用于FSW 的數(shù)值分析中。
Ulysse P[16]等人針對(duì)攪拌摩擦焊過程建立的三維模型,材料為粘塑性不可壓縮流體且熱物理性能為溫度的函數(shù)。模型假設(shè)軸肩母材摩擦功的100%和材料塑性變形功的90%都轉(zhuǎn)化為熱輸入,但是未考慮母材與墊板、周圍空氣的熱交換損失。研究采用數(shù)值分析和實(shí)驗(yàn)兩種方法研究了焊接參數(shù)對(duì)溫度場(chǎng)、材料流動(dòng)場(chǎng)和攪拌針受力的影響。模型預(yù)測(cè)接頭溫度場(chǎng)分布如圖1所示,略高于實(shí)驗(yàn)值。
陳婷[2]、潘凱旋[17]等人建立的FSW有限元模型(finite element,F(xiàn)E)假設(shè)焊接熱量全部由軸肩母材摩擦產(chǎn)生,忽略塑性變形產(chǎn)熱。同時(shí)考慮了母材與周圍環(huán)境的熱交換。在普遍的FSW數(shù)值模型中,攪拌針假設(shè)為體熱源,軸肩假設(shè)為面熱源,則焊接熱輸入可以表示為
式中Q1為壓入階段產(chǎn)熱量;Q2為保壓階段產(chǎn)熱量; Q3為橫移階段產(chǎn)熱量;Qv為材料塑性變形產(chǎn)熱量。
式中v為攪拌頭扎入母材的速度;ω為攪拌頭角速度;μ為軸肩與母材的摩擦系數(shù);tstop為攪拌頭保壓時(shí)間;t為焊接時(shí)間。其余為攪拌頭幾何尺寸,如圖2所示。
文獻(xiàn)[2]分別研究了壓入階段、保壓階段和拔出階段焊接參數(shù)對(duì)溫度場(chǎng)分布的影響。預(yù)測(cè)結(jié)果顯示,溫度場(chǎng)關(guān)于焊縫中心線呈對(duì)稱分布。
上述模型中,熱輸入量Q的計(jì)算采用的是直接法。而基于能量守恒原則的間接法也常被用于熱輸入量的計(jì)算[18]。間接法認(rèn)為焊接過程的熱輸入量約等于外力所作的功,可以用式(6)、式(7)表示
式中q?(r)為半徑r 內(nèi)任意一點(diǎn)熱流密度值;Pav 為平均輸入功率;r0為軸肩半徑;ri為攪拌針半徑;h為攪拌針高度;ω為攪拌頭轉(zhuǎn)速; M為攪拌頭上的扭矩。
Hasan A F[19]基于FLUENT分別建立了單相和雙相FSW模型,如圖3所示。兩個(gè)模型中母材為粘性層流的不可壓縮非牛頓流體,且與攪拌頭表面假設(shè)為滑移-黏著狀態(tài)。先對(duì)攪拌區(qū)的溫度場(chǎng)和動(dòng)態(tài)粘度值進(jìn)行預(yù)測(cè),并進(jìn)行了驗(yàn)證;然后將上述結(jié)果作為載荷分別導(dǎo)入單相和雙相模型,對(duì)攪拌頭的壓力和材料流動(dòng)進(jìn)行計(jì)算。預(yù)測(cè)結(jié)果顯示,接頭最高溫度與實(shí)驗(yàn)溫度誤差最大為11%,且雙相CFD模型更接近實(shí)驗(yàn)結(jié)果。
通過上述分析可以發(fā)現(xiàn),基于 CFD 的FSW 模型,母材假設(shè)為粘塑性流體,忽略了材料的彈性和硬化行為,不存在材料變形量大而發(fā)生的網(wǎng)格扭曲和纏繞問題。攪拌頭與母材之間為完全黏著狀態(tài),忽略了母材從攪拌頭表面剝離行為。上述兩種假設(shè)在材料流動(dòng)場(chǎng)和應(yīng)力應(yīng)變場(chǎng)研究中會(huì)產(chǎn)生較大誤差[20]。當(dāng)采用更接近實(shí)驗(yàn)條件的邊界條件時(shí),溫度場(chǎng)的預(yù)測(cè)結(jié)果是可以接受的。
2? 任意拉格朗日-歐拉分析(ALE)
采用有限元法描述非線性連續(xù)介質(zhì)時(shí),通常有拉格朗日算法(Lagrangian model)和歐拉算法(Eu‐ lerian model)兩種。拉格朗日算法中,網(wǎng)格節(jié)點(diǎn)和材料固結(jié)在一起,節(jié)點(diǎn)的空間位置隨著材料的變形同時(shí)發(fā)生變化。因此該算法可以精確追蹤材料的位置變化。但是,拉格朗日算法在處理諸如鍛造、切削等大變形問題時(shí),網(wǎng)格會(huì)過度扭曲和纏繞從而導(dǎo)致計(jì)算意外中止。歐拉算法的網(wǎng)格節(jié)點(diǎn)空間位置固定不變,材料可以在網(wǎng)格中自由流動(dòng)。該算法克服了網(wǎng)格過度扭曲和纏繞的問題,但很難精確追蹤材料流動(dòng)[21-23]。而 ALE算法中,母材網(wǎng)格區(qū)域100%填充材料,同時(shí)限定了材料的變形,避免了網(wǎng)格扭曲和纏繞,且可以自由定義軸肩母材的接觸關(guān)系和各種邊界條件[24]。三種算法示意如圖4所示。
Schmidt H[25]等人以2024鋁合金為研究對(duì)象采用ALE算法建立了熱-力耦合的FSW模型,研究了焊接穩(wěn)定階段不同位置溫度場(chǎng)和材料流動(dòng)場(chǎng)的分布,結(jié)果如圖5所示。該研究中,軸肩母材法向接觸采用罰函數(shù),切向接觸采用經(jīng)典庫(kù)倫摩擦定律,并假設(shè)摩擦系數(shù)為常數(shù);母材塑性硬化行為采用 Johnson-Cook定律;為節(jié)約計(jì)算時(shí)間,設(shè)置了質(zhì)量縮放系數(shù)(mass scaling factor)。研究認(rèn)為,軸肩母材接觸條件的建立和發(fā)展對(duì)溫度場(chǎng)和流動(dòng)場(chǎng)的分布有重要影響。
Assidi M[26]等人以6061鋁合金為研究對(duì)象,分別采用實(shí)驗(yàn)和ALE算法研究了諾頓摩擦定律(Nor‐ ton friction law)和庫(kù)倫摩擦定律(Coulomb friction law)對(duì)溫度場(chǎng)和攪拌頭壓力的影響。結(jié)果發(fā)現(xiàn),ALE算法采用庫(kù)倫摩擦定律的預(yù)測(cè)結(jié)果與實(shí)驗(yàn)結(jié)果較為符合。
Salloomi K N 等人采用 ALE 算法建立了7075鋁合金對(duì)接接頭[27]和T形接頭FSW模型[28]。在模型自適應(yīng)區(qū)域,母材與攪拌頭、墊板的接觸采用滑移算法,且摩擦系數(shù)為非線性。研究發(fā)現(xiàn),接頭橫截面和表面溫度場(chǎng)呈對(duì)稱分布,如圖6所示。穩(wěn)態(tài)溫度場(chǎng)建立于FSW第一階段后期和第三階段前期。
通過上述分析可以發(fā)現(xiàn),ALE算法可以避免網(wǎng)格的過度扭曲,且材料的熱物理參數(shù)為溫度的函數(shù)。基于該算法的預(yù)測(cè)結(jié)果與實(shí)驗(yàn)結(jié)果符合較好。需要指出的是,ALE算法中,母材網(wǎng)格區(qū)域本質(zhì)上仍然是拉格朗日網(wǎng)格,材料假設(shè)完全填充網(wǎng)格區(qū)域,這種假設(shè)在流動(dòng)場(chǎng)的研究中存在一定的局限性。
3? 耦合歐拉-拉格朗日分析(CEL)
在FSW 材料流動(dòng)場(chǎng)的研究中,由NOH W F[29]提出的 CEL算法(Couple Eulerian Lagrangian)受到越來(lái)越多的關(guān)注。在FSW數(shù)值分析中,攪拌頭采用拉格朗日網(wǎng)格,母材區(qū)域則建立歐拉網(wǎng)格,母材部分填充歐拉網(wǎng)格。模型通常采用熱-力順序耦合的方式預(yù)測(cè)接頭的熱機(jī)械響應(yīng)[30-31],接頭空洞的大小、位置和焊縫表面質(zhì)量[32-34]。
Zhu Z[3]等人采用CEL算法建立了熱力耦合FSW 模型,如圖7所示。母材塑性硬化行為由Johnson- Cook描述,塑性變形功和軸肩母材摩擦功的熱轉(zhuǎn)化效率分別為90%和 100%,且考慮了接頭與周圍環(huán)境的熱量交換損失。首先預(yù)測(cè)并通過實(shí)驗(yàn)驗(yàn)證了焊接穩(wěn)態(tài)階段的溫度場(chǎng),重點(diǎn)研究了焊接參數(shù)對(duì)焊接穩(wěn)態(tài)階段材料流動(dòng)場(chǎng)的影響,發(fā)現(xiàn)模型對(duì)接頭缺陷位置的預(yù)測(cè)較準(zhǔn)確。
Al-Badour F[36]等人的模型與 Zhu Z 的模型相比,忽略了母材與周圍環(huán)境的熱交換,重點(diǎn)研究了壓入階段軸肩母材摩擦系數(shù)對(duì)攪拌頭軸向力和扭矩的影響,以及橫移階段焊接參數(shù)對(duì)接頭孔洞的影響。實(shí)驗(yàn)驗(yàn)證結(jié)果顯示,軸肩母材摩擦系數(shù)越大,空洞尺寸越小;攪拌頭橫移速度僅對(duì)接頭孔洞的形狀產(chǎn)生影響,對(duì)孔洞大小無(wú)影響。接頭缺陷的預(yù)測(cè)結(jié)果和實(shí)驗(yàn)結(jié)果如圖8所示。
Ansari M A[36]等人以5083鋁合金為研究對(duì)象,運(yùn)用CEL算法,采用改進(jìn)的庫(kù)倫摩擦定律研究了軸肩母材摩擦系數(shù)對(duì)溫度場(chǎng)分布的影響,在實(shí)驗(yàn)驗(yàn)證的基礎(chǔ)上確定摩擦系數(shù)為0.9。研究還發(fā)現(xiàn),攪拌頭旋轉(zhuǎn)速度對(duì)溫度場(chǎng)、應(yīng)變速率場(chǎng)具有重要影響。
Salloomi K N[37]等人將2024鋁合金置于前進(jìn)側(cè)、6061鋁合金置于后退側(cè),采用CEL算法建立了 FSW模型,以熱-力順序耦合的方式研究了FSW壓入階段和橫移階段的溫度場(chǎng)和接頭殘余應(yīng)力場(chǎng)。在歐拉區(qū)域內(nèi),異種材料通過容積比率(Volume of? Fractiom)控制。首先預(yù)測(cè)了溫度場(chǎng)分布,實(shí)驗(yàn)驗(yàn)證后的溫度場(chǎng)以熱載荷形式與拉格朗日網(wǎng)格耦合形成新模型,并研究了工藝參數(shù)對(duì)接頭殘余應(yīng)力的影響。結(jié)果發(fā)現(xiàn),異種材料接頭溫度場(chǎng)非對(duì)稱分布,且工藝參數(shù)對(duì)溫度分布有重要影響。
通過上述分析可以發(fā)現(xiàn),基于CEL算法的模型預(yù)測(cè)結(jié)果雖存在一定的誤差,但其能夠預(yù)測(cè)接頭中的缺陷,這是其他算法無(wú)法比擬的。同時(shí)需要指出的是,采用CEL算法的計(jì)算花費(fèi)較大。
4? 結(jié)論與展望
在FSW接頭溫度場(chǎng)和材料流動(dòng)場(chǎng)演化規(guī)律的研究中,數(shù)值分析是一種高效、直觀的分析方法。本文就近年來(lái)在FSW溫度場(chǎng)和流動(dòng)場(chǎng)研究中常用的三種數(shù)值分析模型進(jìn)行了討論。其中CFD模型能夠?qū)附舆^程中母材的流動(dòng)行為進(jìn)行預(yù)測(cè),但是由于模型忽略了母材從攪拌頭上的剝離行為和硬化行為,所以在預(yù)測(cè)接頭應(yīng)力時(shí)存在較大誤差?;诠腆w力學(xué)的ALE模型避免了求解過程中網(wǎng)格的過度扭曲和纏繞,在溫度場(chǎng)和應(yīng)力場(chǎng)的預(yù)測(cè)中與實(shí)驗(yàn)結(jié)果較為符合,但是ALE模型本質(zhì)上仍然是拉格朗日網(wǎng)格,在母材流動(dòng)場(chǎng)的預(yù)測(cè)上仍存在一定的誤差。 CEL模型采用歐拉算法,在母材流動(dòng)場(chǎng)的研究中具有較高的精度。但是受限于算法本身,求解結(jié)果誤差較大。
(1)FSW數(shù)值分析中,尚沒有一種模型能對(duì)所有變量精確輸出,研究者應(yīng)針對(duì)不同的研究側(cè)重點(diǎn)選取適合的模型。
(2)預(yù)測(cè)結(jié)果的精確度不僅與邊界條件的設(shè)置有關(guān)系,與材料的本構(gòu)模型也有密切關(guān)系。目前FSW 的產(chǎn)熱控制方程,材料本構(gòu)模型缺乏統(tǒng)一的、精確的方程。
(3)盡可能接近實(shí)際焊接條件,在保證計(jì)算結(jié)果精確度的同時(shí)應(yīng)盡量縮短計(jì)算時(shí)間。
(4)目前FSW數(shù)值分析的研究多集中于同種材料的對(duì)接接頭,對(duì)于異種材料和其他接頭形式尚缺乏足夠的關(guān)注,有待進(jìn)一步的研究。
參考文獻(xiàn):
[1] Mishra R S,Ma Z Y. Friction stir welding and process‐ing[J]. Materials science and engineering:R:reports,2005,50(1-2):1-78.
[2]陳婷.攪拌摩擦焊溫度場(chǎng)數(shù)值模擬研究[D].遼寧:東北大學(xué),2012.
CHEN T. Research the Temperature Field of Friction? Stir? Welding? NumericalSimulation [D]. Liaoning: Northeastern University,2012.
[3] Zhu? Z,Wang? M,Zhang? H ,et? al. A finite? elementmodel to simulate defect formation during friction stir welding[J]. Metals,2017,7(7):256.
[4]顧乃建.攪拌摩擦焊溫度場(chǎng)及流場(chǎng)數(shù)值模擬[D].遼寧:大連交通大學(xué),2018.
GU N? J. Numerical? Simulation? of Temperature Field? and Flow Field in Friction Stir Welding[D]. Liaoning: Dalian Jiaotong University,2018.
[5] He X,Gu F,Ball A. A review of numerical analysis offriction stir welding[J]. Progress in Materials Science,2014(65):1-66.
[6] Mishra R S,Ma Z Y. Friction stir welding and process‐ing[J]. Materials science and engineering:R:reports,2005,50(1-2):1-78.
[7]Moraitis G A,Labeas G N. Investigation of friction stirwelding process with emphasis on calculation of heat generated due to material stirring[J]. Science and Tech‐nology of Welding and Joining,2010,15(2):177-184.
[8]Sharma S R,Ma Z Y,Mishra R S. Effect of friction stir processing on fatigue behavior of A356 alloy[J]. Scripta Materialia,2004,51(3):237-241.
[9]Ma Z Y ,Sharma? S R,Mishra R? S. Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing[J]. Metallurgical? and? Materials? Transac‐ tions A,2006,37(11):3323-3336.
[10]Liu Q,Ma Q,Chen G,et al. Enhanced corrosion resis‐ tance? of AZ91 magnesium? alloy? through? refinement? and homogenization of surface microstructure by fric‐ tion stir processing[J]. Corrosion science,2018(138):284-296.
[11]Zhang W,Ding H,Cai M,et al. Ultra-grain refine‐ ment and enhanced low-temperature superplasticity in a friction? stir-processed? Ti-6Al-4V? alloy[J]. Materials Science and Engineering:A,2018(727):90-96.
[12]Zhu X K,Chao Y J. Numerical simulation of transient temperature and residual stresses in friction stir weld‐ ing of 304L stainless steel[J]. Journal of materials pro‐ cessing technology,2004,146(2):263-272.
[13]Buffa G,F(xiàn)ratini L,Shivpuri R. CDRX modelling in? friction? stir welding? of AA7075-T6 aluminum? alloy: Analytical approaches[J]. Journal of materials process‐ ing technology,2007,191(1-3):356-359.
[14]Zhang H,Zhang Z. Numerical modeling of friction stir welding? process? by? using? rate-dependent? constitutive model[J]. Journal of Materials Sciences and Technol‐ ogy,2007,23(01):73.
[15]Aval? H? J ,Serajzadeh? S ,Kokabi? A? H. Thermo- mechanical and microstructural issues in dissimilar fric‐ tion stir welding of AA5086– AA6061[J]. Journal of materials science,2011,46(10):3258-3268.
[16]Ulysse P. Three-dimensional modeling? of the? friction stir-welding process[J]. International Journal? of Ma‐ chine Tools and Manufacture,2002,42(14):1549-1557.
[17]潘凱旋. 6061-T6鋁合金攪拌摩擦點(diǎn)焊工藝數(shù)值模擬研究[D].吉林:吉林大學(xué),2020.
PAN K X. A Study on Numerical Simulation of Fric‐tion Stir Spot Welding Using 6061-T6 Aluminum Alloy [D]. Jilin:Jilin University,2020.
[18]沈洋.攪拌摩擦焊溫度場(chǎng)與殘余應(yīng)力場(chǎng)數(shù)值模擬[D].陜西:西安建筑科技大學(xué),2007.
SHEN Y. Thermomechanical Numerical Simulation ofFriction Stir Welding[D]. Shanxi:Xian University ofArchitecture and Technology,2007.
[19]Hasan? A? F. CFD? modelling? of friction? stir? welding (FSW)process of AZ31 magnesium alloy using vol‐ ume of fluid method[J]. Journal of Materials Research and Technology,2019,8(2):1819-1827.
[20]朱智,王敏,張會(huì)杰,等 .基于 CEL方法攪拌摩擦焊材料流動(dòng)及缺陷的模擬[J].中國(guó)有色金屬學(xué)報(bào),2018,28(2):294-299.
ZHU Z,WANG M,ZHANG H J,et al. Simulation on material? flow? and? defect? during? friction? stir? welding based on CEL method[J]. The Chinese Journal of Non‐ ferrous Metals,2018,28(2):294-299.
[21]Zhao H. Friction stir welding(FSW)simulation using an arbitrary Lagrangian-Eulerian(ALE)moving mesh approach[M]. West Virginia University,2005.
[22]張昭. 攪拌摩擦焊的數(shù)值模擬[M].北京:科學(xué)出版社,2016.
ZHANG Z. Numerical simulation of friction stir weld‐ing[M]. Beijing:Science Press,2016.
[23]劉漢濱. 攪拌摩擦焊溫度場(chǎng)及流動(dòng)場(chǎng)的數(shù)值模擬研究[D].遼寧:東北大學(xué),2015.
LIU? H? B. Numerical? simulation? of temperature? field? and flow field in friction stir welding[D]. Liaoning: Northeastern University,2015.
[24]SimuliaD.Abaqus 6.11 analysis user's manual[K].2011.
[25]Schmidt H,Hattel J. A local model for the thermome‐ chanical conditions in friction stir welding[J]. Model‐ ling and simulation in materials science and engineer‐ ing,2004,13(1):77.
[26]Assidi M,F(xiàn)ourment L. Accurate 3D friction stir weld‐ ing simulation tool based on friction model calibration [J]. International Journal of Material Forming,2009,2(1):327-330.
[27]Salloomi K N,Hussein F I,Al-Sumaidae S N M. Tem‐ perature? and? stress? evaluation? during? three? different phases of friction stir welding of AA 7075-T651 alloy [J]. Modelling and? Simulation in Engineering,2020(4):3197813.
[28]Salloomi K N. Fully coupled thermomechanical simula‐tion of friction stir welding of aluminum 6061-T6 alloy T-joint[J]. Journal of Manufacturing Processes,2019(45):746-754.
[29]Noh? W? F . ?CEL:A? TIME-DEPENDENT ,TWO- SPACE-DIMENSIONAL , COUPLED? EULERIAN- LAGRANGE CODE[J]. Configuration,1963.
[30]Shokri V,Sadeghi A,Sadeghi M H. Thermomechani‐cal modeling of friction stir welding in a Cu-DSS dis‐ similar joint[J]. Journal of manufacturing processes,2018(31):46-55.
[31]Chen K,Liu X,Ni J. Thermal-mechanical modeling on? friction? stir? spot? welding? of? dissimilar? materials based? on? Coupled? Eulerian-Lagrangian? approach[J]. The International Journal of Advanced Manufacturing Technology,2017,91(5):1697-1707.
[32]Cao J Y,Wang M,Kong L,et al. Numerical modeling? and experimental investigation of material flow in fric‐ tion spot welding of Al 6061-T6[J]. The International? Journal of Advanced Manufacturing Technology,2017,89(5-8):2129-2139.
[33]Grujicic M,Arakere G,Pandurangan B,et al. Compu‐ tational? analysis? of material? flow? during? friction? stir? welding? of AA5059 aluminum? alloys[J]. Journal? of? materials engineering and performance,2012,21(9):1824-1840.
[34]Chauhan P,Jain R,Pal S K,et al. Modeling of de‐fects in friction stir welding using coupled Eulerian and Lagrangian method[J]. Journal of Manufacturing Pro‐ cesses,2018(34):158-166.
[35]Al-Badour F,Merah N,Shuaib A,et al. Coupled Eu‐ lerianLagrangian? finite? element modeling? of friction stir welding processes[J]. Journal of Materials Process‐ ing Technology,2013,213(8):1433-1439.
[36]Ansari M A,Samanta A,Behnagh R A,et al. An effi‐ cient?? coupled?? Eulerian-Lagrangian?? finite?? element? model for friction stir processing[J]. The International? Journal of Advanced Manufacturing Technology,2019,101(5):1495-1508.
[37]Salloomi K N,Al-Sumaidae S. Coupled Eulerian –La‐ grangian prediction of thermal and residual stress envi‐ ronments in? dissimilar friction? stir welding? of alumi‐ num alloys[J]. Journal of Advanced Joining Processes,2021(3):100052.
編輯部網(wǎng)址:http://www.71dhj.com