国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Future of Education and Skills 2030: Conceptual Learning Framework(Ⅰ)

2022-04-10 03:32經(jīng)濟(jì)合作與發(fā)展組織
江蘇科技報(bào)·E教中國(guó) 2022年19期
關(guān)鍵詞:計(jì)算機(jī)化機(jī)器挑戰(zhàn)

經(jīng)濟(jì)合作與發(fā)展組織

譯題 2030年教育與技能的未來:概念性學(xué)習(xí)框架(一)

Product by OECD(Organization for Economic Co-operation and Development)

History and background of AI in education

Review of existing evidence

The development and application of Artificial Intelligence(AI) is bringing imminent and rapid change to almost every aspect of life, with todays children experiencing a very different life to that of their parents. To prepare people for the anticipated changes to their lives, we must ensure that our education and training is tuned to the new demands of the workplace and society. The landscape we must navigate is likely to be bumpy and there will be significant challenges, not least, those relating to ethics. Fundamental to success will be unpacking our relationship with the concept of Intelligence In thinking about how AI will impact on education and what sorts of knowledge and skills future citizens will need, we therefore need to look beyond the current trends towards trying to identify the jobs and skills that the world will require to the core issue of what it means to be intelligent in an AI augmented world. However, there is value in synthesizing what experts have investigated with respect to how susceptible jobs are to computerisation, because this is an important element of the context within which we need to reconceptualise human intelligence.

A seminal report from Frey & Osborne(2013) examined 702 detailed occupations, using Machine Learning AI, in the form of a Gaussian process classifier and found that 47 percent of total US employment is at risk and that wages and educational attainment exhibit a strong negative relationship with an occupations probability of computerisation.

In a second report in 2017, in the same authors concluded that: “In short, our findings suggest that recent development in Machine Learning will put a substantial share of employment, across a wide range of occupations, at risk in the near future. According to our estimates, however, this wave of automation will be followed by a subsequent slowdown in computers for labour substitution, due to persisting inhibiting engineering bottlenecks to computerisation.”

The bottlenecks are discussed in detail:1.Limitations of mobile robotics on perceptual and manipulation tasks. 2.Creative intelligence tasks which AI and machine learning cannot currently achieve. 3.Social intelligence tasks (the challenge of real time recognition of human emotion and how to respond intelligently to these.)

However, Fadel(2014) from a roundtable of experts made 6 predictions which ?provide some information about the sorts of jobs that may increase in the future:1.Routine tasks will remain the most automatable, but some facets of innovation and creativity may be automatable. 2. Complete adoption of technologies generally takes longer than anticipated but may be deeper than first assumed.3. Robust occupations are those with challenges, new discoveries, new performances and new things to be learnt and shared. 4.T shaped occupations, requiring both depth and breadth will see an increase in demand. 5.A top down review will not be able to predict future job patterns. This will have to come from sector by sector analysis. 6.There are many and variable parameters which interact with one another which need to be ?considered in order to predict future jobs.

譯文

人工智能在教育中的歷史和背景

審視現(xiàn)有證據(jù)

人工智能的發(fā)展和應(yīng)用正在給生活多方面帶來快速的變化,今天的孩子們與父母有著非常不同的生活經(jīng)歷。為了讓人們?yōu)槲磥眍A(yù)期的生活變化做好準(zhǔn)備,我們必須確保我們所受的教育和培訓(xùn)能夠適應(yīng)工作場(chǎng)所和社會(huì)的新需求。未來我們必須應(yīng)對(duì)的環(huán)境可能會(huì)崎嶇不平,而且將面臨重大挑戰(zhàn),尤其是與倫理相關(guān)的挑戰(zhàn)。成功的基礎(chǔ)條件將揭示我們與智能概念的關(guān)系。在思考人工智能將如何影響教育和未來公民需要什么樣的知識(shí)和技能時(shí),我們需要超越當(dāng)前趨勢(shì),試圖確定未來世界需要的工作和技能,即在一個(gè)人工智能增強(qiáng)的世界中被稱為智能意味著什么。然而,綜合專家們所調(diào)查的關(guān)于工作如何易受計(jì)算機(jī)影響的內(nèi)容是有價(jià)值的,因?yàn)檫@是我們需要重新理解人類智能背景下的一個(gè)重要元素。

弗雷和奧斯本的開創(chuàng)性報(bào)告(2013)使用機(jī)器學(xué)習(xí)人工智能,以高斯過程分類器的形式,調(diào)查了702個(gè)詳細(xì)的職業(yè),發(fā)現(xiàn)47%的美國(guó)就業(yè)風(fēng)險(xiǎn)與工資、教育程度呈現(xiàn)出強(qiáng)烈的負(fù)相關(guān)關(guān)系以及職業(yè)計(jì)算機(jī)化的概率。

在2017年的第二份報(bào)告中,同一作者得出結(jié)論:“簡(jiǎn)而言之,我們的研究結(jié)果表明,機(jī)器學(xué)習(xí)的發(fā)展在不久的將來將使各種職業(yè)面臨大量就業(yè)風(fēng)險(xiǎn)。然而,根據(jù)我們的估計(jì),由于計(jì)算機(jī)化的工程瓶頸,計(jì)算機(jī)的勞動(dòng)力替代將會(huì)放緩?!?/p>

本文詳細(xì)討論了這些瓶頸問題:1.移動(dòng)機(jī)器人在感知和操作任務(wù)上的局限性。2.人工智能和機(jī)器學(xué)習(xí)目前無法實(shí)現(xiàn)創(chuàng)造性智能任務(wù)。3.社會(huì)智力任務(wù)(人類情緒實(shí)時(shí)識(shí)別的挑戰(zhàn)以及如何智能地應(yīng)對(duì)這些任務(wù))。

然而,F(xiàn)adel(2014)在一個(gè)專家圓桌會(huì)議上做出了6個(gè)預(yù)測(cè),其中提供了一些關(guān)于未來可能增加的工作類型的信息:1.常規(guī)工作仍將是最可自動(dòng)化的,一些需要?jiǎng)?chuàng)新和創(chuàng)造力的工作可能是可自動(dòng)化的。2.完全采用技術(shù)通常比預(yù)期的要長(zhǎng),但可能比最初假設(shè)得更深。3.強(qiáng)大的職業(yè)是指那些有挑戰(zhàn)、有新發(fā)現(xiàn)和需要學(xué)習(xí)和分享的職業(yè)。4.需要深度和廣度的T型職業(yè)需求將會(huì)增加。5.自上而下的評(píng)估將無法預(yù)測(cè)未來的工作模式。這必須來自逐個(gè)部門的分析。6.為了預(yù)測(cè)未來的工作,需要考慮許多相互作用的可變參數(shù)。

猜你喜歡
計(jì)算機(jī)化機(jī)器挑戰(zhàn)
機(jī)器狗
機(jī)器狗
兩種新的多維計(jì)算機(jī)化分類測(cè)驗(yàn)終止規(guī)則*
未來機(jī)器城
遠(yuǎn)程自動(dòng)抄表系統(tǒng)的研究與開發(fā)
論計(jì)算機(jī)化考試質(zhì)量評(píng)估
凍干系統(tǒng)設(shè)備的計(jì)算機(jī)化系統(tǒng)驗(yàn)證研究
第52Q 邁向新挑戰(zhàn)
巴林右旗| 汉川市| 易门县| 巴里| 桑植县| 米脂县| 都昌县| 高阳县| 田东县| 阿图什市| 桂林市| 铜川市| 饶阳县| 烟台市| 阆中市| 盐池县| 海淀区| 开原市| 山东省| 大余县| 林甸县| 铜陵市| 星子县| 松原市| 三都| 孙吴县| 霍邱县| 沛县| 汉沽区| 两当县| 象州县| 浮山县| 邓州市| 元朗区| 当涂县| 南雄市| 梨树县| 雅江县| 观塘区| 高雄县| 华亭县|