国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗機(jī)制新進(jìn)展

2022-05-19 01:53趙瑩瑩王咪咪崔杰峰
世界華人消化雜志 2022年8期
關(guān)鍵詞:免疫抑制放化療硬度

0 引言

腫瘤微環(huán)境概念最早可追溯至1863年Virchow提出的“腫瘤起源于慢性炎癥”和1889年P(guān)aget提出的“種子和土壤”假說(shuō),作為“種子”的腫瘤細(xì)胞所處周邊環(huán)境被認(rèn)為是“土壤”

.2011年,Hanahan和Weinberg總結(jié)了腫瘤的十大惡性特征,明確了“微環(huán)境”因素在腫瘤發(fā)生發(fā)展中的重要作用

.腫瘤細(xì)胞與其所處的微環(huán)境是一個(gè)功能整體,腫瘤細(xì)胞能夠教育重塑腫瘤微環(huán)境(tumor microenvironment,TME),而TME通過不斷重塑改造以形成更利于腫瘤生存的生態(tài)條件.腫瘤微環(huán)境是一個(gè)復(fù)雜的綜合體,主要由腫瘤細(xì)胞、間質(zhì)細(xì)胞、浸潤(rùn)免疫細(xì)胞、細(xì)胞因子、趨化因子、組織蛋白酶、血管淋巴管和細(xì)胞外基質(zhì)等構(gòu)成,各組分與腫瘤細(xì)胞相互影響、共同進(jìn)化,驅(qū)動(dòng)腫瘤生長(zhǎng)和進(jìn)展,同時(shí)在調(diào)控腫瘤治療敏感性方面也發(fā)揮舉足輕重的作用

.消化系統(tǒng)腫瘤發(fā)病率和死亡率在全球均位居前列,放療和化療在消化系統(tǒng)腫瘤的非手術(shù)治療中占據(jù)主導(dǎo)地位,放化療抵抗則是腫瘤患者治療失敗的主要原因.因此,腫瘤放化療抵抗機(jī)制研究一直是消化系統(tǒng)腫瘤治療領(lǐng)域研究熱點(diǎn),以往研究多集中于腫瘤細(xì)胞自身突變積累與DNA損傷修復(fù)機(jī)制異常等方面探索

.近來(lái)癌癥治療整體概念的出現(xiàn),腫瘤不再被認(rèn)為僅僅是腫瘤細(xì)胞自身的病理改變,而是微環(huán)境甚至系統(tǒng)調(diào)控失常的病理表現(xiàn),其中微環(huán)境生化和力學(xué)特征改變導(dǎo)致的腫瘤惡性生物學(xué)特征增強(qiáng),成為腫瘤治療失敗的“幫兇”

.與生理狀態(tài)下的生化、病理和力學(xué)特征不同,實(shí)體腫瘤微環(huán)境具有缺氧、免疫抑制、代謝異常及基質(zhì)變硬四個(gè)顯著特征,本文從上述微環(huán)境四個(gè)特征出發(fā),歸納總結(jié)微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗新機(jī)制及靶向TME逆轉(zhuǎn)抵抗的治療新策略.

1 缺氧微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗的機(jī)制

缺氧是腫瘤微環(huán)境常見特征,造成腫瘤微環(huán)境缺氧的主要原因?yàn)?腫瘤細(xì)胞快速生長(zhǎng)而消耗大量營(yíng)養(yǎng)和氧氣,新生血管不能及時(shí)有效建立,腫瘤細(xì)胞通透性升高使液體外滲造成血液黏滯等,因此微環(huán)境內(nèi)存在供氧和耗氧不平衡

.缺氧常引發(fā)腫瘤細(xì)胞發(fā)生系列復(fù)雜病理改變以適應(yīng)低氧環(huán)境調(diào)節(jié),這種改變主要由缺氧誘導(dǎo)因子(hypoxia inducible factor,HIF)介導(dǎo)

.研究顯示缺氧微環(huán)境不僅顯著影響腫瘤細(xì)胞侵襲轉(zhuǎn)移

、干性

等惡性特征,而且可調(diào)控免疫抑制

、代謝重編程

及放化療抵抗

.

缺氧微環(huán)境導(dǎo)致的放化療抵抗主要包括以下幾種途徑:缺氧促進(jìn)腫瘤細(xì)胞DNA損傷修復(fù),導(dǎo)致腫瘤細(xì)胞耐藥基因表達(dá)增加以及抑制腫瘤細(xì)胞凋亡.腫瘤細(xì)胞DNA損傷是放射線治療和細(xì)胞毒性化療藥物殺傷腫瘤的共同作用機(jī)理,而缺氧可觸發(fā)腫瘤細(xì)胞DNA損傷修復(fù)

.將結(jié)直腸癌細(xì)胞在1%氧含量環(huán)境中培養(yǎng),測(cè)序發(fā)現(xiàn)其許多長(zhǎng)鏈非編碼RNA上調(diào),其中以LUCAT1上調(diào)最為顯著,體內(nèi)外實(shí)驗(yàn)顯示缺氧通過HIF-1α/LUCAT1/PTBP1軸抑制DNA損傷標(biāo)志物γ-H2AX表達(dá),使癌細(xì)胞對(duì)5-氟尿嘧啶和奧沙利鉑耐藥,此外,結(jié)直腸癌患者LUCAT1上調(diào)也提示化療療效不佳、預(yù)后不良,表明缺氧與化療療效存在一定的相關(guān)性

.也有研究顯示,將缺氧食管鱗癌細(xì)胞來(lái)源外泌體處理正常氧環(huán)境的癌細(xì)胞,能夠增強(qiáng)此細(xì)胞的DNA損傷修復(fù),誘導(dǎo)放射抗性,而敲減缺氧外泌體miRNA-340-5p,可逆轉(zhuǎn)正常氧癌細(xì)胞的放療抵抗

,提示缺氧癌細(xì)胞不僅自身對(duì)放療產(chǎn)生抵抗,還可通過外泌體等細(xì)胞間通訊方式,誘導(dǎo)周圍正常氧癌細(xì)胞的放射抗性.多藥耐藥基因1(multidrug resistance 1,MDR1)編碼的P-糖蛋白是藥物代謝過程中關(guān)鍵轉(zhuǎn)運(yùn)體,MDR1基因激活是腫瘤產(chǎn)生耐藥的重要原因

.有報(bào)道在氯化鈷模擬的缺氧環(huán)境中,肝癌細(xì)胞HIF-1α蛋白水平升高、對(duì)缺氧耐受增加,同時(shí)MDR1表達(dá)上調(diào),導(dǎo)致肝癌對(duì)曲古抑菌素A、索拉菲尼和5-氟尿嘧啶等多藥耐藥

,提示缺氧可調(diào)控耐藥相關(guān)基因、導(dǎo)致腫瘤耐藥.凋亡抵抗也是腫瘤耐藥的重要途徑,缺氧信號(hào)顯示可強(qiáng)化腫瘤細(xì)胞的抗凋亡通路

.研究發(fā)現(xiàn)

,HIF-1α可調(diào)控p53和NF-κB而減少細(xì)胞凋亡、降低胃癌細(xì)胞的化療敏感性.細(xì)胞膜碳酸酐酶Ⅸ(carbonic anhydrase Ⅸ,CAⅨ)在缺氧環(huán)境中可被異常激活而導(dǎo)致HIF-1α上調(diào),使癌細(xì)胞產(chǎn)生放療抵抗,抑制CAIX表達(dá)則能夠下調(diào)HIF-1α、促進(jìn)食管癌細(xì)胞凋亡及增加其放療敏感性

.以上證據(jù)表明,缺氧可通過誘導(dǎo)腫瘤細(xì)胞DNA損傷修復(fù)、調(diào)控耐藥相關(guān)基因和抑制凋亡等適應(yīng)性生存方式,抵抗放療和化療藥物損傷,從而使腫瘤產(chǎn)生對(duì)治療的耐受性.

以上通過兩種方法對(duì)南方某市某日電動(dòng)汽車充電負(fù)荷進(jìn)行預(yù)測(cè),根據(jù)預(yù)測(cè)的結(jié)果,計(jì)算了絕對(duì)誤差、平均絕對(duì)誤差、相對(duì)誤差、平均相對(duì)誤差等數(shù)據(jù)。由這些指標(biāo)可以發(fā)現(xiàn),基于BP神經(jīng)網(wǎng)絡(luò)算法和指數(shù)平滑法的滾動(dòng)預(yù)測(cè)精度要高于BP神經(jīng)網(wǎng)絡(luò)算法的電動(dòng)汽車充電負(fù)荷的日預(yù)測(cè)。

2 免疫抑制微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗的機(jī)制

腫瘤免疫抑制微環(huán)境主要由免疫抑制細(xì)胞和免疫抑制因子組成,是腫瘤發(fā)生、進(jìn)展及轉(zhuǎn)移的重要調(diào)控因素,免疫抑制微環(huán)境強(qiáng)弱不僅顯著影響免疫治療效果

,也調(diào)控腫瘤放化療敏感性.FoxP3

調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)是經(jīng)典免疫抑制細(xì)胞,研究顯示結(jié)直腸癌對(duì)奧沙利鉑的耐藥與Treg細(xì)胞擴(kuò)增相關(guān),其機(jī)制為結(jié)直腸癌細(xì)胞來(lái)源外泌體miR-208b作用于Treg細(xì)胞,促進(jìn)其增殖及免疫抑制功能增強(qiáng)

.也有研究發(fā)現(xiàn)進(jìn)展期直腸癌患者術(shù)前新輔助放療療效與外周血中Treg細(xì)胞比例相關(guān),PD-1陽(yáng)性Treg細(xì)胞比例較高者放療效果不佳

.微環(huán)境中腫瘤相關(guān)巨噬細(xì)胞(tumor-related macrophage,TAM)包括M1型和M2型,其中M2型巨噬細(xì)胞主要發(fā)揮免疫抑制功能,M2型巨噬細(xì)胞免疫抑制功能強(qiáng)化可增強(qiáng)胃癌和結(jié)直腸化療耐藥

.除了抑制腫瘤免疫,該類細(xì)胞可釋放外泌體傳遞非編碼RNA和嘧啶類物質(zhì)至腫瘤細(xì)胞,導(dǎo)致腫瘤細(xì)胞惡性生物特征改變

.研究發(fā)現(xiàn)M2型巨噬細(xì)胞來(lái)源外泌體能夠促進(jìn)胃癌

和胰腺癌

化療耐藥;并且通過釋放嘧啶類物質(zhì)在藥物攝取和代謝水平競(jìng)爭(zhēng)性抑制化療藥物,降低胰腺癌吉西他濱治療敏感性

.髓源性抑制細(xì)胞(myeloid-derived suppressor cell,MDSC)是另一類重要的免疫抑制細(xì)胞,不僅抑制T細(xì)胞特異性免疫反應(yīng)、促進(jìn)微環(huán)境內(nèi)炎癥反應(yīng)和血管生成

,而且參與消化系統(tǒng)腫瘤肝、肺預(yù)轉(zhuǎn)移龕形成

.小鼠結(jié)腸癌組織和直腸癌患者外周血均存在MDSC細(xì)胞擴(kuò)增,并伴隨精氨酸酶1(arginase 1,Arg1)活性增加和L-精氨酸耗竭;Arg1陽(yáng)性MDSC細(xì)胞在削弱T細(xì)胞和M1型巨噬細(xì)胞抗腫瘤免疫的同時(shí),可強(qiáng)化M2型巨噬細(xì)胞免疫抑制功能,導(dǎo)致腫瘤免疫狀態(tài)失衡、放射敏感性受損

.MDSC細(xì)胞向M1型巨噬細(xì)胞分化抑制狀態(tài)也導(dǎo)致化療耐藥,使用Toll樣受體激動(dòng)劑R848上調(diào)M1型巨噬細(xì)胞的分化比例,能夠顯著增加結(jié)直腸癌對(duì)奧沙利鉑的敏感性

.除調(diào)控免疫功能,MDSC細(xì)胞也通過旁分泌信號(hào)增強(qiáng)腫瘤細(xì)胞干性.有報(bào)道MDSC細(xì)胞對(duì)肝內(nèi)膽管癌干性的增強(qiáng)并不依賴于其免疫抑制功能,而是由MDSC細(xì)胞分泌LTB4蛋白作用于癌細(xì)胞膜BLT2受體所致,干擾LTB4-BLT2通路則減弱肝內(nèi)膽管癌細(xì)胞干性、并逆轉(zhuǎn)吉西他濱耐藥

.可見,微環(huán)境免疫特征能夠影響消化系統(tǒng)腫瘤放化療敏感性,除強(qiáng)化免疫抑制功能的因素外,免疫抑制細(xì)胞與癌細(xì)胞互作所致腫瘤增殖、轉(zhuǎn)移和干性增加,也進(jìn)一步阻礙了治療效果.

3 代謝微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗的機(jī)制

“對(duì)了,你還記得小學(xué)一年級(jí)教你的那個(gè)班主任嗎?”我媽在整理完我的書桌之后,突然提到一個(gè)我一時(shí)半會(huì)兒都無(wú)法回憶起面容的人,“她今年帶完最后一個(gè)小學(xué)六年級(jí)就要退休,回家?guī)ё约旱膶O子了。”

代謝重編程是腫瘤標(biāo)志特征之一,腫瘤細(xì)胞常表現(xiàn)為葡萄糖、谷氨酰胺、脂質(zhì)、氨基酸代謝增加和乳酸累積

.正常細(xì)胞一般傾向于通過氧化磷酸化獲得能量,而癌細(xì)胞即使在有氧條件下,也以糖酵解為主要代謝途徑,即Warburg效應(yīng)

.與腫瘤細(xì)胞代謝特征相似,TME中免疫細(xì)胞亦表現(xiàn)為糖酵解水平升高,腫瘤細(xì)胞和免疫細(xì)胞糖酵解所致乳酸累積共同促進(jìn)腫瘤增殖、轉(zhuǎn)移、血管生成及免疫逃逸

.結(jié)直腸癌組織糖酵解相關(guān)基因表達(dá)與患者預(yù)后相關(guān)性分析顯示,組織水平糖酵解速率與晚期轉(zhuǎn)移性結(jié)直腸癌患者化療療效呈負(fù)相關(guān)

.已有大量研究表明,腫瘤細(xì)胞糖酵解活性增強(qiáng)參與消化系統(tǒng)腫瘤化療抵抗

.MDSC細(xì)胞在分化和激活過程中糖酵解活性增強(qiáng)

,所致乳酸累積進(jìn)一步促進(jìn)MDSC細(xì)胞浸潤(rùn)和免疫抑制功能強(qiáng)化,從而導(dǎo)致胰腺癌放療抵抗

.腫瘤糖酵解活性增強(qiáng)常伴隨谷氨酰胺分解增加,谷氨酰胺分解能夠在表觀遺傳水平調(diào)控結(jié)直腸細(xì)胞對(duì)化療藥物的敏感性

,其機(jī)制為提高腫瘤細(xì)胞DNA甲基化水平以促進(jìn)WNT信號(hào)通路活化和腫瘤干性增加.除葡萄糖和谷氨酰胺代謝,脂代謝重編程也是腫瘤細(xì)胞能量代謝失控的重要特征

.胃癌間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)通過促進(jìn)脂肪酸氧化(fatty acid oxidation,FAO)增加胃癌細(xì)胞干性和化療抵抗

,揭示了脂代謝對(duì)腫瘤治療敏感性的調(diào)控.鐵死亡是近年來(lái)新發(fā)現(xiàn)的細(xì)胞程序性死亡方式,主要由細(xì)胞膜脂質(zhì)過氧化誘導(dǎo)

.食管鱗癌組織中Nrf2與SLC7A11表達(dá)上調(diào)與患者TNM分期及放療療效呈負(fù)相關(guān),體外實(shí)驗(yàn)進(jìn)一步證實(shí)其介導(dǎo)的放療抵抗機(jī)制與其抑制細(xì)胞鐵死亡有關(guān)

.氨基酸代謝亦影響腫瘤治療敏感性,胰腺癌細(xì)胞中長(zhǎng)鏈非編碼RNA(long noncoding RNA,lncRNA)能夠通過上調(diào)L型氨基酸轉(zhuǎn)運(yùn)蛋白(L-type amino acid transporter 2,LAT2),促進(jìn)胰腺癌對(duì)吉西他濱耐藥

.金屬離子代謝參與調(diào)控惡性腫瘤進(jìn)展是代謝微環(huán)境研究新方向,有報(bào)道細(xì)胞內(nèi)銅離子蓄積可加重肝癌放療抵抗

,而銅螯合劑可靶向銅代謝而促進(jìn)細(xì)胞鐵死亡,逆轉(zhuǎn)肝癌放療抵抗.以上證據(jù)表明,微環(huán)境糖、脂質(zhì)、氨基酸和金屬離子代謝紊亂參與腫瘤治療抵抗,代謝微環(huán)境重編程是限制消化系統(tǒng)放化療療效的關(guān)鍵因素.

4 力學(xué)微環(huán)境參與消化系統(tǒng)腫瘤放化療抵抗的機(jī)制

在消化系腫瘤中,硬度力學(xué)信號(hào)參與腫瘤放化療敏感性的研究以肝癌為主.研究表明基質(zhì)硬度增加可削弱肝癌細(xì)胞奧沙利鉑治療敏感性,可能與高基質(zhì)硬度激活integrin β1/Akt/mTOR/SOX2信號(hào)通路增強(qiáng)肝癌細(xì)胞干性有關(guān)

.也有報(bào)道顯示,基質(zhì)硬度上調(diào)integrin β1、局部粘著斑激酶(focal adhesion kinase,FAK)、ERK和STAT3等,降低肝癌細(xì)胞對(duì)順鉑敏感性

.硬度力學(xué)信號(hào)同樣可激活肝癌細(xì)胞miR-17-5p/PTEN/PI3K/Akt/MMPs通路,削弱二甲雙胍對(duì)肝癌細(xì)胞侵襲轉(zhuǎn)移的抑制作用

.機(jī)械硬度增加也可促進(jìn)EMT和Yes相關(guān)蛋白(Yes-associated protein,YAP)/轉(zhuǎn)錄共激活因子PDZ結(jié)合基序(transcriptional coactivator with PDZ-binding motif,TAZ)活化,介導(dǎo)胰腺癌對(duì)紫杉醇治療抵抗

.利用海藻酸鈉凝膠微球建立不同硬度包圍的肝癌細(xì)胞微球模型,分別用順鉑、5-氟尿嘧啶和紫杉醇處理,結(jié)果顯示高硬度環(huán)境(105 kPa)中肝癌細(xì)胞存活率明顯高于低硬度(21 kPa)和中硬度(70 kPa)環(huán)境,提示高硬度環(huán)境明顯增強(qiáng)肝癌化療耐藥,可能與硬度誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)有關(guān)

.將結(jié)直腸癌細(xì)胞與成纖維細(xì)胞三維共培養(yǎng)形成腫瘤球體以模擬體內(nèi)腫瘤微環(huán)境,發(fā)現(xiàn)其硬度水平較對(duì)照基底顯著升高,對(duì)5-氟尿嘧啶和瑞格菲尼的耐受性也增加

,提示力學(xué)微環(huán)境參與調(diào)控結(jié)直腸癌化療耐藥.近期,有研究從DNA損傷修復(fù)角度揭示了基質(zhì)硬度介導(dǎo)細(xì)胞放化療抵抗新機(jī)制.研究顯示

,相較于低硬度基底生長(zhǎng)的對(duì)照細(xì)胞,高硬度基底生長(zhǎng)的正常細(xì)胞和腫瘤細(xì)胞對(duì)基因毒性化療藥物和放射線抗性明顯增強(qiáng),對(duì)其機(jī)制解析發(fā)現(xiàn)基質(zhì)硬度可促進(jìn)DNA損傷因子RNF8泛素化修飾、招募BRCA1和53BP1至損傷結(jié)合位點(diǎn),而加速DNA損傷修復(fù),提示調(diào)控DNA損傷修復(fù)可能是硬度力學(xué)參與消化系統(tǒng)腫瘤放化療抵抗的關(guān)鍵因素.盡管力學(xué)微環(huán)境在腫瘤進(jìn)展中扮演的角色被逐漸重視,但其驅(qū)動(dòng)的放化療抵抗目前仍處起步階段,其相關(guān)機(jī)制的闡明尚需研究的進(jìn)一步積累.

腫瘤的發(fā)生進(jìn)展不僅伴隨微環(huán)境生化特征的改變,也影響微環(huán)境力學(xué)特征的改變,包括胞外基質(zhì)硬度增加

、機(jī)械擠壓周邊組織

及增加組織滲透壓和靜水壓

等.作為實(shí)體瘤最顯著力學(xué)特征,基質(zhì)硬度增加顯示可正向調(diào)控腫瘤生長(zhǎng)、侵襲、轉(zhuǎn)移、上皮間充質(zhì)轉(zhuǎn)化(epithelialmesenchymal transition,EMT)和干性增強(qiáng)等惡性特征

.此外,基質(zhì)硬度增加也促進(jìn)微環(huán)境內(nèi)血管新生

及免疫細(xì)胞浸潤(rùn)、極化和功能改變

.基質(zhì)硬度不僅可驅(qū)動(dòng)腫瘤發(fā)展轉(zhuǎn)移,也可削弱腫瘤放化療的敏感性

,但硬度力學(xué)信號(hào)誘導(dǎo)腫瘤放化療抵抗及相關(guān)調(diào)控機(jī)制研究目前報(bào)道十分有限.

財(cái)務(wù)報(bào)告分析指反映一個(gè)企業(yè)在一段時(shí)間內(nèi)經(jīng)營(yíng)成果并形成的書面文件,主要包括現(xiàn)金流量表、資產(chǎn)負(fù)債表、利潤(rùn)表等。一般財(cái)務(wù)報(bào)告主要為投資者以及債權(quán)人等外部使用者服務(wù),充分展現(xiàn)企業(yè)財(cái)務(wù)整體情況。與此同時(shí)財(cái)務(wù)報(bào)告還作為總結(jié)判斷過程,用于發(fā)現(xiàn)財(cái)務(wù)報(bào)告項(xiàng)目比率、數(shù)量、重要事項(xiàng)的發(fā)生變化以及發(fā)展趨勢(shì),為預(yù)測(cè)企業(yè)未來(lái)發(fā)展提供重要參考依據(jù)。但目前很多中小企業(yè)決策層在財(cái)務(wù)報(bào)告分析方面普遍存在不到位和不及時(shí)情況,難以發(fā)現(xiàn)管理中存在問題。例如近年來(lái)發(fā)生的銀廣夏、世通、安然等都出現(xiàn)的嚴(yán)重后果都和企業(yè)財(cái)務(wù)內(nèi)控缺乏健全和缺失有著緊密聯(lián)系,企業(yè)無(wú)法準(zhǔn)確到位分析財(cái)務(wù)報(bào)告信息,十分容易形成財(cái)務(wù)風(fēng)險(xiǎn),影響企業(yè)安全運(yùn)營(yíng)。

5 靶向TME提高腫瘤放化療療效的新策略—調(diào)控力學(xué)微環(huán)境

越來(lái)越多的證據(jù)顯示

,將治療策略擴(kuò)展到腫瘤微環(huán)境,而不僅僅是腫瘤細(xì)胞本身,能夠?qū)崿F(xiàn)更強(qiáng)的抗腫瘤效率.已有實(shí)驗(yàn)和臨床研究證實(shí)

,改善微環(huán)境缺氧、抑制血管生成、調(diào)控腫瘤代謝和腫瘤免疫在治療腫瘤和增加放化療敏感性中意義重大,許多抗血管生成藥物和免疫藥物也已被批準(zhǔn)而廣泛應(yīng)用于臨床,在此不再贅述.而改善腫瘤力學(xué)微環(huán)境是近年提高腫瘤放化療療效的新角度,盡管研究報(bào)道有限,但其臨床應(yīng)用前景廣闊.

賴氨酰氧化酶(lysyl oxidase,LOX)和賴氨酰氧化酶樣蛋白(LOX-like,LOXL)是促微環(huán)境基質(zhì)膠原交聯(lián)、組織硬度增加的關(guān)鍵分子

,LOX家族蛋白在增強(qiáng)胃癌

、肝癌

、結(jié)直腸癌

和胰腺癌

等腫瘤惡性特征中的研究已較為深入.抑制LOX家族蛋白靶向基質(zhì)硬度在腫瘤治療領(lǐng)域也取得一定進(jìn)展.研究顯示,LOX表達(dá)增加與腫瘤化療耐藥有關(guān),小鼠胰腺癌

移植瘤模型中,LOX上調(diào)可減弱吉西他濱治療敏感性,將LOX活性抑制劑β-氨基丙腈(BAPN)與化療藥物聯(lián)用,可通過促進(jìn)藥物滲透、改善藥物分布均勻性而提高化療療效.新型小分子抑制劑如LOX/LOXL2雙重抑制劑PXS-S1A,LOXL2特異抑制劑PXS-S2A及LOXL2/LOXL3雙重抑制劑PXS-5153A,顯示可減弱腫瘤細(xì)胞增殖、遷移和血管新生能力,提示可能成為放化療增敏劑

.干擾腫瘤細(xì)胞對(duì)硬度力學(xué)信號(hào)的感知應(yīng)答是調(diào)控力學(xué)微環(huán)境的另一途徑,通過抑制integrin整合素家族、FAK、Rho相關(guān)激酶(Rho-associated kinase,ROCK)和YAP/TAZ介導(dǎo)的硬度傳導(dǎo)信號(hào)可能逆轉(zhuǎn)腫瘤耐藥

.目前一些靶向整合素的單抗藥物如單英妥木單抗(Intetumumab)、阿比妥珠單抗(Abituzumab)和小分子抑制劑如E-7820、ATN-161等已進(jìn)入臨床試驗(yàn)階段

.值得注意的是,阿比妥珠單抗聯(lián)合化療在治療轉(zhuǎn)移性結(jié)直腸癌Ⅰ期臨床試驗(yàn)中展示出良好安全性和耐受性,盡管Ⅱ期臨床試驗(yàn)結(jié)果證實(shí)其總體療效并未優(yōu)于標(biāo)準(zhǔn)化療方案,但integrin αvβ6高表達(dá)患者可明顯獲益

.提示基于integrin αvβ6表達(dá)對(duì)結(jié)直腸癌患者分層,可能使靶向整合素藥物在應(yīng)用中獲得更好的臨床效果.作為FAK抑制劑,地法替尼(Defactinib)與RAF/MEK抑制劑VS-6766聯(lián)用在RAS/RAF突變的實(shí)體瘤臨床試驗(yàn)中取得突破性進(jìn)展

.消化系腫瘤臨床前研究表明,地法替尼與紫杉醇聯(lián)用在治療胰腺癌細(xì)胞和原位胰腺癌小鼠模型中具有協(xié)同作用

,提示抑制FAK可能增加化療敏感性.法舒地爾(Fasudil)能夠改善腦血管痙攣,近期研究發(fā)現(xiàn)法舒地爾能夠抑制ROCK信號(hào)通路,并提高小鼠胰腺癌吉西他濱和白蛋白紫杉醇化療療效

.此外,通過干預(yù)細(xì)胞骨架動(dòng)力

、選擇性剪切機(jī)制

和核剛度

等來(lái)減弱硬度力學(xué)信號(hào),可能也有益于提高實(shí)體腫瘤治療療效.因此,靶向力學(xué)微環(huán)境逆轉(zhuǎn)腫瘤放化療抵抗新策略無(wú)疑為腫瘤放化療增敏臨床應(yīng)用提供新希望.

6 展望

本文從腫瘤微環(huán)境缺氧、免疫抑制、代謝異常和基質(zhì)硬度四個(gè)角度,對(duì)其參與消化系統(tǒng)腫瘤放化療抵抗及相關(guān)機(jī)制進(jìn)行了歸納總結(jié),同時(shí)對(duì)靶向力學(xué)微環(huán)境逆轉(zhuǎn)腫瘤放化療抵抗臨床前景進(jìn)行了探討,顯示基質(zhì)硬度在腫瘤進(jìn)展和放化療抵抗中的重要作用.然而,微環(huán)境力學(xué)物理特征的研究目前較為有限,尚有許多問題亟待解決,如力學(xué)信號(hào)與微環(huán)境生化信號(hào)如何協(xié)同參與放化療抵抗?不同癌種力學(xué)信號(hào)調(diào)控放化療抵抗機(jī)制是否存在共性?關(guān)鍵力學(xué)感應(yīng)分子篩查及干預(yù)對(duì)腫瘤放化療抵抗的逆轉(zhuǎn)效果?力學(xué)信號(hào)主要通過改變何種腫瘤惡性特征而影響治療療效?此外,硬度關(guān)聯(lián)體內(nèi)外理想模型的匱乏同樣制約相關(guān)機(jī)制的深入開展,隨著三維類器官模型,激光捕獲微切割,單細(xì)胞多組學(xué)測(cè)序及人工智能等前沿技術(shù)的進(jìn)展,鑒定相同癌種不同局部微環(huán)境特征,及不同癌種共性微環(huán)境特征成為可能,有望對(duì)臨床腫瘤放化療抵抗逆轉(zhuǎn)帶來(lái)突破性改變.

1 Maman S,Witz IP.A history of exploring cancer in context.

2018;18:359-376 [PMID:29700396 DOI:10.1038/s41568-018-0006-7]

2 Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation.

2011;144:646-674 [PMID:21376230 DOI:10.1016/j.cell.2011.02.013]

3 Bejarano L,Jordāo MJC,Joyce JA.Therapeutic Targeting of the Tumor Microenvironment.

2021;11:933-959[PMID:33811125 DOI:10.1158/2159-8290.CD-20-1808]

4 Ray Chaudhuri A,Nussenzweig A.The multifaceted roles of PARP1 in DNA repair and chromatin remodelling.

2017;18:610-621 [PMID:28676700 DOI:10.1038/nrm.2017.53]

5 Sakthivel KM,Hariharan S.Regulatory players of DNA damage repair mechanisms:Role in Cancer Chemoresistance.

2017;93:1238-1245 [PMID:28738540 DOI:10.1016/j.biopha.2017.07.035]

6 Qiu GZ,Jin MZ,Dai JX,Sun W,Feng JH,Jin WL.Reprogramming of the Tumor in the Hypoxic Niche:The Emerging Concept and Associated Therapeutic Strategies.

2017;38:669-686 [PMID:28602395 DOI:10.1016/j.tips.2017.05.002]

7 Lee P,Chandel NS,Simon MC.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond.

2020;21:268-283 [PMID:32144406 DOI:10.1038/s41580-020-0227-y]

8 Cowman SJ,Koh MY.Revisiting the HIF switch in the tumor and its immune microenvironment.

2022;8:28-42[PMID:34743924 DOI:10.1016/j.trecan.2021.10.004]

9 Tiwari A,Tashiro K,Dixit A,Soni A,Vogel K,Hall B,Shafqat I,Slaughter J,Param N,Le A,Saunders E,Paithane U,Garcia G,Campos AR,Zettervall J,Carlson M,Starr TK,Marahrens Y,Deshpande AJ,Commisso C,Provenzano PP,Bagchi A.Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis.

2020;159:1882-1897.e5 [PMID:32768595 DOI:10.1053/j.gastro.2020.07.046]

10 Cui CP,Wong CC,Kai AK,Ho DW,Lau EY,Tsui YM,Chan LK,Cheung TT,Chok KS,Chan ACY,Lo RC,Lee JM,Lee TK,Ng IOL.SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop.

2017;66:2149-2159 [PMID:28258134 DOI:10.1136/gutjnl-2016-313264]

11 Yuen VW,Wong CC.Hypoxia-inducible factors and innate immunity in liver cancer.

2020;130:5052-5062 [PMID:32750043 DOI:10.1172/JCI137553]

12 Semenza GL.Hypoxia-inducible factors:coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype.

2017;36:252-259 [PMID:28007895 DOI:10.15252/embj.201695204]

13 Jing X,Yang F,Shao C,Wei K,Xie M,Shen H,Shu Y.Role of hypoxia in cancer therapy by regulating the tumor microenvironment.

2019;18:157 [PMID:31711497 DOI:10.1186/s12943-019-1089-9]

14 Hang Q,Zeng L,Wang L,Nie L,Yao F,Teng H,Deng Y,Yap S,Sun Y,Frank SJ,Chen J,Ma L.Non-canonical function of DGCR8 in DNA double-strand break repair signaling and tumor radioresistance.

2021;12:4033 [PMID:34188037 DOI:10.1038/s41467-021-24298-z]

15 Huan L,Guo T,Wu Y,Xu L,Huang S,Xu Y,Liang L,He X.Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response.

2020;19:11[PMID:31964396 DOI:10.1186/s12943-019-1122-z]

16 Chen F,Xu B,Li J,Yang X,Gu J,Yao X,Sun X.Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10.

2021;40:38 [PMID:33485367 DOI:10.1186/s13046-021-01834-9]

17 Zhao Y.RECQL4 Modulates MDR1 Expression and Chemoresistance-Response.

2016;76:7291 [PMID:27923826 DOI:10.1158/0008-5472.CAN-16-2638]

18 Wang M,Liu H,Zhang X,Zhao W,Lin X,Zhang F,Li D,Xu C,Xie F,Wu Z,Yang Q,Li X.Lack of MOF Decreases Susceptibility to Hypoxia and Promotes Multidrug Resistance in Hepatocellular Carcinoma via HIF-1α.

2021;9:718707 [PMID:34540836 DOI:10.3389/fcell.2021.718707]

19 Maddika S,Ande SR,Panigrahi S,Paranjothy T,Weglarczyk K,Zuse A,Eshraghi M,Manda KD,Wiechec E,Los M.Cell survival,cell death and cell cycle pathways are interconnected:implications for cancer therapy.

2007;10:13-29[PMID:17303468 DOI:10.1016/j.drup.2007.01.003]

20 Rohwer N,Dame C,Haugstetter A,Wiedenmann B,Detjen K,Schmitt CA,Cramer T.Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB.

2010;5:e12038 [PMID:20706634 DOI:10.1371/journal.pone.0012038]

21 Xu P,Zhang Y,Ge F,Zhang F,He X,Gao X.Modulation of Tumor Microenvironment to Enhance Radiotherapy Efficacy in Esophageal Squamous Cell Carcinoma by Inhibiting Carbonic Anhydrase IX.

2021;11:637252 [PMID:34249682 DOI:10.3389/fonc.2021.637252]

22 Feng M,Jin JQ,Xia L,Xiao T,Mei S,Wang X,Huang X,Chen J,Liu M,Chen C,Rafi S,Zhu AX,Feng YX,Zhu D.Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating T

cells.

2019;5:eaau5240 [PMID:31086813 DOI:10.1126/sciadv.aau5240]

23 Ning T,Li J,He Y,Zhang H,Wang X,Deng T,Liu R,Li H,Bai M,Fan Q,Zhu K,Ying G,Ba Y.Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer.

2021;29:2723-2736 [PMID:33905821 DOI:10.1016/j.ymthe.2021.04.028]

24 Napolitano M,D’Alterio C,Cardone E,Trotta AM,Pecori B,Rega D,Pace U,Scala D,Scognamiglio G,Tatangelo F,Cacciapuoti C,Pacelli R,Delrio P,Scala S.Peripheral myeloidderived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients.

2015;6:8261-8270 [PMID:25823653 DOI:10.18632/oncotarget.3014]

25 He Z,Chen D,Wu J,Sui C,Deng X,Zhang P,Chen Z,Liu D,Yu J,Shi J,Li G,Yao X.Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages.

2021;702:108838 [PMID:33727040 DOI:10.1016/j.abb.2021.108838]

26 Chen H,Yao J,Bao R,Dong Y,Zhang T,Du Y,Wang G,Ni D,Xun Z,Niu X,Ye Y,Li HB.Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer.

2021;20:29 [PMID:33557837 DOI:10.1186/s12943-021-01322-w]

27 Wu J,Gao W,Tang Q,Yu Y,You W,Wu Z,Fan Y,Zhang L,Wu C,Han G,Zuo X,Zhang Y,Chen Z,Ding W,Li X,Lin F,Shen H,Tang J,Zhang Y,Wang X.M2 Macrophage-Derived Exosomes Facilitate HCC Metastasis by Transferring α

β

Integrin to Tumor Cells.

2021;73:1365-1380 [PMID:32594528 DOI:10.1002/hep.31432]

28 Xin L,Zhou LQ,Liu C,Zeng F,Yuan YW,Zhou Q,Li SH,Wu Y,Wang JL,Wu DZ,Lu H.Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer.

2021;22:e52124 [PMID:34647680 DOI:10.15252/embr.202052124]

29 Binenbaum Y,Fridman E,Yaari Z,Milman N,Schroeder A,Ben David G,Shlomi T,Gil Z.Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma.

2018;78:5287-5299 [PMID:30042153 DOI:10.1158/0008-5472.CAN-18-0124]

30 Halbrook CJ,Pontious C,Kovalenko I,Lapienyte L,Dreyer S,Lee HJ,Thurston G,Zhang Y,Lazarus J,Sajjakulnukit P,Hong HS,Kremer DM,Nelson BS,Kemp S,Zhang L,Chang D,Biankin A,Shi J,Frankel TL,Crawford HC,Morton JP,Pasca di Magliano M,Lyssiotis CA.Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer.

2019;29:1390-1399.e6 [PMID:30827862 DOI:10.1016/j.cmet.2019.02.001]

31 Veglia F,Sanseviero E,Gabrilovich DI.Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.

2021;21:485-498 [PMID:33526920 DOI:10.1038/s41577-020-00490-y]

32 Wang Y,Ding Y,Guo N,Wang S.MDSCs:Key Criminals of Tumor Pre-metastatic Niche Formation.

2019;10:172 [PMID:30792719 DOI:10.3389/fimmu.2019.00172]

33 Leonard W,Dufait I,Schwarze JK,Law K,Engels B,Jiang H,Van den Berge D,Gevaert T,Storme G,Verovski V,Breckpot K,De Ridder M.Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion.

2016;119:291-299 [PMID:26874542 DOI:10.1016/j.radonc.2016.01.014]

34 Liu Z,Xie Y,Xiong Y,Liu S,Qiu C,Zhu Z,Mao H,Yu M,Wang X.TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages.

2020;469:173-185[PMID:31629935 DOI:10.1016/j.canlet.2019.10.020]

35 Lin Y,Cai Q,Chen Y,Shi T,Liu W,Mao L,Deng B,Ying Z,Gao Y,Luo H,Yang X,Huang X,Shi Y,He R.CAFs shape myeloidderived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase.

2022;75:28-42 [PMID:34387870 DOI:10.1002/hep.32099]

36 Bergers G,Fendt SM.The metabolism of cancer cells during metastasis.

2021;21:162-180 [PMID:33462499 DOI:10.1038/s41568-020-00320-2]

37 Ippolito L,Morandi A,Giannoni E,Chiarugi P.Lactate:A Metabolic Driver in the Tumour Landscape.

2019;44:153-166 [PMID:30473428 DOI:10.1016/j.tibs.2018.10.011]

38 Graziano F,Ruzzo A,Giacomini E,Ricciardi T,Aprile G,Loupakis F,Lorenzini P,Ongaro E,Zoratto F,Catalano V,Sarti D,Rulli E,Cremolini C,De Nictolis M,De Maglio G,Falcone A,Fiorentini G,Magnani M.Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer.

2017;17:258-264 [PMID:26927284 DOI:10.1038/tpj.2016.13]

39 Shi T,Ma Y,Cao L,Zhan S,Xu Y,Fu F,Liu C,Zhang G,Wang Z,Wang R,Lu H,Lu B,Chen W,Zhang X.B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2.

2019;10:308 [PMID:30952834 DOI:10.1038/s41419-019-1549-6]

40 DeWaal D,Nogueira V,Terry AR,Patra KC,Jeon SM,Guzman G,Au J,Long CP,Antoniewicz MR,Hay N.Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin.

2018;9:446 [PMID:29386513 DOI:10.1038/s41467-017-02733-4]

41 Yang X,Lu Y,Hang J,Zhang J,Zhang T,Huo Y,Liu J,Lai S,Luo D,Wang L,Hua R,Lin Y.Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer.

2020;8:1440-1451 [PMID:32917658 DOI:10.1158/2326-6066.CIR-20-0111]

42 Wong CC,Xu J,Bian X,Wu JL,Kang W,Qian Y,Li W,Chen H,Gou H,Liu D,Yat Luk ST,Zhou Q,Ji F,Chan LS,Shirasawa S,Sung JJ,Yu J.In Colorectal Cancer Cells With Mutant KRAS,SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling,Stemness,and Drug Resistance.

2020;159:2163-2180.e6 [PMID:32814111 DOI:10.1053/j.gastro.2020.08.016]

43 Bacci M,Lorito N,Smiriglia A,Morandi A.Fat and Furious:Lipid Metabolism in Antitumoral Therapy Response and Resistance.

2021;7:198-213 [PMID:33281098 DOI:10.1016/j.trecan.2020.10.004]

44 He W,Liang B,Wang C,Li S,Zhao Y,Huang Q,Liu Z,Yao Z,Wu Q,Liao W,Zhang S,Liu Y,Xiang Y,Liu J,Shi M.MSCregulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer.

2019;38:4637-4654 [PMID:30742067 DOI:10.1038/s41388-019-0747-0]

45 Lang X,Green MD,Wang W,Yu J,Choi JE,Jiang L,Liao P,Zhou J,Zhang Q,Dow A,Saripalli AL,Kryczek I,Wei S,Szeliga W,Vatan L,Stone EM,Georgiou G,Cieslik M,Wahl DR,Morgan MA,Chinnaiyan AM,Lawrence TS,Zou W.Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11.

2019;9:1673-1685 [PMID:31554642 DOI:10.1158/2159-8290.CD-19-0338]

46 Feng L,Zhao K,Sun L,Yin X,Zhang J,Liu C,Li B.SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis.

2021;19:367 [PMID:34446045 DOI:10.1186/s12967-021-03042-7]

47 Xiong G,Liu C,Yang G,Feng M,Xu J,Zhao F,You L,Zhou L,Zheng L,Hu Y,Wang X,Zhang T,Zhao Y.Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer.

2019;12:97 [PMID:31514732 DOI:10.1186/s13045-019-0777-7]

48 Yang M,Wu X,Hu J,Wang Y,Wang Y,Zhang L,Huang W,Wang X,Li N,Liao L,Chen M,Xiao N,Dai Y,Liang H,Huang W,Yuan L,Pan H,Li L,Chen L,Liu L,Liang L,Guan J.COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma.

2022 [PMID:35101526 DOI:10.1016/j.jhep.2022.01.009]

49 Fernández-Sánchez ME,Barbier S,Whitehead J,Béalle G,Michel A,Latorre-Ossa H,Rey C,Fouassier L,Claperon A,Brullé L,Girard E,Servant N,Rio-Frio T,Marie H,Lesieur S,Housset C,Gennisson JL,Tanter M,Ménager C,Fre S,Robine S,Farge E.Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure.

2015;523:92-95 [PMID:25970250 DOI:10.1038/nature14329]

50 Mitchell MJ,Jain RK,Langer R.Engineering and physical sciences in oncology:challenges and opportunities.

2017;17:659-675 [PMID:29026204 DOI:10.1038/nrc.2017.83]

51 DuFort CC,DelGiorno KE,Hingorani SR.Mounting Pressure in the Microenvironment:Fluids,Solids,and Cells in Pancreatic Ductal Adenocarcinoma.

2016;150:1545-1557.e2[PMID:27072672 DOI:10.1053/j.gastro.2016.03.040]

52 Dong Y,Zheng Q,Wang Z,Lin X,You Y,Wu S,Wang Y,Hu C,Xie X,Chen J,Gao D,Zhao Y,Wu W,Liu Y,Ren Z,Chen R,Cui J.Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis.

2019;12:112 [PMID:31703598 DOI:10.1186/s13045-019-0795-5]

53 Wu S,Zheng Q,Xing X,Dong Y,Wang Y,You Y,Chen R,Hu C,Chen J,Gao D,Zhao Y,Wang Z,Xue T,Ren Z,Cui J.Matrix stiffness-upregulated LOXL2 promotes fibronectin production,MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

2018;37:99 [PMID:29728125 DOI:10.1186/s13046-018-0761-z]

54 Wu S,Xing X,Wang Y,Zhang X,Li M,Wang M,Wang Z,Chen J,Gao D,Zhao Y,Chen R,Ren Z,Zhang K,Cui J.The pathological significance of LOXL2 in pre-metastatic niche formation of HCC and its related molecular mechanism.

2021;147:63-73 [PMID:33618200 DOI:10.1016/j.ejca.2021.01.011]

55 You Y,Zheng Q,Dong Y,Xie X,Wang Y,Wu S,Zhang L,Wang Y,Xue T,Wang Z,Chen R,Wang Y,Cui J,Ren Z.Matrix stiffnessmediated effects on stemness characteristics occurring in HCC cells.

2016;7:32221-32231 [PMID:27050147 DOI:10.18632/oncotarget.8515]

56 Wang Y,Zhang X,Wang W,Xing X,Wu S,Dong Y,You Y,Chen R,Ren Z,Guo W,Cui J,Li W.Integrin αVβ5/Akt/Sp1 pathway participates in matrix stiffness-mediated effects on VEGFR2 upregulation in vascular endothelial cells.

2020;10:2635-2648 [PMID:32905444]

57 Dong Y,Xie X,Wang Z,Hu C,Zheng Q,Wang Y,Chen R,Xue T,Chen J,Gao D,Wu W,Ren Z,Cui J.Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1.

2014;444:427-432 [PMID:24472554 DOI:10.1016/j.bbrc.2014.01.079]

58 Xing X,Wang Y,Zhang X,Gao X,Li M,Wu S,Zhao Y,Chen J,Gao D,Chen R,Ren Z,Zhang K,Cui J.Matrix stiffnessmediated effects on macrophages polarization and their LOXL2 expression.

2021;288:3465-3477 [PMID:32964626 DOI:10.1111/febs.15566]

59 Nicolas-Boluda A,Vaquero J,Vimeux L,Guilbert T,Barrin S,Kantari-Mimoun C,Ponzo M,Renault G,Deptula P,Pogoda K,Bucki R,Cascone I,Courty J,Fouassier L,Gazeau F,Donnadieu E.Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment.

2021;10 [PMID:34106045 DOI:10.7554/eLife.58688]

60 Mohammadi H,Sahai E.Mechanisms and impact of altered tumour mechanics.

2018;20:766-774 [PMID:29950570 DOI:10.1038/s41556-018-0131-2]

61 Schrader J,Gordon-Walker TT,Aucott RL,van Deemter M,Quaas A,Walsh S,Benten D,Forbes SJ,Wells RG,Iredale JP.Matrix stiffness modulates proliferation,chemotherapeutic response,and dormancy in hepatocellular carcinoma cells.

2011;53:1192-1205 [PMID:21442631 DOI:10.1002/hep.24108]

62 Gao X,Qiao X,Xing X,Huang J,Qian J,Wang Y,Zhang Y,Zhang X,Li M,Cui J,Yang Y.Matrix Stiffness-Upregulated MicroRNA-17-5p Attenuates the Intervention Effects of Metformin on HCC Invasion and Metastasis by Targeting the PTEN/PI3K/Akt Pathway.

2020;10:1563 [PMID:32974191 DOI:10.3389/fonc.2020.01563]

63 Rice AJ,Cortes E,Lachowski D,Cheung BCH,Karim SA,Morton JP,Del Río Hernández A.Matrix stiffness induces epithelialmesenchymal transition and promotes chemoresistance in pancreatic cancer cells.

2017;6:e352 [PMID:28671675 DOI:10.1038/oncsis.2017.54]

64 Liu C,Liu Y,Xie HG,Zhao S,Xu XX,Fan LX,Guo X,Lu T,Sun GW,Ma XJ.Role of three-dimensional matrix stiffness in regulating the chemoresistance of hepatocellular carcinoma cells.

2015;62:556-562 [PMID:25274163 DOI:10.1002/bab.1302]

65 Goudar VS,Koduri MP,Ta YN,Chen Y,Chu LA,Lu LS,Tseng FG.Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity:A Study with 3D Chimeric Tumor Spheroids.

2021;13:48478-48491 [PMID:34633791 DOI:10.1021/acsami.1c18249]

66 Deng M,Lin J,Nowsheen S,Liu T,Zhao Y,Villalta PW,Sicard D,Tschumperlin DJ,Lee S,Kim J,Lou Z.Extracellular matrix stiffness determines DNA repair efficiency and cellular sensitivity to genotoxic agents.

2020;6 [PMID:32917705 DOI:10.1126/sciadv.abb2630]

67 Xiao Y,Yu D.Tumor microenvironment as a therapeutic target in cancer.

2021;221:107753 [PMID:33259885 DOI:10.1016/j.pharmthera.2020.107753]

68 Hu M,Huang L.Strategies targeting tumor immune and stromal microenvironment and their clinical relevance.

2022;183:114137 [PMID:35143893 DOI:10.1016/j.addr.2022.114137]

69 Farhat A,Ferns GA,Ashrafi K,Arjmand MH.Lysyl Oxidase Mechanisms to Mediate Gastrointestinal Cancer Progression.

2021;8:33-40 [PMID:34568293 DOI:10.1159/000511244]

70 Peng C,Liu J,Yang G,Li Y.Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression:quantum dot-based identification of biomarkers in cancer stromal cells.

2018;13:161-174 [PMID:29343955 DOI:10.2147/IJN.S143871]

71 Wei B,Zhou X,Liang C,Zheng X,Lei P,Fang J,Han X,Wang L,Qi C,Wei H.Human colorectal cancer progression correlates with LOX-induced ECM stiffening.

2017;13:1450-1457 [PMID:29209148 DOI:10.7150/ijbs.21230]

72 Ma W,Li T,Wu S,Li J,Wang X,Li H.LOX and ACSL5 as potential relapse markers for pancreatic cancer patients.

2019;20:787-798 [PMID:30712446 DOI:10.1080/15384047.2018.1564565]

73 Le Calvé B,Griveau A,Vindrieux D,Maréchal R,Wiel C,Svrcek M,Gout J,Azzi L,Payen L,Cros J,de la Fouchardière C,Dubus P,Guitton J,Bartholin L,Bachet JB,Bernard D.Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution.

2016;7:32100-32112 [PMID:27050073 DOI:10.18632/oncotarget.8527]

74 Ye M,Song Y,Pan S,Chu M,Wang ZW,Zhu X.Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy.

2020;215:107633 [PMID:32693113 DOI:10.1016/j.pharmthera.2020.107633]

75 Lampi MC,Reinhart-King CA.Targeting extracellular matrix stiffness to attenuate disease:From molecular mechanisms to clinical trials.

2018;10 [PMID:29298864 DOI:10.1126/scitranslmed.aao0475]

76 Xiong J,Yan L,Zou C,Wang K,Chen M,Xu B,Zhou Z,Zhang D.Integrins regulate stemness in solid tumor:an emerging therapeutic target.

2021;14:177 [PMID:34715893 DOI:10.1186/s13045-021-01192-1]

77 élez E,Kocáková I,H?hler T,Martens UM,Bokemeyer C,Van Cutsem E,Melichar B,Smakal M,Cs?szi T,Topuzov E,Orlova R,Tjulandin S,Rivera F,Straub J,Bruns R,Quaratino S,Tabernero J.Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wildtype metastatic colorectal cancer:the randomised phase I/II POSEIDON trial.

2015;26:132-140 [PMID:25319061 DOI:10.1093/annonc/mdu474]

78 Guo C,Chénard-Poirier M,Roda D,de Miguel M,Harris SJ,Candilejo IM,Sriskandarajah P,Xu W,Scaranti M,Constantinidou A,King J,Parmar M,Turner AJ,Carreira S,Riisnaes R,Finneran L,Hall E,Ishikawa Y,Nakai K,Tunariu N,Basu B,Kaiser M,Lopez JS,Minchom A,de Bono JS,Banerji U.Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma:a single-centre,open-label,phase 1 dose-escalation and basket dose-expansion study.

2020;21:1478-1488 [PMID:33128873 DOI:10.1016/S1470-2045(20)30464-2]

79 Le Large TYS,Bijlsma MF,El Hassouni B,Mantini G,Lagerweij T,Henneman AA,Funel N,Kok B,Pham TV,de Haas R,Morelli L,Knol JC,Piersma SR,Kazemier G,van Laarhoven HWM,Giovannetti E,Jimenez CR.Focal adhesion kinase inhibition synergizes with nab-paclitaxel to target pancreatic ductal adenocarcinoma.

2021;40:91 [PMID:33750427 DOI:10.1186/s13046-021-01892-z]

80 Vennin C,Chin VT,Warren SC,Lucas MC,Herrmann D,Magenau A,Melenec P,Walters SN,Del Monte-Nieto G,Conway JR,Nobis M,Allam AH,McCloy RA,Currey N,Pinese M,Boulghourjian A,Zaratzian A,Adam AA,Heu C,Nagrial AM,Chou A,Steinmann A,Drury A,Froio D,Giry-Laterriere M,Harris NL,Phan T,Jain R,Weninger W,McGhee EJ,Whan R,Johns AL,Samra JS,Chantrill L,Gill AJ,Kohonen-Corish M,Harvey RP,Biankin AV;Australian Pancreatic Cancer Genome Initiative (APGI),Evans TR,Anderson KI,Grey ST,Ormandy CJ,Gallego-Ortega D,Wang Y,Samuel MS,Sansom OJ,Burgess A,Cox TR,Morton JP,Pajic M,Timpson P.Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression,sensitivity to chemotherapy,and metastasis.

2017;9 [PMID:28381539 DOI:10.1126/scitranslmed.aai8504]

81 Parri M,Chiarugi P.Rac and Rho GTPases in cancer cell motility control.

2010;8:23 [PMID:20822528 DOI:10.1186/1478-811X-8-23]

82 Bordeleau F,Califano JP,Negrón Abril YL,Mason BN,LaValley DJ,Shin SJ,Weiss RS,Reinhart-King CA.Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors.

2015;112:8314-8319 [PMID:26106154 DOI:10.1073/pnas.1505421112]

83 Wang N,Tytell JD,Ingber DE.Mechanotransduction at a distance:mechanically coupling the extracellular matrix with the nucleus.

2009;10:75-82 [PMID:19197334 DOI:10.1038/nrm2594]

猜你喜歡
免疫抑制放化療硬度
轉(zhuǎn)化生長(zhǎng)因子β誘導(dǎo)蛋白與胰腺癌的研究進(jìn)展
軟硬度
全程營(yíng)養(yǎng)護(hù)理管理在食管癌同步放化療患者中的應(yīng)用
淺述食管癌術(shù)后及放化療后并發(fā)癥的中醫(yī)藥治療
中醫(yī)飲食干預(yù)在改善腫瘤聯(lián)合放化療患者營(yíng)養(yǎng)不良的應(yīng)用效果觀察
什么是放化療?
中學(xué)化學(xué)中的兩種硬度
五指毛桃與黃芪提取物對(duì)免疫抑制小鼠細(xì)胞免疫的影響
淺談家禽養(yǎng)殖中導(dǎo)致免疫力低下的表現(xiàn)形式及原因
金屬表面鍍層硬度的測(cè)量方法