趙靜, 陳茹, 沈桂萍, 張慧豐, 范彥英
LPS誘導(dǎo)的A1型星形膠質(zhì)細(xì)胞的能量代謝特征*
趙靜, 陳茹, 沈桂萍, 張慧豐, 范彥英△
(山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理教研室,山西 太原 030001)
探討在脂多糖(lipopolysaccharide, LPS)誘導(dǎo)下,小鼠皮層星形膠質(zhì)細(xì)胞轉(zhuǎn)化為A1毒性表型的同時,其能量代謝所發(fā)生的變化。小鼠皮層星形膠質(zhì)細(xì)胞培養(yǎng)8~9 d后,分為對照(control, CON)組和LPS組;采用CCK-8細(xì)胞增殖及毒性檢測試劑盒檢測不同LPS處理濃度及不同處理時間下的細(xì)胞活力;通過細(xì)胞免疫熒光染色技術(shù)檢測膠質(zhì)細(xì)胞原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)的表達(dá)來鑒定星形膠質(zhì)細(xì)胞的純度;通過補(bǔ)體C3(complement component 3, C3)與GFAP細(xì)胞免疫熒光染色共定位,檢測C3的表達(dá)水平;利用RT-qPCR技術(shù)檢測C3、鳥苷酸結(jié)合蛋白2(guanylate-binding protein 2, GBP2)、S100鈣結(jié)合蛋白A10(S100 calcium-binding protein A10, S100A10)、轉(zhuǎn)谷氨酰胺酶1(transglutaminase 1, TGM1)及白細(xì)胞介素1β(interleukin-1β, IL-1β)的mRNA表達(dá)變化;采用Western blot技術(shù)檢測C3蛋白表達(dá)變化。利用Seahorse XFp活細(xì)胞生物能量檢測技術(shù)檢測細(xì)胞線粒體呼吸功能和糖酵解水平的變化。免疫熒光染色結(jié)果顯示,GFAP陽性細(xì)胞比例達(dá)98%以上。CCK-8結(jié)果顯示,在不同濃度和不同處理時間下,LPS對星形膠質(zhì)細(xì)胞的活力均無顯著影響;RT-qPCR結(jié)果顯示,在LPS劑量為100 μg/L時,C3和GBP2的mRNA表達(dá)在24 h均顯著升高(<0.01),而S100A10和TGM1的mRNA表達(dá)則無顯著變化。Western blot和免疫熒光染色結(jié)果顯示,LPS處理后C3的蛋白表達(dá)顯著升高(<0.01);RT-qPCR結(jié)果顯示,IL-1β的mRNA表達(dá)水平顯著升高(<0.01)。線粒體壓力測定結(jié)果顯示,LPS處理后的線粒體呼吸相關(guān)指標(biāo)——氧消耗速率(oxygen consumption rate, OCR)與CON組相比無顯著差異,而糖酵解速率相關(guān)指標(biāo)——細(xì)胞外酸化速率(extracellular acidification rate, ECAR)、基礎(chǔ)糖酵解質(zhì)子流出速率(glycolytic proton efflux rate, glycoPER)、代償性糖酵解、glycoPER百分比及線粒體質(zhì)子流出速率(mitochondial proton efflux rate, mitoPER)/glycoPER在LPS處理后均顯著下降(<0.01)。LPS可誘導(dǎo)星形膠質(zhì)細(xì)胞向A1表型轉(zhuǎn)換,無氧酵解水平顯著降低,但對線粒體主導(dǎo)的有氧呼吸無顯著影響。
星形膠質(zhì)細(xì)胞;脂多糖;能量代謝
星形膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中最豐富的細(xì)胞類型,它們在維持中樞神經(jīng)系統(tǒng)穩(wěn)態(tài)和功能方面發(fā)揮著一系列不可或缺的作用[1],如為神經(jīng)元提供能量、調(diào)節(jié)神經(jīng)元突觸發(fā)生和消除、維持血腦屏障和傳導(dǎo)免疫信號。在感染、急性腦損傷及神經(jīng)退行性病變中,星形膠質(zhì)細(xì)胞的基因表達(dá)、形態(tài)和功能均會發(fā)生變化,表現(xiàn)為胞體肥大、突起數(shù)量和長度的增加等[2],這些變化被稱為星形膠質(zhì)細(xì)胞反應(yīng)性。近年研究發(fā)現(xiàn),反應(yīng)性星形膠質(zhì)細(xì)胞可被分為A1型(神經(jīng)毒性表型)和A2型(神經(jīng)保護(hù)表型)[3]。在阿爾茨海默?。ˋlzheimer disease, AD)、帕金森?。≒arkinson disease, PD)、亨廷頓氏病、單側(cè)脊索硬化等疾病中,研究者觀察到腦內(nèi)星形膠質(zhì)細(xì)胞轉(zhuǎn)化為A1表型,這種轉(zhuǎn)化可能是神經(jīng)元損傷的重要機(jī)制[4;5]。與此同時,在這些病理刺激下,星形膠質(zhì)細(xì)胞的能量代謝模式也會發(fā)生變化。Ramos-Gonzalez等[5]證實(shí),經(jīng)Aβ刺激處理后,星形膠質(zhì)細(xì)胞的線粒體功能及ATP生成顯著降低。Xie等[6]在PD患者腦內(nèi)提取的星形膠質(zhì)細(xì)胞上發(fā)現(xiàn),細(xì)胞線粒體呼吸功能降低而糖酵解水平升高。此外,在前動力蛋白2(prokineticin 2, PK2)刺激星形膠質(zhì)細(xì)胞向A2表型轉(zhuǎn)化的同時,線粒體呼吸功能增強(qiáng),且ATP生成增多[7]。脂多糖(lipopolysaccharide, LPS)是炎癥模型構(gòu)建的誘導(dǎo)劑,可以通過誘導(dǎo)促炎介質(zhì)的生成促進(jìn)神經(jīng)炎癥反應(yīng)。最近研究證實(shí),LPS可以誘導(dǎo)培養(yǎng)的星形膠質(zhì)細(xì)胞向A1表型轉(zhuǎn)換,表現(xiàn)為A1標(biāo)志物H2-T23、H2-D1、鳥苷酸結(jié)合蛋白2(guanylate-binding protein 2, GBP2)表達(dá)的增加[8]。但在此過程中,其能量代謝模式是否發(fā)生變化尚不清楚。
本研究在培養(yǎng)的小鼠皮層星形膠質(zhì)細(xì)胞中,利用LPS刺激模型,觀察了星形膠質(zhì)細(xì)胞A1、A2表型的變化,并測定了細(xì)胞的線粒體壓力和糖酵解速率,以探究星形膠質(zhì)細(xì)胞A1表型轉(zhuǎn)換與能量代謝之間的潛在關(guān)系。
胎牛血清(fetal bovine serum, FBS)購自CellMax;細(xì)胞基礎(chǔ)培養(yǎng)液(Dulbecco's modified Eagle medium, DMEM;含4.5 g/L D-葡萄糖,以及L-谷氨酰胺和丙酮酸鈉)購自Gibco;不含EDTA的胰蛋白酶、青-鏈霉素溶液(100×)、D-Hanks緩沖液和過氧化物酶標(biāo)記的IgG抗體購自博士德生物工程有限公司;D-多聚賴氨酸購自碧云天生物科技有限公司;L-亮氨酸甲酯鹽酸鹽(L-leucine methyl ester hydrochloride, LME)購自麥克林試劑公司;LPS購自Sigma;Seahorse XF線粒體壓力測定試劑盒、Seahorse XF糖酵解速率測定試劑盒以及XF Calibrant、Seahorse XF DMEM Medium、Seahorse XF 1.0M Glucose Solution、Seahorse XF 100mM Pyruvate Solution和Seahorse XF 200mM Glutamine Solution均購自安捷倫科技有限公司;Cell Counting Kit-8(CCK-8)、羊抗小鼠Alexa Fluor 488抗體和羊抗大鼠Alexa Fluor 594抗體購自翌圣生物科技有限公司;小鼠抗膠質(zhì)細(xì)胞原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)抗體和Alexa Fluor 488偶聯(lián)的小鼠抗GFAP單克隆抗體(GA5)均購自Cell Signaling Technology。大鼠抗補(bǔ)體C3(complement component 3, C3)抗體購自Novus;兔抗C3抗體購自Abcam;UNIQ-10柱式RNA抽提試劑盒購自生工生物工程有限公司;RT Ⅲ All-in-one Mix及SYBR Green PCR Mix試劑購自莫納生物科技有限公司。
2.1皮層星形膠質(zhì)細(xì)胞的培養(yǎng)C57BL/6J新生小鼠購自山西醫(yī)科大學(xué)動物中心[許可證號:SYXK(晉)2019-0007]。新生小鼠按照文獻(xiàn)中的方法[9-10],完整分離腦組織,將其浸泡在冷的D-Hanks緩沖液中,在體視顯微鏡下剝離腦膜和血管,去除海馬,得到腦皮層組織,將組織用手術(shù)刀切碎。在37 ℃、5% CO2的條件下用0.25%不含EDTA的胰酶消化15 min,以含10% FBS的DMEM完全培養(yǎng)液終止消化。將細(xì)胞吹散后,收集細(xì)胞上清,以每瓶1.0×106個細(xì)胞的密度均勻接種在以D-多聚賴氨酸包被過的T25細(xì)胞培養(yǎng)瓶中,在37 ℃、5% CO2的細(xì)胞培養(yǎng)箱中培養(yǎng),24 h后換液,之后每2~3 d更換培養(yǎng)液。培養(yǎng)8~9 d后,在室溫下以260 r/min的速度搖細(xì)胞培養(yǎng)瓶18 h,以去除黏附在星形膠質(zhì)細(xì)胞上的小膠質(zhì)細(xì)胞、神經(jīng)元及少突膠質(zhì)細(xì)胞,然后棄去原來的培養(yǎng)液,PBS清洗1~2次,向培養(yǎng)液中加入終濃度為50 mmol/L的LME以去除小膠質(zhì)細(xì)胞[11]。45 min后,棄去LME,PBS清洗后,換至完全培養(yǎng)液,繼續(xù)培養(yǎng)24 h后可傳代。
2.2細(xì)胞免疫熒光染色培養(yǎng)有星形膠質(zhì)細(xì)胞的細(xì)胞爬片,經(jīng)預(yù)冷的4%多聚甲醛固定,含0.1% Triton的PBS破膜后,加入10%的牛血清白蛋白封閉45 min,封閉后加小鼠抗GFAP抗體(1∶1 000)于4 ℃孵育過夜,PBS漂洗3次后,與羊抗小鼠Alexa Fluor 594抗體(1∶400)在室溫下孵育2 h,經(jīng)DAPI染色并封片固定;GFAP與C3免疫熒光染色共定位時,用Alexa Fluor 488偶聯(lián)的小鼠抗GFAP單克隆抗體(GA5; 1∶200)和大鼠抗C3抗體(1∶400),在4 ℃下共同孵育過夜,PBS漂洗后與羊抗大鼠Alexa Fluor 594抗體(1∶400)在室溫孵育2 h,DAPI染色封片后,于熒光顯微鏡下觀察并拍照。
2.3CCK-8檢測細(xì)胞活力星形膠質(zhì)細(xì)胞按照每孔5 000個細(xì)胞接種在預(yù)先以100 mg/L多聚賴氨酸包被過的96孔板上,待其匯合度達(dá)到80%~90%,分別檢測LPS濃度為100、50及10 μg/L時星形膠質(zhì)細(xì)胞的活力。之后,在LPS濃度為100 μg/L的條件下,分別檢測處理6、12和24 h后星形膠質(zhì)細(xì)胞的活力。待測孔內(nèi)每100 μl培養(yǎng)液中加入10 μl CCK-8溶液,繼續(xù)在細(xì)胞培養(yǎng)箱中培養(yǎng)2 h,最后在酶標(biāo)儀上檢測450 nm處的吸光度。
2.4RT-qPCR檢測mRNA表達(dá)按照試劑盒說明書操作提取星形膠質(zhì)細(xì)胞的總RNA,使用RT Ⅲ All-in-one Mix及SYBR Green PCR Mix試劑進(jìn)行mRNA的逆轉(zhuǎn)錄及擴(kuò)增。內(nèi)參照GAPDH的上游引物序列為5'-GTCGGTGTGAACGGATTTGG-3',下游引物序列為5'-GCTCCTGGAAGATGGTGATGG-3';白細(xì)胞介素1β(interleukin-1β, IL-1β)的上游引物序列為5'-CGTGGACCTTCCAGGATGAG-3',下游引物序列為5'-CATCTCGGAGCCTGTAGTGC-3';C3的上游引物序列為5'-GGCTAGACAAGGCTTGTGAGC-3',下游引物序列為5'-CCTGCACCTCATCTGAGCC-3';GBP2的上游引物序列為5'-GGAGGAGCTGTGTGGTGAAT-3',下游引物序列為5'-TTAGACGTGGCCCATTGACT-3';S100鈣結(jié)合蛋白A10(S100 calcium binding protein A10,S100A10)的上游引物序列為5'-GTGCTCATGGAACGGGAGT-3',下游引物序列為5'-AAAGCTCTGGAAGCCCACTT-3';轉(zhuǎn)谷氨酰胺酶1(transglutaminase 1, TGM1)的上游引物序列為5'-CCCTGGATGACAATGGAGTT-3',下游引物序列為5'-GAATAGCCGGTGCGTAGGTA-3'。IL-1β、C3、GBP2、S100A10及TGM1的mRNA水平歸一化為內(nèi)參照GAPDH的表達(dá),并采用2-ΔΔCt法進(jìn)行計(jì)算。
2.5Western blot檢測蛋白表達(dá)將星形膠質(zhì)細(xì)胞用細(xì)胞裂解液收集并超聲后,提取總蛋白??偟鞍撞捎肂CA法定量,經(jīng)8%的聚丙烯酰胺凝膠電泳分離蛋白后,在70 V電壓下轉(zhuǎn)至聚偏氟乙烯膜上,以5%的脫脂奶粉在室溫下封閉2 h,加入兔抗C3抗體(1∶2000),在4 ℃條件下孵育過夜。次日,TBST洗膜3次,每次5 min,將膜與辣根過氧化物酶標(biāo)記的山羊抗兔IgG抗體(1∶6 000)在37 ℃條件下孵育1 h,并用ECL超敏化學(xué)發(fā)光液進(jìn)行成像,Image Lab測定分析條帶灰度值。
2.6線粒體壓力和糖酵解速率的測定利用Seahorse XFp能量代謝分析儀測定星形膠質(zhì)細(xì)胞在不同處理?xiàng)l件下線粒體壓力和糖酵解速率的變化情況。在線粒體壓力測定中,基礎(chǔ)呼吸的氧氣消耗速率(oxygen consumption rate, OCR)代表細(xì)胞在基礎(chǔ)狀態(tài)下的能量需求,與ATP產(chǎn)生相關(guān)的OCR代表了線粒體滿足細(xì)胞能量需求的ATP合成能力。在測量基線OCR后,依次加入1.5 μmol/L oligomycin、4 μmol/L羰基氰-4-(三氟乙氧基)苯腙[carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, FCCP]和0.5 μmol/L魚藤酮/抗霉素(rotenone/antimycin A, Rot/AA)來檢測基礎(chǔ)呼吸值(細(xì)胞基礎(chǔ)狀態(tài)下的能量需求)、最大呼吸值、剩余呼吸容量(細(xì)胞適應(yīng)能量變化的能力)及與ATP產(chǎn)生相關(guān)的OCR等指標(biāo),依此來反映線粒體的呼吸功能。在糖酵解速率測試中,測量基線細(xì)胞外酸化速率(extracellular acidification rate,ECAR)后,依次加入0.5 μmol/L Rot/AA和50 mmol/L 2-脫氧葡萄糖(2-deoxyglucose, 2-DG),最后一步添加的2-DG能夠通過競爭性結(jié)合糖酵解途徑的己糖激酶引起ECAR降低,依此來反映細(xì)胞的糖酵解水平降低。通過檢測基礎(chǔ)糖酵解質(zhì)子流出速率(glycolysis proton efflux rate, glycoPER)、代償性糖酵解、glycoPER百分比、線粒體質(zhì)子流出速率(mitochondial proton efflux rate, mitoPER)/glycoPER等指標(biāo)來反映細(xì)胞的糖酵解水平,其中g(shù)lycoPER能夠反映乳酸產(chǎn)生的質(zhì)子流出速率。星形膠質(zhì)細(xì)胞按照每孔1.5×104個接種在多聚賴氨酸包被過的8孔細(xì)胞培養(yǎng)板上進(jìn)行培養(yǎng),用LPS處理24 h后,將培養(yǎng)液更換為含10 mmol/L葡萄糖、1 mmol/L丙酮酸和2 mmol/L谷氨酰胺的37 ℃ DMEM無酚紅培養(yǎng)液(pH 7.4),培養(yǎng)1 h后,上機(jī)檢測。本實(shí)驗(yàn)測試了所有參數(shù)值,且進(jìn)行了三次重復(fù),數(shù)據(jù)采用WAVE軟件進(jìn)行分析。
采用軟件GraphPad Prism 7.0進(jìn)行數(shù)據(jù)處理分析。所有實(shí)驗(yàn)數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示。兩組樣本之間選用Student's檢驗(yàn)法進(jìn)行比較,三組或三組以上選用單因素方差分析進(jìn)行比較分析。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
通過細(xì)胞免疫熒光染色檢測星形膠質(zhì)細(xì)胞的標(biāo)志物GFAP,結(jié)果顯示培養(yǎng)的皮層膠質(zhì)細(xì)胞中GFAP陽性率達(dá)98%以上(圖1),表明星形膠質(zhì)細(xì)胞的純度達(dá)98%以上,符合實(shí)驗(yàn)要求。
Figure 1. The measurement of purity of cortical astrocytes. The GFAP expression was measured by immunofluorescence. Scale bar=50 μm.
CCK-8檢測結(jié)果顯示,不同濃度和不同處理時間的LPS對細(xì)胞的活力均無顯著影響(圖2A、B)。RT-qPCR的結(jié)果顯示,LPS處理后A1表型標(biāo)志物C3和GBP2的表達(dá)呈濃度依賴性升高,在LPS濃度為50和100 μg/L時,C3(圖2C)和GBP2(圖2D)的表達(dá)均顯著升高(<0.01),A2表型標(biāo)志物S100A10(圖2E)及TGM1(圖2F)則無顯著變化。與50 μg/L組相比,100 μg/L濃度下A1表型標(biāo)志物C3和GBP2的表達(dá)更高,且Zhang等[8]證實(shí)LPS(100 μg/L)可誘導(dǎo)星形膠質(zhì)細(xì)胞向A1表型的轉(zhuǎn)換,因此本研究確定LPS的處理劑量為100 μg/L。LPS(100 μg/L)處理24 h后,A1表型標(biāo)志物的mRNA表達(dá)最高,其中C3的mRNA表達(dá)(圖2G)顯著升高(<0.01),約為CON組的53.40倍,GBP2的mRNA表達(dá)(圖2H)亦顯著升高(<0.01),約為CON組的6.19倍,A2表型標(biāo)志物S100A10(圖2I)和TGM1(圖2J)的表達(dá)則無顯著變化。綜合上述結(jié)果,我們在后續(xù)研究中選擇LPS(100 μg/L)持續(xù)刺激24 h誘導(dǎo)星形膠質(zhì)細(xì)胞的表型轉(zhuǎn)換。
Figure 2. Effects of LPS treatment on phenotypic transformation and viability of primary mouse cortical astrocytes. The astrocytes were treated with different concentrations of LPS for 24 h or 100 μg/L LPS for different time. Cell viability was detected by CCK-8 assay (A and B;n=10). The mRNA expression of C3, GBP2, S100A10 and TGM1 in the astrocytes were detected by RT-qPCR (C to J,n=3). Mean±SEM. **P<0.01 vs CON group.
在此條件下,RT-qPCR結(jié)果表明,與CON組相比,在LPS的刺激下IL-1β的mRNA表達(dá)(圖3A)顯著升高(<0.01),約為CON組的4.56倍,表明LPS模型已成功建立。Western blot檢測結(jié)果顯示,LPS組C3的蛋白表達(dá)(圖3B)顯著升高(<0.01),約為CON組的20.99倍。星形膠質(zhì)細(xì)胞GFAP與C3的免疫熒光染色結(jié)果表明,LPS誘導(dǎo)后,GFAP陽性的星形膠質(zhì)細(xì)胞中檢測到C3表達(dá)的細(xì)胞占90%以上,表明星形膠質(zhì)細(xì)胞轉(zhuǎn)變?yōu)锳1表型的轉(zhuǎn)換率達(dá)90%以上(圖3C)。
Figure 3. Effects of LPS on expression of IL-1β and C3 in primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h. The mRNA expression of IL-1β was detected by RT-qPCR (A;n=3). The relative expression of C3 protein was detected by Western blot (B;n=4). The co-localization of C3 and GFAP was detected by immunofluorescence staining (C; scale bar=50 μm). Mean±SEM. **P<0.01 vs CON group.
在線粒體壓力測試中,通過依次加入oligomycin(1.5 μmol/L)、FCCP(4 μmol/L)和Rot/AA(0.5 μmol/L)測量細(xì)胞的OCR(圖4A)。測試結(jié)果顯示,LPS不能誘導(dǎo)基礎(chǔ)呼吸值(圖4B)、最大呼吸值(圖4C)、與ATP產(chǎn)生相關(guān)的OCR(圖4D)和剩余呼吸能力(圖4E)發(fā)生顯著變化,表明LPS對星形膠質(zhì)細(xì)胞以線粒體為主的有氧呼吸功能無顯著影響。
Figure 4. Effects of LPS on mitochondrial respiration function of primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h, and then the oxygen consumption rate (OCR; A), basal respiration (B), maximal respiration (C), ATP generation (D) and spare respiratory capacity (E) were detected by Seahorse XF Cell Mito Stress Test Kit. Mean±SEM. n=6.
在糖酵解速率測試中,在加入2-DG前,LPS能夠顯著降低ECAR,在加入2-DG后,2-DG能夠通過競爭性結(jié)合糖酵解途徑的己糖激酶,從而引起ECAR進(jìn)一步降低(<0.01),見圖5A。測試結(jié)果顯示,LPS能夠誘導(dǎo)基礎(chǔ)glycoPER降低,表明LPS能夠顯著降低星形膠質(zhì)細(xì)胞乳酸的產(chǎn)生(<0.01),見圖5B;LPS能夠誘導(dǎo)代償性糖酵解(圖5C)和糖酵解途徑產(chǎn)生的PER百分比(圖5D)顯著降低(均<0.01),表明LPS可使星形膠質(zhì)細(xì)胞糖酵解水平顯著降低;mitoPER/glycoPER比值(圖5E)顯著升高(<0.01),表明經(jīng)過LPS處理后,星形膠質(zhì)細(xì)胞的代謝方式以有氧糖酵解為主,無氧糖酵解水平顯著降低。
Figure 5. Effects of LPS on the glycolysis rate of primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h, and then the extracellular acidification rate (ECAR; A), basic glycolytic proton efflux rate (glycoPER; B), compensatory glycolysis (C), percentage of PER produced by glycolysis (D) and the ratio of mitochondrial PER (mitoPER) to glycoPER (E) were measured by Seahorse XF Glycolytic Rate Assay Kit. Mean±SEM. n=6. **P<0.01 vs CON group.
盡管星形膠質(zhì)細(xì)胞在AD、PD等病理過程中發(fā)生的能量代謝變化已被研究,但在LPS刺激模型下,星形膠質(zhì)細(xì)胞的能量代謝模式是否會發(fā)生變化尚不清楚。本研究證實(shí),在LPS誘導(dǎo)星型膠質(zhì)細(xì)胞向A1毒性表型轉(zhuǎn)化的同時,線粒體呼吸功能并未發(fā)生顯著變化,而糖酵解功能顯著降低,提示星形膠質(zhì)細(xì)胞的糖酵解活性對LPS炎性刺激更為敏感。星形膠質(zhì)細(xì)胞被認(rèn)為是一種“糖酵解”細(xì)胞,會消耗大量的葡萄糖并產(chǎn)生乳酸,具有很高的有氧糖酵解能力[12]。星形膠質(zhì)細(xì)胞糖酵解活性的降低會導(dǎo)致其為自身提供能量的不足并減少乳酸釋放,而乳酸作為神經(jīng)元的主要能量來源,是維持神經(jīng)元活動所必須的[12],對谷氨酸引起的神經(jīng)元興奮性毒性損傷有抑制作用。本課題組研究發(fā)現(xiàn)LPS處理的星形膠質(zhì)細(xì)胞無氧糖酵解水平降低,乳酸產(chǎn)生減少,因此我們推測,糖酵解活性的降低可能是LPS誘導(dǎo)A1型星形膠質(zhì)細(xì)胞損傷神經(jīng)元的機(jī)制之一。
已有研究證實(shí),在同樣可誘導(dǎo)星形膠質(zhì)細(xì)胞向A1型轉(zhuǎn)化的Aβ刺激AD的模型中,星形膠質(zhì)細(xì)胞存活率顯著降低,同時線粒體呼吸功能被抑制,線粒體產(chǎn)生的ATP顯著減少[6, 13]。相似地,從PD患者腦內(nèi)提取的星形膠質(zhì)細(xì)胞(A1型)與正常細(xì)胞相比,線粒體呼吸功能也顯著下降,但無氧糖酵解活性顯著增強(qiáng)[5]。上述研究與本研究觀察到的A1型星形膠質(zhì)細(xì)胞的線粒體呼吸功能不變而糖酵解活性降低的現(xiàn)象并不一致。由于本研究中LPS處理對細(xì)胞存活率并無顯著影響,我們推測,在不同模型中,A1型星形膠質(zhì)細(xì)胞線粒體呼吸和糖酵解功能的不同變化可能與不同模型所致的細(xì)胞損傷程度的差異有關(guān)。A1型星形膠質(zhì)細(xì)胞的能量代謝在不同模型中可能具有異質(zhì)性。
此外,Voloboueva等[14]證實(shí),LPS(1 mg/L)處理BV2細(xì)胞3 h后,M1促炎表型顯著增加,基礎(chǔ)OCR值和ATP生成等表征線粒體能量代謝的指標(biāo)均顯著低于對照組,而ECAR表征的糖酵解代謝增強(qiáng)[15]。Namwanje等[16]發(fā)現(xiàn),LPS可使樹突細(xì)胞的代謝模式從高效的氧化磷酸化轉(zhuǎn)向糖酵解。以上結(jié)果與本研究中星形膠質(zhì)細(xì)胞在LPS刺激后所發(fā)生的糖酵解活性降低的結(jié)果相反,提示LPS刺激不同的細(xì)胞,其所發(fā)生的能量代謝模式的變化存在差異,這可能在一定程度影響了這些細(xì)胞在炎癥反應(yīng)中所發(fā)揮的不同作用。
綜上所述,LPS誘導(dǎo)的A1型星形膠質(zhì)細(xì)胞的能量代謝特征為線粒體呼吸功能不變而糖酵解活性降低。這種能量代謝模式的變化進(jìn)一步補(bǔ)充了A1型星形膠質(zhì)細(xì)胞產(chǎn)生神經(jīng)元毒性作用的機(jī)制。該研究為利用LPS模型探討星形膠質(zhì)細(xì)胞活性及功能變化提供了新的指標(biāo)。
[1] Miller SJ. Astrocyte heterogeneity in the adult central nervous system[J]. Front Cell Neurosci, 2018, 12:401.
[2] Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils?[J]. Neurochem Int, 2021, 148:105080.
[3] Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18):6391-6410.
[4] Goetzl EJ, Schwartz JB, Abner EL, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552.
[5] Ramos-Gonzalez P, Mato S, Chara JC, et al. Astrocytic atrophy as a pathological feature of Parkinson's disease with LRRK2 mutation[J]. NPJ Parkinsons Dis, 2021, 7(1):31.
[6] Xie Y, Zheng J, Li S, et al. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway[J]. Biochem Pharmacol, 2021, 188:114578.
[7] Neal M, Luo J, Harischandra D S, et al. Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes[J]. Glia, 2018, 66(10):2137-2157.
[8] Zhang HY, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment[J]. J Neuroinflammation, 2020, 17(1):200.
[9]喬圓,廖雁,南方,等. 組胺對星形膠質(zhì)細(xì)胞Egr-1表達(dá)的調(diào)節(jié)作用[J]. 中國病理生理雜志, 2016, 32(4):680-685.
Qiao Y, Liao Y, Nan F, et al. Effects of histamine on mRNA expression of Egr-1 in astrocytes[J]. Chin J Pathophysiol, 2016, 32(4):680-685.
[10] Mccann MS, Fernandez HR, Flowers SA, et al. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes[J]. Neurotoxicology, 2021, 86:59-68.
[11] Hamby ME, Uliasz TF, Hewett SJ, et al. Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes[J]. J Neurosci Methods, 2006, 150(1):128-137.
[12] Takahashi S. Neuroprotective function of high glycolytic activity in astrocytes: common roles in stroke and neurodegenerative diseases[J]. Int J Mol Sci, 2021, 22(12):6568.
[13] Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease[J]. Cold Spring Harb Perspect Biol, 2015, 7(6):a020628.
[14] Voloboueva LA, Emery JF, Sun X, et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin[J]. FEBS Lett, 2013, 587(6):756-762.
[15] Kucic N, Racki V, Sverko R, et al. Immunometabolic modulatory role of naltrexone in BV-2 microglia cells[J]. Int J Mol Sci, 2021, 22(16):8429.
[16] Namwanje M, Bisunke B, Rousselle TV, et al. Rapamycin alternatively modifies mitochondrial dynamics in dendritic cells to reduce kidney ischemic reperfusion injury[J]. Int J Mol Sci, 2021, 22(10):5386.
Characteristics of energy metabolism in lipopolysaccharide-induced A1-type astrocytes
ZHAO Jing, CHEN Ru, SHEN Gui-ping, ZHANG Hui-feng, FAN Yan-ying△
(,,030001,)
To investigate the change of energy metabolism during transformation of mouse cortical astrocytes to the A1 toxic phenotype induced by lipopolysaccharide (LPS).Primary mouse cortical astrocytes were divided into control (CON) group and LPS group after cultured for 8 to 9 d. Cell Counting Kit-8 (CCK-8) was used to detect the cell viability. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence. The expression of complement component 3 (C3) was detected by co-staining with GFAP. The mRNA levels of C3, guanylate-binding protein 2 (GBP2), S100 calcium-binding protein A10 (S100A10), transglutaminase 1 (TGM1) and interleukin-1β (IL-1β) after LPS treatment were detected by RT-qPCR. The expression of C3 protein was assessed by Western blot. The levels of cellular mitochondrial respiratory function and glycolysis were detected by Seahorse XFp live-cell bioenergy detection technology.Immunofluorescence staining showed that the percentage of GFAP reached more than 98%. Treatment with LPS did not change the viability of astrocytes. The mRNA levels of C3 and GBP2 were significantly increased at 24 h after treatment with LPS at the concentration of 100 μg/L (<0.01), while the expression of S100A10 and TGM1 did not change. Both Western blot and immunofluorescence staining showed C3 was significantly increased after treated with LPS (<0.01). The results of RT-qPCR showed that the mRNA level of IL-1β was significantly increased (<0.01). Mitochondrial pressure measurement showed that there was no significant difference in oxygen consumption rate (OCR), an indicator of mitochondrial respiration, between control group and LPS group. Glycolysis rate-related indicators such as extracellular acidification rate (ECAR), basal glycolytic proton efflux rate (glycoPER), compensatory glycolysis, the percentage of glycoPER, and mitochondial proton efflux rate (mitoPER)/glycoPER were decreased significantly after LPS treatment (<0.01).LPS induces the transformation of astrocytes to A1 phenotype and reduces the level of anaerobic glycolysis, but did not change the mitochondrial aerobic respiration.
Astrocytes; Lipopolysaccharides; Energy metabolism
R741.02; R363.2
A
10.3969/j.issn.1000-4718.2022.06.002
1000-4718(2022)06-0970-08
2022-01-20
2022-03-16
國家自然科學(xué)基金資助項(xiàng)目(No. 81872854; No. 81202520)
Tel: 0351-4135172; E-mail: fyanying6@hotmail.com
(責(zé)任編輯:盧萍,羅森)