王茜丹,路 瑩,楊悅鎖,武宇輝,徐 喆,裴子丞
微生物堵塞過(guò)程中生物膜生長(zhǎng)特征對(duì)多孔介質(zhì)滲流特征影響
王茜丹,路 瑩*,楊悅鎖,武宇輝,徐 喆,裴子丞
(吉林大學(xué)地下水資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,吉林 長(zhǎng)春 130021)
為研究回灌水刺激下生物膜在砂柱中的生長(zhǎng)規(guī)律,并分析生物膜生長(zhǎng)特征對(duì)堵塞介質(zhì)典型滲流特征的影響,采用室內(nèi)土柱實(shí)驗(yàn)方法,供給營(yíng)養(yǎng)液刺激砂柱內(nèi)生物膜生長(zhǎng),模擬入滲介質(zhì)生物堵塞的過(guò)程,監(jiān)測(cè)介質(zhì)滲透系數(shù)的變化,并開展不同回灌時(shí)長(zhǎng)下介質(zhì)水分吸持實(shí)驗(yàn)和彌散試驗(yàn),并對(duì)其內(nèi)生物膜形態(tài)進(jìn)行表征.結(jié)果顯示,在0~5h時(shí),滲透系數(shù)呈先下降后回升趨勢(shì);在回灌至18h前,滲透系數(shù)急劇衰減,水力彌散系數(shù)明顯增大,水分吸持能力的變化并不明顯;18h后滲透系數(shù)降低速率減緩,水分吸持能力明顯升高,溶質(zhì)運(yùn)移過(guò)渡到以彌散作用為主導(dǎo)機(jī)制.綜上,可將生物膜在介質(zhì)內(nèi)的生長(zhǎng)分為三個(gè)階段:菌適應(yīng)期,接種菌體并未生長(zhǎng)繁殖,單純由于菌體的流入與流出引起滲透系數(shù)的變化;菌體大量生長(zhǎng)繁殖期,大量生長(zhǎng)繁殖的菌體占據(jù)了部分介質(zhì)孔隙體積;胞外聚合物大量分泌期,逐漸形成具有透水性的生物膜,生物膜的生長(zhǎng)與回灌水提供的養(yǎng)分形成動(dòng)態(tài)平衡.
地下水人工回灌;生物堵塞;生物膜;滲透系數(shù);彌散試驗(yàn);水分特征曲線
為了應(yīng)對(duì)地下水的過(guò)度開采,利用人工手段將選用的入滲水引滲或注入目標(biāo)含水層中[1],以豐富地下水資源.通過(guò)這種人工手段,地下水資源得到了補(bǔ)給,由此引發(fā)的系列環(huán)境問(wèn)題得到了有效的定期緩解,但是實(shí)踐工程中在回灌水滲入回灌介質(zhì)的滲流路徑上有微生物群落存在[2],這些微生物在水體環(huán)境中能依靠自身特性與介質(zhì)顆粒牢固粘附[3]并在適當(dāng)?shù)臈l件下迅速繁殖,微生物的生物體及其代謝物將粘附或積累在滲透介質(zhì)上,降低了介質(zhì)的滲透能力[5].人工回灌對(duì)地下水資源的管理、儲(chǔ)存和恢復(fù)有重大影響,但這種堵塞問(wèn)題嚴(yán)重影響著工程的回灌效率、維護(hù)成本以及使用壽命[7],在一定程度上限制了地下水的有效補(bǔ)給和工程的高效實(shí)施[7-8].
Baveye等[9]、姜桂華等[10]系統(tǒng)歸結(jié)了微生物作用堵塞孔隙的物質(zhì),認(rèn)為主要是因?yàn)槲⑸锏纳L(zhǎng)、衰亡、吸附作用引起細(xì)菌及其新陳代謝物質(zhì)在固體顆粒表面聚集,占據(jù)了介質(zhì)內(nèi)部孔隙通道導(dǎo)致堵塞.Bishop[11]、Flemming等[12]將這種吸附在固體顆粒表面的微生物菌體及其胞外聚合物(EPS)統(tǒng)稱為生物膜,并認(rèn)為大量的呈網(wǎng)狀結(jié)構(gòu)的EPS構(gòu)成其骨架,微生物填充其中.對(duì)于生物膜的兩種組分,Thullner等[13]觀察到微生物發(fā)展成為生物堵塞是以分散的菌落形式存在,而Vandevivere等[14]實(shí)驗(yàn)發(fā)現(xiàn)胞外聚合物也可以使介質(zhì)滲透性能顯著下降.這說(shuō)明生物膜的兩種組分都會(huì)對(duì)介質(zhì)的滲透性能產(chǎn)生影響,然而EPS是附著于細(xì)胞壁上的大分子有機(jī)物質(zhì)[15],來(lái)源于細(xì)胞分泌、細(xì)胞溶解和吸附等[16],與菌體位置和性質(zhì)存在顯著差異.而生物膜在多孔介質(zhì)中的行為模式會(huì)受其自身性質(zhì)影響[17],因此當(dāng)生物膜在介質(zhì)孔隙內(nèi)積聚后,其在不同階段兩種組分的生長(zhǎng)變化會(huì)對(duì)介質(zhì)的透水能力產(chǎn)生不同影響.
因此,本文采用滲流試驗(yàn)測(cè)定微生物生長(zhǎng)階段含水介質(zhì)的滲透系數(shù)變化,并通過(guò)離心機(jī)法和彌散試驗(yàn)對(duì)不同堵塞程度下的水分吸持能力和彌散能力進(jìn)行測(cè)定.通過(guò)比對(duì)這些滲流特征變化相對(duì)應(yīng)的生物膜組分變化,進(jìn)一步分析生物膜堵塞過(guò)程中生物膜生長(zhǎng)特征引起的介質(zhì)滲透能力的變化規(guī)律.在以往的研究中,多是關(guān)注滲流過(guò)程中各項(xiàng)滲透性能指標(biāo)整體的變化,而本研究著重于將各個(gè)滲透性能指標(biāo)的變化與生物膜的生長(zhǎng)水平相對(duì)應(yīng),得到各項(xiàng)滲透性能在不同的生物膜生長(zhǎng)水平影響下發(fā)生的階段性變化特征,為實(shí)際生物堵塞的預(yù)測(cè)與控制提供科學(xué)理論支持.
本試驗(yàn)采用一維柱裝置,包括層析柱、蠕動(dòng)泵、測(cè)壓管、供水裝置和出水裝置五個(gè)部分(如圖1所示).層析柱由厚度2mm的玻璃制成,內(nèi)徑1cm,高度7cm,實(shí)際裝柱高度5cm.注水口和流出口均設(shè)有400目的篩網(wǎng),防止砂樣流出.在進(jìn)出水口處分別設(shè)置測(cè)壓管監(jiān)測(cè)滲透系數(shù).
本試驗(yàn)選用粒徑在0.125~0.25mm的細(xì)砂作為供試含水介質(zhì).為了避免物理和化學(xué)因素的影響,將細(xì)砂過(guò)篩后洗凈烘干,每次試驗(yàn)前用濃度為37%的濃鹽酸浸泡24h,并清洗至超純水在清洗前后電導(dǎo)率接近一致,滅菌烘干后,冷卻備用[18].選用地下水中優(yōu)勢(shì)菌屬[19]銅綠假單胞菌為接種液,磷酸鹽緩沖液稀釋至目標(biāo)濃度.回灌水的配比為葡萄糖1000mg/L、硝酸鉀289.2mg/L[20].
圖1 試驗(yàn)裝置示意
將預(yù)處理后的砂樣分層裝入層析柱中,側(cè)面敲擊令其自然沉淀,保證過(guò)程中水面始終沒(méi)過(guò)介質(zhì)一定高度,重復(fù)此過(guò)程裝至砂柱頂部,確保砂柱完全飽和[21].用蠕動(dòng)泵以0.25mL/min的恒定流速注入4mL菌液后以相同流速供入營(yíng)養(yǎng)液.每隔2h監(jiān)測(cè)滲流柱的滲透系數(shù),并設(shè)置回灌時(shí)長(zhǎng)分別為5h,18h,28h, 35.5h,44h,50.5h的對(duì)照組,利用掃描電子顯微鏡對(duì)不同回灌時(shí)長(zhǎng)下的生物膜生長(zhǎng)水平進(jìn)行表征,并測(cè)定不同生物膜生長(zhǎng)水平下的水分吸持能力和溶質(zhì)彌散能力.
在試驗(yàn)運(yùn)行期間,對(duì)不同堵塞程度下的各組進(jìn)行示蹤劑彌散試驗(yàn),示蹤劑選用NaCl溶液,濃度為100mg/L.以0.25mL/min的速度將示蹤液泵入,收集層析柱的流出液,每個(gè)樣品200μL.用水質(zhì)分析儀檢測(cè)流出液中Cl-的濃度.將砂柱放入聚丙烯離心管中,用臺(tái)式高速冷凍離心機(jī)依次在500,1000,1500, 2000r/min的轉(zhuǎn)速下進(jìn)行離心,每種轉(zhuǎn)速下,分別離心5,10,15,25min并取樣.待離心后取出砂柱,用高精度電子天平稱量土樣質(zhì)量.根據(jù)每次離心前后質(zhì)量之差計(jì)算出土壤體積含水率并計(jì)算不同含水率下所對(duì)應(yīng)的土壤水吸力,即可繪制水分特征曲線[22-23].
待每組實(shí)驗(yàn)運(yùn)行結(jié)束,取出砂柱進(jìn)水口和出水口處的樣品并進(jìn)行預(yù)處理,預(yù)處理方法為:使用濃度為2.5%的戊二醛溶液在4℃下制片固定.磷酸鹽緩沖溶液沖洗后,用乙醇溶液進(jìn)行梯度脫水處理[20].將樣品在真空狀態(tài)下冷凍干燥,標(biāo)號(hào)留用.然后使用掃描電子顯微鏡觀察附著在砂柱上的生物膜形態(tài).
1.3.1 滲透系數(shù) 利用達(dá)西公式計(jì)算初始滲透系數(shù).
式中:為出水口流量,m3/d;D為出入水口壓強(qiáng)差, m;D為柱高,m;為入滲砂柱橫截面面積,m2.
采用相對(duì)滲透系數(shù)¢(實(shí)測(cè)滲透系數(shù)與初始滲透系數(shù)0之比)隨時(shí)間的變化規(guī)律反映砂柱滲透能力的變化.
1.3.2 土壤水吸力 土壤水吸力和水分含量的變化曲線稱為土壤水分特征曲線,是土壤水力參數(shù)中的一個(gè)重要參數(shù).美國(guó)學(xué)者在1980年提出Van Genuchten方程(簡(jiǎn)稱VG方程)[24],因其線型與實(shí)測(cè)數(shù)據(jù)曲線相似且參數(shù)含義明確而在眾多描述方程中最為常用,其表達(dá)式為:
式中:為土壤含水率,cm3/cm3;θ為土壤殘余含水率, cm3/cm3;θ為土壤飽和含水率,cm3/cm3;為土壤水吸力,cm;為土壤水分特征曲線形狀因子,共有θ、θ、4個(gè)參數(shù)[25].因此,本實(shí)驗(yàn)選用VG模型與實(shí)測(cè)數(shù)據(jù)進(jìn)行擬合,進(jìn)一步求出相關(guān)土壤水力參數(shù)進(jìn)行分析.
1.3.3 彌散系數(shù) 通過(guò)進(jìn)行室內(nèi)彌散試驗(yàn),可以獲得示蹤劑溶液的濃度分布函數(shù)的觀測(cè)數(shù)據(jù),以砂柱孔隙體積PV為橫坐標(biāo),以出水NaCl溶液濃度為縱坐標(biāo),繪制示蹤液在多孔介質(zhì)中的穿透曲線[26].
求解對(duì)應(yīng)生物膜生長(zhǎng)水平下的縱向彌散系數(shù)L和縱向彌散度L,可用Laplace變換得到該實(shí)驗(yàn)數(shù)學(xué)模型的解析解:
式中:為示蹤劑溶液的濃度值,mg/L;0為流出液中示蹤劑的濃度值,mg/L;為試驗(yàn)柱內(nèi)液體實(shí)際流速,m/d;exp()為以e為底的指數(shù)函數(shù),其中e=2.718; erfc()為余誤差函數(shù).
在關(guān)系曲線圖中找到相對(duì)濃度/0=0.159和/0=0.841兩個(gè)點(diǎn),得到與其對(duì)應(yīng)的橫坐標(biāo)PV0.159和PV0.841,其中,PV0.159和PV0.841分別指示蹤劑溶液相對(duì)濃度達(dá)到0.159和0.841時(shí)所對(duì)應(yīng)流經(jīng)的孔隙體積;將PV0.159和PV0.841分別代入式(4)和式(5)中,且令上式相減并同開平方變換,可以得到多孔介質(zhì)縱向彌散系數(shù)的計(jì)算公式:
同上,多孔介質(zhì)縱向彌散度的計(jì)算公式如下:
據(jù)此,可以求出縱向彌散系數(shù)L和縱向彌散度L.
生物膜的生命活動(dòng)在掃描電子顯微鏡下的微觀觀察中變得更為直觀.空白介質(zhì)表面沒(méi)有發(fā)現(xiàn)微生物存在的跡象(圖2).接種回灌的砂柱樣品中能明顯觀察到有異于未接種砂柱中桿狀的銅綠假單胞菌菌體.
進(jìn)出水端的介質(zhì)顆粒表面裹覆的生物膜密度隨回灌時(shí)間的延長(zhǎng)而變高,微生物的生長(zhǎng)繁殖跡象愈加明顯.
在掃描電鏡裝置4300倍數(shù)下觀察生物膜整體的生長(zhǎng)趨勢(shì),并在更高的倍數(shù)下(×10000)觀察到胞外聚合物的分泌情況(圖3).
圖3 生物膜形態(tài)掃描電鏡
根據(jù)圖3可將生物膜的發(fā)展分為三個(gè)時(shí)期,適應(yīng)期:在5h時(shí),菌體處于未進(jìn)行大量生長(zhǎng)繁殖的適應(yīng)期,代謝活性微弱;菌體大量繁殖期:在18h前,大量菌體生長(zhǎng)繁殖,沒(méi)有觀察到胞外聚合物跡象;胞外聚合物分泌期:在回灌到18h前開始分泌胞外聚合物,在28h狀態(tài)下,胞外聚合物能夠以絲狀形態(tài)被觀察到,亦稱之為纏枝狀.當(dāng)回灌時(shí)間發(fā)展到35.5h時(shí),胞外聚合物拉絲形態(tài)開始弱化,彼此之間形成帶有孔隙的絲網(wǎng)狀,在此期間菌體生長(zhǎng)繁殖速度減緩.菌體和胞外聚合物以膜狀形態(tài)厚厚裹覆在截止顆粒上.胞外聚合物隨著滲流柱堵塞的進(jìn)一步發(fā)展更加厚密.
回灌模擬試驗(yàn)中,滲流柱的相對(duì)滲透系數(shù)發(fā)生如圖4所示變化.在各組試驗(yàn)過(guò)程中,滲透系數(shù)大體上均呈衰減趨勢(shì),并可以根據(jù)相對(duì)滲透系數(shù)的衰減變化分為三個(gè)階段.
在滲流試驗(yàn)初始階段(0~10h),相對(duì)滲透系數(shù)會(huì)呈現(xiàn)下降至近60%后再回升至接近初始滲透系數(shù)的趨勢(shì).對(duì)應(yīng)前面生物膜形態(tài)特征,此階段,菌體剛剛脫離適應(yīng)期,沒(méi)有明顯的生長(zhǎng)繁殖代謝的跡象,因此單純由菌體自身占據(jù)孔隙體積的變化影響多孔介質(zhì)的滲透系數(shù).接種菌體占據(jù)砂柱內(nèi)部一定的有效孔隙空間,滲透介質(zhì)的有效孔隙度隨之降低,導(dǎo)致滲透系數(shù)降低.隨著帶有營(yíng)養(yǎng)物質(zhì)的回灌水代替菌液以恒定流速泵入,未附著的菌體流出含水介質(zhì),被占據(jù)的那部分有效孔隙通道重新恢復(fù),滲透系數(shù)隨著有效孔隙率增加而回升.
在中期階段(10~26h)入滲介質(zhì)的相對(duì)滲透系數(shù)均顯著下降,降低到20%以下.比對(duì)相應(yīng)階段的生物膜生長(zhǎng)變化發(fā)現(xiàn),這一階段中菌體與介質(zhì)表面接觸面積大而充分且營(yíng)養(yǎng)物質(zhì)充足,迅速繁殖,因此發(fā)生生物堵塞引起砂柱滲透性能急劇衰減,砂柱相對(duì)滲透系數(shù)快速下降.
在后期階段(26~75h),相對(duì)滲透系數(shù)變化緩慢.此階段菌體開始大量分泌胞外聚合物,菌體的生長(zhǎng)繁殖速率下降,而胞外聚合物促進(jìn)了菌體粘連聚集形成具有透水性的生物膜,但幾乎沒(méi)有更進(jìn)一步的占據(jù)孔隙體積.因此這一階段相對(duì)滲透系數(shù)變化緩慢,堵塞程度在衰減至3%以后趨于穩(wěn)定.
Engesgaard等[27]認(rèn)為生物堵塞后期介質(zhì)滲透性趨于穩(wěn)定是由于生物膜的生長(zhǎng)與回灌水提供的養(yǎng)分形成動(dòng)態(tài)平衡.本實(shí)驗(yàn)在介質(zhì)滲透能力降低了97%以后滲透系數(shù)開始穩(wěn)定,整個(gè)滲流過(guò)程中滲透性能衰減了3個(gè)數(shù)量級(jí).Cunningham等[28]通過(guò)定水頭滲流模擬試驗(yàn)發(fā)現(xiàn),多孔介質(zhì)由于生物堵塞,引起滲透性能衰減了92%~98%,與本實(shí)驗(yàn)結(jié)果相近.Taylor等[29]曾在室內(nèi)進(jìn)行定流量的生物堵塞滲流柱試驗(yàn),發(fā)現(xiàn)不同的滲流速度和滲流條件下,堵塞發(fā)展的空間尺度有所不同.堵塞可以造成多孔介質(zhì)水力傳導(dǎo)系數(shù)下降3個(gè)數(shù)量級(jí).Brough等[30]實(shí)驗(yàn)中發(fā)現(xiàn),35個(gè)系列試驗(yàn)中生物堵塞引起的的介質(zhì)滲透能力降低了28%~79%.大量的生物堵塞實(shí)驗(yàn)研究結(jié)果都符合Thullner[31]總結(jié)對(duì)比的生物堵塞對(duì)介質(zhì)的滲透性變化影響一般在降低兩到三個(gè)數(shù)量級(jí)的結(jié)論.這與本實(shí)驗(yàn)的實(shí)驗(yàn)結(jié)果相符,說(shuō)明單純由于生物堵塞引起的滲透性能衰減具有一定的極限性.
圖4 相對(duì)滲透系數(shù)變化情況
根據(jù)離心實(shí)驗(yàn)實(shí)測(cè)所得數(shù)據(jù)繪制不同回灌時(shí)長(zhǎng)下的水分特征曲線,見圖5.在賦予砂柱57.647cmH2O的吸力時(shí),由于吸力較低,介質(zhì)內(nèi)的小孔隙排水為主,處在不同堵塞程度下的砂柱離心出來(lái)的水量差異并不明顯.在吸力提高到230.588cm H2O時(shí),砂樣含水量開始快速下降,不同砂柱離心所得水量出現(xiàn)差異,體積含水率在堵塞較嚴(yán)重的砂柱中明顯大于堵塞程度輕的砂柱.在更高轉(zhuǎn)速下離心時(shí)砂柱受到的吸力較高,主要是毛管孔隙中水分的變化,介質(zhì)對(duì)水分的吸持能力作用明顯,各砂柱的水分特征曲線差異趨于明顯.
對(duì)比未注菌的空白砂柱會(huì)發(fā)現(xiàn),在相同的吸力下,回灌時(shí)間越長(zhǎng),砂柱的體積含水率越高,即生物膜在介質(zhì)中的生長(zhǎng)會(huì)提高介質(zhì)的吸持能力.生物膜的生長(zhǎng)特征對(duì)介質(zhì)水分吸持能力的影響可用土水特征參數(shù)刻畫,利用Origin將實(shí)測(cè)數(shù)據(jù)與VG方程進(jìn)行擬合求得參數(shù),如表1.
圖5 不同回灌時(shí)間節(jié)點(diǎn)的水分特征曲線
表1 VG方程參數(shù)
分析表1中求得的土水特征參數(shù)發(fā)現(xiàn),土壤飽和含水率和形狀因子的變化特征并不顯著,而土壤殘余含水率隨著回灌時(shí)間的推移和生物膜生長(zhǎng)繁殖不斷升高,以殘余含水率的變化表征水分吸持能力的變化.在5h、18h、28h、44h、50.5h時(shí)殘余含水率分別為0.00229、0.01477、0.03522、0.04752、0.07633.與空白未注菌的砂柱殘余含水率0.00102相比,在回灌初期殘余含水率的升高幅度小,在18h以后,殘余含水率提高了10倍以上.
殘余含水率反映了介質(zhì)中以薄膜形式或獨(dú)立水環(huán)的形式存在的水量,與介質(zhì)的結(jié)構(gòu)和成分有關(guān).水分吸持能力越強(qiáng),緊緊吸附在介質(zhì)顆粒表面的水量越多,殘余含水率越高.而殘余含水率與回灌時(shí)間存在明顯相關(guān)關(guān)系,繪制殘余含水率與回灌時(shí)間的關(guān)系如圖6,并比對(duì)生物膜生長(zhǎng)特征階段,將水分吸持能力的變化分區(qū).介質(zhì)的水分吸持能力變化可以以胞外聚合物大量分泌為時(shí)間節(jié)點(diǎn)分為兩個(gè)階段.
在滲流試驗(yàn)的前18h,出現(xiàn)大量胞外聚合物節(jié)點(diǎn)前的階段,菌體的附著和生長(zhǎng)繁殖雖然引起滲透系數(shù)的急劇下降,但是殘余含水率升高趨勢(shì)并不明顯.在28h的節(jié)點(diǎn)已經(jīng)分泌大量胞外聚合物,相對(duì)于18h時(shí)殘余含水率明顯提高.胞外聚合物的大量分泌對(duì)于滲透系數(shù)衰減的影響微弱,但是對(duì)于介質(zhì)持水能力的升高有明顯的影響.
圖6 殘余含水率變化
介質(zhì)的持水能力隨附著菌體及其EPS產(chǎn)量的增多而愈強(qiáng).堵塞越嚴(yán)重,介質(zhì)所受生物膜生長(zhǎng)的影響越顯著,介質(zhì)的水分吸持能力越強(qiáng).而其中胞外聚合物的影響相較于菌體更加顯著.
經(jīng)過(guò)滲流試驗(yàn)初期滲透系數(shù)波動(dòng)階段后,分別在回灌時(shí)間為5h、18h、15h、24.5h的節(jié)點(diǎn)進(jìn)行彌散試驗(yàn).對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合,如圖7所示.在得到各個(gè)節(jié)點(diǎn)下彌散試驗(yàn)的實(shí)測(cè)數(shù)據(jù)后,用Origin軟件進(jìn)行擬合,進(jìn)而分別求出各節(jié)點(diǎn)的縱向彌散系數(shù)及縱向彌散度.
初始時(shí)介質(zhì)內(nèi)溶質(zhì)運(yùn)移以對(duì)流作用為主導(dǎo)機(jī)制,對(duì)流作用對(duì)溶質(zhì)運(yùn)移的影響大于彌散作用.在回灌時(shí)間0~18h的情況下,菌體的附著與繁殖占據(jù)了介質(zhì)內(nèi)的孔隙通道,引起滲透系數(shù)的衰減和水力彌散系數(shù)的升高.對(duì)流作用開始減弱.Engesgaard等[27]發(fā)現(xiàn)含水介質(zhì)滲透性將隨著介質(zhì)內(nèi)堵塞的發(fā)展呈現(xiàn)明顯的非均質(zhì)性,水動(dòng)力彌散等性能參數(shù)受到堵塞很大的影響,多孔介質(zhì)內(nèi)從均勻流為主導(dǎo)轉(zhuǎn)變?yōu)橄虻牧餍桶l(fā)生從近均勻流模式向非均勻流模式轉(zhuǎn)變.Seifert等[32]也發(fā)現(xiàn)由于進(jìn)水端優(yōu)先接受帶有營(yíng)養(yǎng)物質(zhì)的回灌水補(bǔ)給,所以進(jìn)水端附近附著于介質(zhì)顆粒的生物膜更加有利于形成與發(fā)展,此時(shí)微生物菌落占據(jù)孔隙喉道,導(dǎo)致滲透系數(shù)顯著下降,同時(shí)彌散度呈線性趨勢(shì)增大.
在回灌至18h以后,胞外聚合物出現(xiàn)大量分泌趨勢(shì),主導(dǎo)機(jī)制轉(zhuǎn)變?yōu)閺浬⒆饔?溶質(zhì)彌散系數(shù)的變化開始穩(wěn)定.
圖7 不同回灌時(shí)間節(jié)點(diǎn)的穿透曲線
3.1 生物膜在介質(zhì)內(nèi)的生長(zhǎng)可以分為三個(gè)階段.在0~5h時(shí),介質(zhì)內(nèi)的接種菌處于接種后的適應(yīng)期,沒(méi)有生長(zhǎng)繁殖和分泌胞外聚合物的跡象.在回灌至18h前,介質(zhì)內(nèi)生物膜的生長(zhǎng)以菌體的生長(zhǎng)繁殖為主.在18~28h間分泌纏枝狀的胞外聚合物,逐漸與菌體共同發(fā)展成致密膜狀厚厚裹覆在介質(zhì)顆粒上.
3.2 介質(zhì)的水分吸持能力在菌體大量生長(zhǎng)繁殖階段的前18h內(nèi)改變并不明顯;18h以后,菌體分泌大量胞外聚合物,介質(zhì)的水分吸持能力顯著增強(qiáng),殘余含水率提高10倍以上.
3.3 介質(zhì)的彌散能力在菌體大量生長(zhǎng)繁殖階段的前18h內(nèi),由于菌體占據(jù)孔隙空間生長(zhǎng)繁殖,水力彌散系數(shù)明顯增大;18h后分泌大量胞外聚合物,溶質(zhì)運(yùn)移以彌散作用為主導(dǎo)機(jī)制,彌散系數(shù)逐漸穩(wěn)定.
[1] Todd D K. Groundwater hydrology [M]. New York:Wiley, 1980.
[2] 北京市地質(zhì)局水文地質(zhì)工程地質(zhì)大隊(duì),等.地下水人工補(bǔ)給[M].北京:地質(zhì)出版社, 1982:170-171.
Beijing Bureau of Geology hydrogeology engineering Geology Brigade, et al.Artificial recharge of groundwater. Bei Jing: Geological Publishing House, 1982:170-171.
[3] 宋 偉,劉文虎.透析液生物污染的預(yù)防與控制[J]. 中國(guó)血液化, 2008,(2):113-115.
Song W, Liu W H. Prevention and control of biological contamination of dialysate [J].Chinese Journal of Blood Purification, 2008,(2):113- 115.
[4] Schwager A, Boller M. Transport phenomena in intermittent filters [J]. Water Science and Technology, 1997,35(6):13-20.
[5] Barrett M E, Taylor S. Retrofit of storm water treatment controls in a highway environment [C]//The Fifth International Conference of Sustainable Techniques and Strategies in Urban Water Management, 2004:243-250.
[6] Jeong HY, Jun S, Cheon J, Park M. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications [J]. Geosciences Journal, 2018,22(4):667-679.
[7] Barrett M E, Taylor S. Retrofit of storm water treatment controls in a highway environment [C]. The Fifth International Conference of Sustainable Techniques and Strategies in Urban Water Management, 2004:243-250.
[8] 王世林,龔延風(fēng),陳麗萍,等.地下水人工回灌過(guò)程中生物堵塞研究進(jìn)展[J]. 科學(xué)技術(shù)與工程, 2019,19(34):25-31.
Wang S L, Gong Y F, Chen L P, et al. Advances in bioclogging during Artificial groundwater recharge [J]. Science Technology and Engineering, 2019,19(34):25-31.
[9] Baveye P, Vandevivere P, Hoyle B L, et al. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials [J]. Critical Reviews in Environmental Science and Technology, 1998,28(2):123.
[10] 姜桂華,廖資生,徐凌云,等.人工微生物脫氮過(guò)程中含水層堵塞問(wèn)題的實(shí)驗(yàn)研究[J]. 長(zhǎng)春科技大學(xué)學(xué)報(bào), 1998,(2):3-5.
Jiang G H, Liao Z S, Xv L Y, Sun T. The experimental study on clogging of aquifer during the treatment of nitric pollution by synthetic microorganism [J]. Journal of Jilin University, 1998,(2):3-5.
[11] Bishop P. Biofilm structure and kinetics [J]. Wat. Sci. Tech., 1997, 36(1):287-294.
[12] Flemming H, Wingender J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010,8(9): 623-633..
[13] Thullner M, Zeyer J, Kinzelbach W.Influence of microbial growth on hydraulic properties of pore networks [J]. Transport in Porous Media, 2002,49(1):99-122.
[14] Vandevivere P, Baveye P. Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns [J]. Applied and environmental microbiology, 1992,58(5):1690-1698.
[15] 賀張偉.預(yù)處理方法對(duì)污泥厭氧耦合微生物電解及厭氧消化產(chǎn)能的影響[D]. 哈爾濱工程大學(xué), 2014.
He Z W. Effects of pretreatment methods of excess sludge on energy yields by anaerobic coupled microbial electrolysis and anaerobic digestion [D] Harbin Engineering University, 2014.
[16] 陳園園,彭黨聰.生物膜中EPS與微生物的分布及測(cè)定[J]. 中國(guó)給水排水, 2017,33(15):25-30,35.
Chen Y Y, Peng D C. Distribution and determination of EPS and microorganisms in biofilm [J]. China Water & Wastewater, 2017,33 (15):25-30,35.
[17] 張文靜,秦運(yùn)琦,劉 丹,等.微生物在多孔介質(zhì)中環(huán)境行為研究 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(10):3975-3984.
Zhang W J, Qin Y Q, Liu D, et al. Transport behavior of microorganism in the porous media [J]. China Environmental Science, 2018,38(10):3975-3984.
[18] 徐國(guó)丹.再生水回灌下含水介質(zhì)滲透性變化規(guī)律試驗(yàn)研究[D]. 西安:長(zhǎng)安大學(xué), 2018.
Xv G D. Experimental reaserch on the variation of permeability of aqueous media in the process of reclaimed water recharge [D].Xi’an: Chang’an University, 2018.
[19] 李 軍,張翠云,藍(lán)芙寧,等.區(qū)域地下水不同深度微生物群落結(jié)構(gòu)特征[J]. 中國(guó)環(huán)境科學(xué), 2019,39(6):2614-2623.
Li J, Zhang C Y, Lan F N, et al. Structure characteristics of microbial community at different depths of groundwater [J]. China Environmental Science, 2019,39(6):2614-2623.
[20] 沈 健,馮 晨,林允照,等.銅綠假單胞菌生物膜形成機(jī)制及耐藥相關(guān)性[J]. 浙江預(yù)防醫(yī)學(xué), 2015,27(1):40-43.
Shen J, Feng C, Lin Y Z, et al. A study on the mechanism of biofilm formation of pseudomonas aeruginosa and its [J]. Preventive Medicine, 2015,27(1):40-43.
[21] 趙婧彤,冶雪艷,杜新強(qiáng),等.不同濃度懸浮物顆粒在多孔介質(zhì)中遷移特性研究[J]. 水利水電技術(shù), 2019,50(10):25-31.
Zhao J T, Ye X Y, Du X Q, et al. Study on the migration characteristics of suspended particles inporous media during different concentration of suspension [J]. Water Resources and Hydropower Engineering, 2019,50(10):25-31.
[22] 李玉山.測(cè)定土壤水勢(shì)的離心機(jī)法[J]. 土壤, 1981,(4):143-146.
Li Y S. Centrifuge method for determination of soil water potential [J]. Soils, 1981,(4):143-146.
[23] 邵明安.不同方法測(cè)定土壤基質(zhì)勢(shì)的差別及準(zhǔn)確性的初步研究[J]. 土壤通報(bào), 1985,(5):222-225.
Shao M A. A preliminary study on the difference and accuracy of different methods for measuring soil matrix potential [J]. Chinese Journal of Soil Science, 1985,(5):222-225.
[24] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci Soc Am J, 1980,44(5):892-898.
[25] 郭向紅,孫西歡,馬娟娟.基于混合遺傳算法估計(jì)van Genuchten方程參數(shù)[J]. 水科學(xué)進(jìn)展, 2009,20(5):677-682.
Guo X H, Sun X H, Ma J J. Parametric estimation of the van Genuchten's equation based on hybrid genetic [J]. Advances in Water Science, 2009,20(5):677-682.
[26] 張亞嬌,沈 超,李 韜,等.上海淺層粉性土彌散實(shí)驗(yàn)的室內(nèi)研究[C]// 中國(guó)建筑學(xué)會(huì)工程勘察分會(huì).第十五屆全國(guó)工程物探與巖土工程測(cè)試學(xué)術(shù)大會(huì)論文集. 中國(guó)建筑學(xué)會(huì)工程勘察分會(huì):中國(guó)建筑學(xué)會(huì)工程勘察分會(huì), 2017:5.
Zhang Y J, Shen C, Li T, et al. Laboratory study on dispersion experiment of shallow silty soil in Shanghai [C]// Engineering Investigation Branch of Architectural Society of China. Proceedings of the 15th National Conference on Engineering Geophysical and Geotechnical Engineering Testing . Engineering Investigation Branch of Architectural Society of China: Engineering Investigation Branch of Architectural Society of China, 2017:5.
[27] Engesgaard P, Seifert D, Herrera P. Bioclogging in porous media: Tracer Studies [M]. Riverbank Filtration Hydrology. Netherlands: Springer, 2006.
[28] Cunningham A B, Characklis W G, Abedeen F, et al. Influence of biofilm accumulation on porous media hydrodynamics [J]. Environmental Science and Technology, 1991,25(7):1305–1311.
[29] Taylor S W, Jaffé P R. Jaffé. Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation [J]. Water Resources Research , 1990,26(9):2153-2159.
[30] Brough M J, Al-Tabbaa A, Martin R J.Active biofilm barriers for waste containment and bioremediation: laboratory assessment [J]. In Situ and On-site Bioremediation, 1997,4(4):233-238.
[31] Thullner M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems [J]. Ecological Engineering, 2008,36(2):176-196.
[32] Seifert D, Engesgaard P. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media [J]. Journal of Contaminant Hydrology, 2007,93(1):58-71.
A study of microbial clogging on the variation of seepage characteristics with biofilm growth in porous medium.
WANG Qian-dan, LU Ying*, YANG Yue-suo, WU Yu-Hui, XU Zhe, PEI Zi-cheng
(Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)., 2022,42(6):2771~2778
The seepage characteristics of porous media varies with the inner biofilm growth irritated by recharge water during groundwater recharge. Indoor soil column experiments were conducted to stimulate the bio clogging process of porous media by continuous injection with nutrient solutions. Growth morphology biofilm and the corresponding seepage parameters of media (including permeability coefficient, water retention and dispersion coefficient) were measured over a series of time periods during experiments. The results showed that the permeability coefficient slightly decreased and rose in the first 5hours. In 5~18 hours, the permeability coefficient decreased sharply, and the hydraulic dispersion coefficient, and greatly increased, but the change of water holding capacity was not obvious. After 18hours, the decrease rate of the permeability coefficient slowed down, whist the water holding capacity began to increase rapidly, and the solute transport in the porous media transited be recharged by dominant mechanism of dispersion. To sum up, the clogging process by the growth of biofilm in the medium can be divided into three stages: (1) First stage is the adaptation period of bacteria, in which the inoculated bacteria did not dramatically grow and reproduce, and the permeability coefficient changed simply because of the retention and migration of bacteria cells; (2) Second stage is the period of mass growth and reproduction of bacteria, in which the increasing bacteria cells occupy more and more pore volume of medium, resulting the decrease in permeability and the increase in dispersion of the porous media; (3) Last stage is the period of extracellular polymer secretion, in which a permeable biofilm is gradually formed, and the growth and shedding of biofilm forms a dynamic balance with the nutrients provided by recharge water.
artificial groundwater recharge;bioclogging;biofilm;permeability coefficient;dispersion test;water characteristic curve
X172
A
1000-6923(2022)06-2771-08
王茜丹(1999-),女,吉林公主嶺人,吉林大學(xué)碩士研究生,主要從事地下水回灌堵塞模擬研究
2021-11-18
吉林省自然科學(xué)基金項(xiàng)目(20210101092JC)
* 責(zé)任作者, 副教授, luying819@jlu.edu.cn