李良,龍廣成,謝友均,曾曉輝,潘自立,東懷正
(1.中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075;2.中鐵第二勘察設(shè)計(jì)院集團(tuán)有限公司,四川 成都 610019;3.西藏鐵路建設(shè)有限公司,西藏 拉薩 851400)
粗集料是工程中用量最多、最重要的建筑原材料[1],構(gòu)成了混凝土的基本骨架,占混凝土總體積的60%~80%。粗集料對混凝土拌合物硬化后的強(qiáng)度、收縮變形、耐久性和工作性能有重要影響[2]。因此,探索粗集料的幾何形狀特征、顆粒級配的科學(xué)、高效表征評價(jià)方法具有重要意義。粗集料形狀特征包括顆粒組成、形貌特征、棱角性等?,F(xiàn)有規(guī)范采用了顆粒級配、針片狀含量等指標(biāo)來評價(jià)粗集料的幾何性質(zhì)特征。一些研究者也采用了數(shù)學(xué)分析方法、二維數(shù)字化技術(shù)手段對粗集料顆粒級配、粒徑大小和形狀特征進(jìn)行了研究[3-6]??傮w上,粗集料顆粒構(gòu)成及其形狀特征的研究還存在不足,亟待加強(qiáng)現(xiàn)代數(shù)字化、信息化技術(shù)在粗集料顆粒組成、形狀特征精細(xì)化測試方面的研究,繼而優(yōu)化粗集料級配及混凝土多元體系中的分布,最終改善混凝土工作性能、力學(xué)性能和耐久性。近年來,粗集料形狀特征的研究得到廣泛關(guān)注。李國強(qiáng)等[7-8]推導(dǎo)了從一維、二維到三維粗集料的級配分形維數(shù)、表面積分形維數(shù)和體積分形維數(shù)的計(jì)算公式。也有研究者開發(fā)相應(yīng)的圖像采集和分析系統(tǒng),以及用數(shù)字圖像技術(shù)實(shí)現(xiàn)粗集料二維圖像分析處理,得到粗集料輪廓的形狀特征[9]。MASAD 等[10]采用腐蝕-膨脹法來量化粗集料顆粒紋理。KOMBA 等[11]基于球諧變換法計(jì)算提出了粗集料的三維形狀指標(biāo)。BANGARU等[12]使用傅里葉級數(shù)擬合了粗集料圖像輪廓,并提出評價(jià)粗集料形貌的指標(biāo)。然而,這些研究方法都有一定的局限性,如粗集料的分形描述能夠定性地描述粗集料在混凝土中的分布,但不能精確得到粗集料的形狀參數(shù);二維數(shù)值圖像處理只能對粗集料的輪廓進(jìn)行描述,無法得到三維的形狀參數(shù),且描述棱角性和紋理的指標(biāo)受二維圖像的像素影響較大,對粗集料的拍攝角度,拍攝環(huán)境要求較高,操作比較復(fù)雜。相比之下,三維掃描技術(shù)可以快速還原出粗集料的真實(shí)表面,得到更為精確、全面的粗集料幾何形狀參數(shù),具有顯著的優(yōu)越性。鑒于此,本文結(jié)合三維掃描技術(shù)和數(shù)字化技術(shù)研究粗集料的級配和形狀特征?;诜中螏缀螌W(xué)理論和MATLAB 程序計(jì)算得到粗集料的級配分形維數(shù)對粗集料級配進(jìn)行分析,在此基礎(chǔ)上提出粗集料的球度、長短軸長比和粒徑離散度等指標(biāo)評價(jià)粗集料的形狀特征,繼而結(jié)合級配分形維數(shù)計(jì)算得到粗集料的表面積分形維數(shù)描述粗集料表面粗糙程度,最終為實(shí)現(xiàn)粗集料幾何形狀性質(zhì)的科學(xué)化、精準(zhǔn)化和高效化表征評價(jià)提供技術(shù)支持。
利用HSCAN 型三維掃描儀掃描粗集料表面。三維掃描儀由2 個(gè)相機(jī)與激光器組成,分辨率有0.05 mm 和0.02 mm 可供選擇。采集數(shù)據(jù)為粗集料表面各點(diǎn)的云坐標(biāo)。三維掃描儀對粗集料表面進(jìn)行掃描時(shí),掃描平面上張貼標(biāo)記點(diǎn)并放置需要掃描的粗集料。通過對每顆粗集料進(jìn)行2次不同角度的掃描,用三維圖形處理軟件對2次掃描的公共面進(jìn)行拼接,可實(shí)現(xiàn)粗集料三維結(jié)構(gòu)的重建與表面三維坐標(biāo)的獲取。真實(shí)粗集料照片和重構(gòu)粗集料圖如圖1所示。
圖1 粗集料掃描處理及重構(gòu)結(jié)果Fig.1 Results of coarse aggregate scanning and reconstruction
通過激光三維掃描技術(shù)可獲得粗集料準(zhǔn)確的幾何尺寸參數(shù)如圖2所示,包括長軸、中軸、短軸等。隨機(jī)選取5~9.5 mm,9.5~16 mm 和16~20 mm 3 種尺寸范圍粗集料各10 顆進(jìn)行三維掃描,得到相應(yīng)的軸長、面積、體積等參數(shù),列于表1中(對各粒徑范圍粗集料僅列出3 顆的數(shù)據(jù))。按式(1)可得粗集料表面積系數(shù)Ks與體積系數(shù)Kv比:
表1 粗集料表觀尺度參數(shù)掃描計(jì)算結(jié)果Table 1 Calculation results of aggregate apparent scale parameters scanning
式中:x為粗集料的粒徑,統(tǒng)一為粗集料的最大尺寸(長軸長);S為粗集料的表面積;V為粗集料的體積。
1.3.1 外形特征評價(jià)參數(shù)
粗集料的形狀多不規(guī)則,考慮實(shí)際粗集料的三維形狀特征,結(jié)合三維圖像技術(shù),將粗集料在x,y和z3 個(gè)方向上的長度從大到小定義為長、中和短軸長(如圖2),采用球度參數(shù)來描述粗集料的不規(guī)則程度,由式(2)能夠計(jì)算粗集料的球度Ψ[13],解決了二維數(shù)字圖像和傳統(tǒng)測量粗集料形狀特征參數(shù)不準(zhǔn)確的問題[14]。
圖2 粗集料三維形狀幾何尺寸計(jì)算結(jié)果Fig.2 Calculation results of three dimensional shape and geometric dimension of aggregate
根據(jù)得到的長軸長dl和短軸長ds,定義長短軸長比來描述粗集料針片狀特征,由式(3)能夠算得粗集料的長短軸長之比α;假定粗集料的形狀為理想球形,則在任意方向上(包括x,y和z3個(gè)基本方向)的粒徑尺寸都相同。根據(jù)粗集料實(shí)際在x,y和z3 個(gè)方向的不同粒徑尺寸,定義粗集料3 個(gè)方向的最大尺寸與3 個(gè)尺寸均值的比值為粒徑離散度,用粒徑離散度λ來描述粗集料的不規(guī)則程度,由式(4)可以算得。
式中:Ψ,α,λ分別為粗集料的球度、長短軸長比和粒徑離散度;dl,dm,ds分別為粗集料的長軸、中軸和短軸長。
1.3.2 不同粒徑粗集料的形狀特征評價(jià)
以下采用上述定義的球度、長短軸長比和粒徑離散度3個(gè)形狀特征參數(shù),來描述評價(jià)粗集料的外形特征。基于掃描得到的30 顆粗集料的形狀參數(shù),可計(jì)算得到每一顆粗集料的3 個(gè)形狀特征參數(shù),并分析其與各自粗集料粒徑之間的關(guān)系,以粗集料的最大線度尺寸(長軸長dl)作為粗集料的粒徑,分析粗集料球度、長短軸長比和粒徑離散度與粗集料粒徑之間的關(guān)系,結(jié)果如圖3所示。
粗集料的球度值在0~1 之間,且球度值越接近1,粗集料形狀越規(guī)則[13]。如圖3,這批試驗(yàn)粗集料球度良好,球度值為0.7~0.9,均值為0.88;離散度值均大于1,有少數(shù)接近1,最大可達(dá)1.3;值得注意的是,粒徑離散度與球度基本呈現(xiàn)關(guān)于y=1函數(shù)的對稱分布,粗集料球度越接近1,其粒徑離散度也越接近1,粗集料形狀越規(guī)則;另外,可以發(fā)現(xiàn)粗集料的長短軸長比值大于其離散度指標(biāo),且長短軸長比值與粒徑離散度的分布大體相同,粗集料的長短軸長比值越大,粒徑離散度也越大,粗集料的形狀越不規(guī)則。
圖3 粗集料形狀特征參數(shù)與粒徑關(guān)系計(jì)算結(jié)果Fig.3 Calculation results of the relationship between aggregate shape characteristic parameters and particle size
總體而言,所調(diào)查3種粒徑粗集料的形狀特征與粒徑相關(guān)性不顯著;所提出的粗集料球度、長短軸長比和粒徑離散度3個(gè)參數(shù)之間具有較好的相關(guān)性和聯(lián)系,基本能對粗集料外形特征進(jìn)行描述,而對于粗集料球形度(三維尺度的一致度)描述,長短軸長比指標(biāo)更具顯著性和敏感性。
1.4.1 顆粒級配分形維數(shù)
李國強(qiáng)等[7]提出的粗集料級配分形維數(shù)的計(jì)算是通過粗集料的篩選通過率來得到的,在進(jìn)行粗集料三維掃描時(shí)發(fā)現(xiàn),粗集料篩分無法全面準(zhǔn)確獲取其三維尺寸,粗集料形狀的不規(guī)則性導(dǎo)致粗集料三維方向上的尺寸不盡相同,采用對應(yīng)孔徑的篩子對粗集料進(jìn)行篩分時(shí),任一方向尺寸小于篩子孔徑,其他方向尺寸卻大于篩子孔徑的粗集料也可進(jìn)入下一個(gè)級配。所以在篩分粗集料的過程中,粗集料的粒徑區(qū)分不夠準(zhǔn)確,進(jìn)而導(dǎo)致粗集料級配分形維數(shù)的計(jì)算誤差。本文基于盒子計(jì)數(shù)法對粗集料表面點(diǎn)云坐標(biāo)進(jìn)行數(shù)值計(jì)算,可更準(zhǔn)確地得出粗集料級配分形維數(shù)。
盒子計(jì)數(shù)法[15]將一個(gè)三維表面劃分為多個(gè)立方體單元,每個(gè)立方體單元視為一個(gè)盒子,三維表面各點(diǎn)的不同高度視為盒子的高度。用各個(gè)高度不同的盒子對三維表面進(jìn)行覆蓋,最后統(tǒng)計(jì)完全覆蓋表面的盒子數(shù)目與定義的立方體盒子的尺寸。按照分形的定義,盒子數(shù)與盒子尺寸分別取對數(shù)之后的函數(shù)斜率,即為分形維數(shù),可通過MAT‐LAB程序計(jì)算得到,具體計(jì)算步驟如下:
1) 導(dǎo)入粗集料三維點(diǎn)云坐標(biāo)進(jìn)行分析,尋找空間中相鄰的4 個(gè)均不為0 的數(shù)據(jù)點(diǎn),定義為數(shù)組a,即將粗集料表面離散出的點(diǎn)云坐標(biāo),微分任意4 個(gè)點(diǎn)構(gòu)成的平面用盒子進(jìn)行覆蓋,按數(shù)組a中的數(shù)據(jù),根據(jù)相應(yīng)的分形尺寸來計(jì)算需要的分形盒子數(shù)。
2) 對分形盒子數(shù)和分形尺度分別取對數(shù),畫出對應(yīng)的散點(diǎn)圖并進(jìn)行多項(xiàng)式擬合,得到多項(xiàng)式(直線)斜率,即分形維數(shù)值。
3) 將每顆粗集料的點(diǎn)云坐標(biāo)數(shù)據(jù)導(dǎo)入到寫好的MATLAB程序中,即可進(jìn)行計(jì)算。以5~9.5 mm的其中一顆粗集料為例,得到粗集料分形維數(shù)坐標(biāo)圖,分形維數(shù)坐標(biāo)圖中直線斜率即為粗集料級配分形維數(shù),算得斜率值為2.845 3(一般粗集料的級配分形維數(shù)值在2~3 之間[7]),計(jì)算結(jié)果如圖4所示。
圖4 某粒徑粗集料的級配分形坐標(biāo)及結(jié)果Fig.4 Fractal coordinate and result diagram of a gradation of a certain particle size aggregate
圖5進(jìn)一步給出了不同粒徑(5~20 mm)30顆粗集料的級配分形維數(shù)變化結(jié)果。
圖5 粗集料級配分形維數(shù)對粒徑的變化關(guān)系結(jié)果Fig.5 Results of relationship between fractal dimension of aggregate particle size and particle size
從圖5可以發(fā)現(xiàn),對應(yīng)粒徑區(qū)間的粗集料級配分形維數(shù)隨著粒徑(粗集料長軸長dl)的增大而減小。若以所有調(diào)查粗集料的級配分形維數(shù)的質(zhì)量加權(quán)平均值來作為5~20 mm 連續(xù)級配下粗集料的級配分形維數(shù),可算得連續(xù)級配粗集料的級配分形維數(shù)Dc=2.768。
1.4.2 顆粒表面積分形維數(shù)
從一維的級配粒徑分形到二維的表面積分形,可根據(jù)式(5)來計(jì)算得到粗集料顆粒表面積分形維數(shù)[8]。傳統(tǒng)的測量方式和二維圖像處理技術(shù)都無法準(zhǔn)確得到單個(gè)粗集料的表面積和體積,進(jìn)而無法準(zhǔn)確得出粗集料的表面積分形維數(shù)。陳開端[16]通過測定粗集料的吸水量來測量粗集料的表面積,采用10 顆粗集料表面積的平均值來消除誤差。但這種方法效率較低。利用三維掃描技術(shù)實(shí)現(xiàn)了單個(gè)粗集料表面積和體積的快速測量,可按照式(5)準(zhǔn)確算得各粗集料的表面分形維數(shù)Ds。
式中:R為粗集料的比表面積;S為粗集料表面積;M0為粗集料的質(zhì)量;ks/kv為粗集料體積系數(shù)與表面積系數(shù)比;xmax,xmin分別取粗集料的最大和最小線度尺寸dl,ds(長軸長、短軸長);D為所求粗集料的級配分形維數(shù);δmin為分形盒子的最小尺寸,在MATLAB中取0.06 mm。
圖6給出了不同粒徑粗集料的表面積分形維數(shù)計(jì)算結(jié)果。從圖中結(jié)果可以看出,在不同的級配粒徑范圍內(nèi),粗集料表面積分形維數(shù)對粒徑的變化趨勢相同,都隨著粗集料粒徑的增大而減?。粚Ρ葓D5 和圖6 可以發(fā)現(xiàn),粗集料的級配分形維數(shù)和表面積分形維數(shù),在相應(yīng)級配范圍內(nèi),都隨著粒徑的增大而減小;不同的是,相對于表面積分形維數(shù),級配分形維數(shù)與粗集料粒徑的相關(guān)性更強(qiáng),整體隨粒徑的增大呈下降趨勢。
圖6 粗集料表面積分形維數(shù)對粒徑的變化關(guān)系結(jié)果Fig.6 Relationship between aggregate surface integral dimension and particle size change results
1.4.3 粗集料表面粗糙度
基于三維掃描得到的粗集料表面積和體積參數(shù),可以描述粗集料表面的粗糙程度。粗集料表面越粗糙,在增大粗集料表面積的同時(shí),并不會造成粗集料體積的大幅度增加。通過式(6)計(jì)算得到粗糙度指標(biāo)(即粗集料真實(shí)表面積與體積的比值μ),來對粗集料的粗糙程度進(jìn)行評價(jià)。粗集料越粗糙,單位體積的粗集料表面積越大。
式中:S為粗集料表面積;V為粗集料體積。
圖7 為不同粒徑粗集料的表面粗糙度計(jì)算結(jié)果,圖8進(jìn)一步給出了粗集料表面積分形維數(shù)與粗集料粗糙度之間的關(guān)系結(jié)果。
圖7結(jié)果顯示,隨著粗集料粒徑的增大,粗集料表面粗糙度呈現(xiàn)明顯降低。從圖8 中可以發(fā)現(xiàn),粗集料的表面分形維數(shù)隨著粗集料粗糙度的增大而呈現(xiàn)增加趨勢,兩者具有較好的相關(guān)關(guān)系。這可從2個(gè)參數(shù)的涵義得到解釋,粗集料的表面積是符合分形特征的,由式(5)可以得出,粗集料表面積分形維數(shù)隨比表面積的增大呈現(xiàn)非線性增加[8];由式(6)推導(dǎo)出粗集料粗糙度與比表面積的換算公式(7)可知,粗集料粗糙度同樣隨比表面積的增大而增大。由此可知,粗集料的表面積分形維數(shù)與粗糙度之間具有較好的相關(guān)性。
圖7 不同粒徑粗集料的表面粗糙度隨粗集料粒徑的變化結(jié)果Fig.7 Surface coarseness of aggregates with different particle sizes varies with aggregate particle sizes
圖8 粗集料表面積分形維數(shù)與粗糙度的變化關(guān)系結(jié)果Fig.8 Relationship between aggregate surface integral dimension and roughness
式中:M0為粗集料質(zhì)量;S為粗集料表面積;ρ為粗集料密度;R為粗集料比表面積。
從上述得到的粗集料級配分形維數(shù)結(jié)果可發(fā)現(xiàn),在不同粒徑區(qū)間內(nèi),粗集料的級配分形維數(shù)呈現(xiàn)出隨粗集料最大粒徑增加而減小的變化規(guī)律,這表明粗集料級配與其級配分形維數(shù)之間存在密切聯(lián)系?;陬w粒體系最緊密堆積原理以及FULLER 等[17-18]提出的顆粒級配計(jì)算模型,并結(jié)合李國強(qiáng)等[7]的研究結(jié)果,可推導(dǎo)得到粗集料級配分形公式,如式(8)所示。
式中:P(x)為最大粒徑為x的粗集料通過率;D為連續(xù)級配粗集料的平均級配分形維數(shù)Dc;x為粗集料的最大線性尺寸(長軸長dl);xmax,xmin分別為連續(xù)級配區(qū)間的最大、最小粒徑。
式(8)中指數(shù)“3-D”是分布模量參數(shù),這個(gè)參數(shù)對于粗集料級配的合理性非常重要,參數(shù)的取值不同,所得結(jié)果也不同,這取決于分?jǐn)?shù)維數(shù)D的合理計(jì)算獲取,分形維數(shù)D代表粗集料系統(tǒng)顆粒粒徑分布特征參數(shù)。本文采用上述按質(zhì)量加權(quán)得到連續(xù)級配粗集料的級配分形維數(shù)作為公式中的D。根據(jù)前述得到的5~20 mm 連續(xù)級配粗集料的級配分形維數(shù)Dc(2.768),代入式(8)中,可得到粒級范圍級配通過率函數(shù)如式(9)所示:
采用篩分試驗(yàn)對粗集料級配與級配分形維數(shù)關(guān)系的合理性進(jìn)行了驗(yàn)證?;诂F(xiàn)行規(guī)范選擇5~20 mm 連續(xù)粒級的碎石粗集料5 kg,通過篩分試驗(yàn)得到各粒級的通過率,如表2所示。
表2 試驗(yàn)選取的5~20 mm粗集料篩分粒級分布結(jié)果Table 2 Grain-size distribution results of 5~20 mm aggregate screen selected in the test
由圖9中的結(jié)果可知,式(9)計(jì)算得到的級配通過率曲線與篩分試驗(yàn)測試值兩者具有高度的一致性。這表明可由式(9)計(jì)算得到合理的顆粒級配組成。因此,可利用激光三維掃描和數(shù)值分析技術(shù),精確得到粗集料級配分形維數(shù),從而實(shí)現(xiàn)粗集料級配的表征。
圖9 粗集料級配的數(shù)值分析結(jié)果和篩分試驗(yàn)結(jié)果對比圖Fig.9 Comparison of numerical analysis results and screening test results of aggregate gradation
1) 激光三維掃描和數(shù)值分析技術(shù)可快速重構(gòu)出粗集料的真實(shí)形狀并準(zhǔn)確測量出三維形狀參數(shù),實(shí)現(xiàn)了粗集料形狀更準(zhǔn)確表征。
2) 根據(jù)三維掃描技術(shù)得到的粗集料三維形狀參數(shù),提出了球度、長短軸長之比和粒徑離散度3個(gè)指標(biāo),均可較好地對粗集料形狀特征進(jìn)行表征評價(jià)。其中,長短軸長之比指標(biāo)表征評價(jià)粗集料形狀特征更具顯著性和敏感性。
3) 采用數(shù)值技術(shù)進(jìn)一步處理三維掃描測試結(jié)果,可快速得到粗集料的級配分形維數(shù)、表面積分形維數(shù)以及表面粗糙度指標(biāo),實(shí)現(xiàn)了粗集料幾何特征的數(shù)值描述和評價(jià)。粗集料級配分形維數(shù)、表面分形維數(shù)均隨著顆粒粒徑不同而變化,且表面分形維數(shù)與表面粗糙度之間存在密切聯(lián)系。
4)采用質(zhì)量加權(quán)得到的粗集料級配分形維數(shù),建立了粗集料顆粒級配通過率計(jì)算函數(shù),計(jì)算結(jié)果與試驗(yàn)結(jié)果一致,為粗集料顆粒級配分析的數(shù)字化、高效化提供了技術(shù)支持。