胡蓉
摘要:本文研究C中單位球上Volterra型積分算子I從Hardy空間H到H的有界性和緊性,利用調(diào)和分析中的面積法以及序列Tent空間的分解,將0<p<q<∞及p=q=2時(shí),I:H→H的有界性和緊性結(jié)論進(jìn)行推廣,給出所有指標(biāo)0<p,q<∞對應(yīng)的等價(jià)刻畫。
關(guān)鍵詞:Volterra型積分算子;Hardy空間;序列Tent空間;單位球
中圖分類號:O177文獻(xiàn)標(biāo)志碼:A
Volterra型積分算子在各類全純函數(shù)空間上的有界性和緊性問題一直受到學(xué)者們的廣泛研究[1-12]。POMMERENKE首先刻畫了J在單位圓盤上Hardy空間H上的有界性[1];之后ALEMAN等研究了J在單位圓盤上Hardy空間、Bergman空間上的有界性和緊性問題[2-4]。單位球上的相關(guān)結(jié)論首先是HU在文獻(xiàn)[5]中給出J在混合范數(shù)空間H(φ)上的有界性和緊性刻畫;接著LI等研究了J和I在單位球上Bergman空間、Bloch空間以及Hardy空間(p=2時(shí))上的有界性和緊性問題[6-8];AVETISYAN等給出了J和I在單位球上Hardy空間H到H(0<p<q<∞)上的有界性和緊性等價(jià)刻畫[9];PAU在文獻(xiàn)[10]中將[8]和[9]的結(jié)論進(jìn)行推廣,借助調(diào)和分析中的面積法給出Jb在單位球上Hardy空間H到H(0<p,q<∞)上的有界性刻畫,在證明q<p時(shí)進(jìn)行了多種情況的分類轉(zhuǎn)化討論;MIIHKINEN等在文獻(xiàn)[11]中借助序列Tent空間的分解,較為簡潔地刻畫了J在單位球上Bergman空間到Hardy空間上的有界性;文獻(xiàn)[12]利用該方法進(jìn)一步給出J緊性的等價(jià)刻畫。本文將借助文獻(xiàn)[11]的方法,研究算子I從H到H(0<p,q<∞)的有界性和緊性問題,所得結(jié)論一方面是對文獻(xiàn)[8]和[9]中關(guān)于算子Ib有界性和緊性刻畫的推廣,另一方面在討論q<p時(shí)所采用的方法較文獻(xiàn)[10]來說是一種新的嘗試。
1 基本定義
2 預(yù)備知識
2.1 面積定理及容許極大函數(shù)
2.2 可分序列和格
2.3 Khinchine和Kahane不等式
2.4 序列Tent空間
3 主要結(jié)果及證明
4結(jié)語
參考文獻(xiàn):
[1]POMMERENKE C. Schlichte funktionen und analytische funktionen von beschrnkter mittlerer oszillation[J]. Comment Math Helvetici, 1977, 52(4): 591-602.
[2] ALEMAN A, CIMA J A. An integral operator on Hpand Hardy's inequality[J]. Journal d'Analyse Mathématique, 2001, 85(1): 157-176.
[3] ALEMAN A, SISKAKIS A G. Integration operators on Bergman spaces[J]. Indiana University Mathematics Journal, 1997, 46(2): 337-356.
[4] WU Z J. Volterra operator, area integral and Carleson measure[J]. Science China Mathematics, 2011, 54 (11): 2487-2500.
[5] HU Z J. Extend cesáro operators on mixed norm spaces[J]. Proceedings of the American Mathematical Society, 2003, 131(7) :2171-2179.
[6] LI S X, STEVIC′ S. Riemann-Stieltjes operators between different weighted Bergman spaces[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2008, 15(4): 677-686.
[7] LI S X, STEVIC′ S. Riemann-Stieltjes-type integral operators on the unit ball in Cn[J]. Complex Variables and Elliptic Equations,2007, 52 (6): 495-517.
[8] LI S X, STEVIC′ S. Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cn[J]. Bulletin of the Belgian Mathematical Society. Simon Stevin, 2007, 14(4): 621-628.
[9] AVETISYAN K, STEVIC′ S. Extended Cesàro operators between different Hardy spaces[J]. Applied Mathematics and Computation, 2009,207 (2):346-350.
[10]PAU J. Integration operators between Hardy spaces on the unit ball of Cn[J]. Journal of Functional Analysis,2016 ,270(1): 134-176.
[11]MIIHKINEN S, PAU J, PERL A, et al. Volterra type integration operators from Bergman spaces to Hardy spaces[J]. Journal of Functional Analysis, 2020, 279(4): 32 pp.
[12]CHEN J L, PAU J, WANG M F. Essential norms and Schatten(-Herz) classes of integration operators from Bergman spaces to Hardy spaces[J]. Results in Mathematics, 2021, 76(2): 33 pp.
[13]CALDERN A P. Commutators of singular integral operators[J]. Proceedings of the National Academy of Sciences of the United States of America, 1965, 53(5): 1092-1099.
[14]ZHU K H. Spaces of holomorphic functions in the unit ball[M]. New York: Springer-Verlag, 2005.
[15]DUREN P L. Theory of? spaces[M]. New York: Academic Press, 2000.
(責(zé)任編輯:于慧梅)
Volterra Type Integration Operators on Hardy Spaces
HU Rong
(1.School of Mathematics, Sichuan University of Arts and Science, Dazhou 635000,China;
2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072,China)Abstract: This paper discusses the boundedness and compactness of the Volterra type integration operators Ib between Hardy spaces in the unit ball of Cn. By using the area methods from harmonic analysis and the factorization tricks for Tent spaces of sequences, we generalize the conclusions when 0<p<q<∞ or p=q=2, and give a characterization for all case when 0<p,q<∞.
Key words: Volterra type integration operators; Hardy spaces; Tent spaces of sequences; unit ball.