王明鶴, 楊峰, 常成, 高曉群△
木犀草素對缺氧缺血性腦損傷新生大鼠的神經(jīng)保護(hù)作用*
王明鶴1, 楊峰1, 常成2, 高曉群2△
(1鄭州衛(wèi)生健康職業(yè)學(xué)院基礎(chǔ)教學(xué)部,河南 鄭州 450122;2鄭州大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖學(xué)系,河南 鄭州 450001)
探究木犀草素(Lut)對缺氧缺血性腦損傷(HIBD)新生大鼠是否具有神經(jīng)保護(hù)作用及其作用機(jī)制。將7日齡新生大鼠分為假手術(shù)組、模型組(HIBD組)和Lut治療組(HIBD+Lut組)。用Rice-Vannucci法建立新生大鼠HIBD模型。HIBD+Lut組在造模后即刻通過腹腔注射給予50 mg/kg Lut,連續(xù)3 d,模型組和假手術(shù)組同時腹腔注射等體積生理鹽水。3 d后,用氯化三苯基四氮唑(TTC)染色評估腦梗死范圍;用干/濕重腦含水量法評估缺血腦半球的腦水腫情況;用蘇木精-伊紅(HE)染色以及原位末端轉(zhuǎn)移酶標(biāo)記(TUNEL)和神經(jīng)元核抗原(NeuN)熒光雙標(biāo)共定位法觀察缺血腦半球海馬和皮質(zhì)中神經(jīng)元損傷情況;用商用試劑盒檢測缺血腦半球中超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GSH-Px)和過氧化氫酶(CAT)活性及丙二醛(MDA)水平;用Western blot法檢測缺血腦半球的海馬和皮質(zhì)中核因子E2相關(guān)因子2(NRF-2)和血紅素加氧酶1(HO-1)的蛋白表達(dá)水平。取35日齡大鼠,用水迷宮實驗評估大鼠的認(rèn)知功能情況。與假手術(shù)組比較,HIBD組大鼠腦梗死、腦水腫、海馬和皮質(zhì)中神經(jīng)元損傷均顯著增加(<0.05或<0.01);而Lut治療顯著改善了HIBD大鼠的上述情況(<0.05或<0.01)。同時,Lut逆轉(zhuǎn)了HIBD導(dǎo)致的缺血腦半球中SOD、CAT和GSH-Px活性降低和MDA水平升高(<0.05或<0.01)。Western blot結(jié)果顯示,與假手術(shù)組比較,HIBD組缺血半球腦海馬和皮質(zhì)中NRF-2和HO-1的蛋白表達(dá)水平均增加(<0.05或<0.01);Lut治療進(jìn)一步增加了HIBD大鼠缺血半球海馬和皮質(zhì)中NRF-2和HO-1的蛋白表達(dá)水平(<0.01)。Lut可能通過抗氧化作用減輕HIBD新生大鼠腦梗死、腦水腫及皮質(zhì)和海馬CA1區(qū)神經(jīng)元損傷,改善后期的認(rèn)知功能。
缺氧缺血性腦損傷;木犀草素;神經(jīng)元凋亡;認(rèn)知功能;NRF-2/HO-1信號通路
新生兒缺血缺氧性腦損傷(hypoxic-ischemic brain damage, HIBD)是一種以腦缺氧、腦血流量減少和短暫通氣障礙為特征的新生兒臨床綜合征[1]。統(tǒng)計數(shù)據(jù)表明,每1 000名新生兒中約有3~6名患有HIBD[2]。目前新生兒HIBD的臨床療法包含亞低溫、吸氧、甘露醇和腦細(xì)胞營養(yǎng)藥等[3]。然而,經(jīng)過這些方法治療后,仍有高達(dá)40%以上的HIBD新生兒出現(xiàn)如腦癱、癲癇、認(rèn)知障礙、發(fā)育遲緩以及社交障礙等多種神經(jīng)系統(tǒng)后遺癥甚至死亡[4]。因此,迫切需要尋找其他安全且有效的治療新生兒HIBD措施。
新生兒HIBD的病理生理機(jī)制包括興奮性毒性、氧化應(yīng)激、神經(jīng)炎癥和細(xì)胞凋亡等,涉及多種病理生理過程的相互作用[1,5]。越來越多的證據(jù)表明,氧化應(yīng)激與新生兒HIBD的發(fā)病機(jī)理密切相關(guān)[6-7]。HIBD后,新生兒大腦由于對氧的需求大,活性氧簇(reactive oxygen species, ROS)的過量產(chǎn)生和細(xì)胞抗氧化劑系統(tǒng)的崩潰會觸發(fā)脂質(zhì)過氧化、蛋白質(zhì)氧化和核酸損傷,繼而導(dǎo)致腦功能障礙和神經(jīng)元損傷[7]。
木犀草素(luteolin, Lut)是一種存在于多種植物中具有如抗氧化、抗炎和神經(jīng)保護(hù)等廣泛藥理活性的黃酮化合物[8]。近來研究顯示,Lut具有在中風(fēng)和腦缺血性損傷中具有神經(jīng)保護(hù)作用[9]。另外,7 d齡新生大鼠的大腦發(fā)育情況在組織學(xué)上與32~34周胎兒和新生兒相似,且Rice-Vannucci模型也常被用于模擬新生兒HIBD的研究[10-12]。因此,本研究主要探索Lut在Rice-Vannucci模型新生大鼠中是否具有神經(jīng)保護(hù)及其機(jī)制,以期為新生兒HIBD提供潛在的候選治療藥物。
Lut(純度98%;#L812409)、焦油紫(#C861450)和氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride, TTC; #T819366)購自上海麥克林生化科技有限公司;一步法FITC標(biāo)記TUNEL細(xì)胞凋亡原位檢測試劑盒(#KGA7072)購自江蘇凱基生物技術(shù)股份有限公司;谷胱甘肽過氧化物酶(glutathione peroxidase, GSH-Px)測定試劑盒(#A005)、超氧化物歧化酶(superoxide dismutase, SOD)測定試劑盒(#A001)、過氧化氫酶(catalase, CAT)測定試劑盒(#A007)和丙二醛(malondialdehyde, MDA)測定試劑盒(#A003)均購自南京建成生物工程研究所有限公司;神經(jīng)元核抗原(neuronal nuclear antigen, NeuN)兔源抗體(#BS6808)、核因子E2相關(guān)因子2(nuclear factor E2-related factor-2, NRF-2)兔源抗體(#GCP86)、血紅素加氧酶1(heme oxygenase-1, HO-1)兔源抗體(#BS6626)、羊抗兔TRITC熒光Ⅱ抗(#BD5005)和羊抗兔IgG (H+L)-HRP(#BS13278)購自南京巴傲得生物科技有限公司;GAPDH兔源抗體(#WL01114)購自萬類生物科技有限公司;RIPA裂解液(#P0013C)和BeyoECL Plus試劑盒(#P10018S)購自上海碧云天生物技術(shù)有限公司。
12只6~7周齡SPF級SD大鼠,雌雄各6只,來源于河南省動物實驗中心,生產(chǎn)許可證號為SCXK(豫)2017-0001。將大鼠常規(guī)飼養(yǎng)在SPF環(huán)境中,待飼養(yǎng)約3周(體重約240 g左右),用陰道涂片檢測到雌鼠在發(fā)情期時,將其與雄鼠分別合籠交配后,將孕鼠繼續(xù)常規(guī)飼養(yǎng),待產(chǎn)下仔鼠后,將仔鼠與母鼠共同飼養(yǎng)。取7日齡新生大鼠進(jìn)行后續(xù)實驗。
3.1構(gòu)建HIBD大鼠模型和分組將每窩7 d齡的新生大鼠均隨機(jī)分成3組:假手術(shù)組(sham組)、模型組(HIBD組)和Lut治療組(HIBD+Lut組)。HIBD模型制作參考Rice-Vannucci模型[10-12],首先將7日齡大鼠通過吸入乙醚麻醉,在頸部中線位置切開,暴露左頸總動脈并剝離迷走神經(jīng)和靜脈,然后用6-0手術(shù)線結(jié)扎兩頭并在結(jié)扎之間切斷動脈,外科縫合手術(shù)傷口,每次手術(shù)控制在5 min內(nèi),手術(shù)過程的動物體溫用保溫毯維持在37 ℃,待麻醉蘇醒2 h后,將其置于一個低氧環(huán)境中(8%氧氣和92%氮?dú)獾幕旌蠚猓?.5 h,溫度維持在37 ℃。假手術(shù)組除不結(jié)扎外和低氧處理外,其余手術(shù)同造模。HIBD+Lut組在造模后即刻通過腹腔注射給予50 mg/kg Lut(Lut的劑量參閱文獻(xiàn)[8, 13-14]和預(yù)實驗),連續(xù)3 d。模型組和假手術(shù)組同時腹腔注射等量生理鹽水。
3.2腦梗死范圍評估每組任選5只10日齡大鼠,麻醉后,取腦并在-20 ℃冷凍10 min,切為2 mm厚的連續(xù)大腦冠狀切片。在37 ℃下,將切片浸泡在2%TTC溶液(PBS配制)中25 min。用ImageJ軟件量化每個切片的梗死(蒼白色部位)面積。梗死體積表示為所有切片的梗死面積×層厚(2 mm)之和。
3.3腦含水量檢測每組任選5只10日齡大鼠,麻醉后,取腦缺血半球(左側(cè)腦半球),立刻測量樣本濕重,然后將樣本置于65 ℃的烤箱中24 h,再次測量其干重。腦含水量(%)=(濕重-干重)/濕重×100%。
3.4HE染色每組任選5只10日齡大鼠,麻醉后,取左側(cè)腦半球,用4%多聚甲醛在4 ℃固定24 h后進(jìn)行石蠟包埋,并分離海馬和皮質(zhì)組織,制作石蠟切片(5 μm厚)。切片經(jīng)脫蠟和梯度乙醇水合后,對切片進(jìn)行HE染色,在光學(xué)顯微鏡下觀察細(xì)胞形態(tài)。
3.5NeuN和TUNEL雙標(biāo)熒光染色取石蠟鑲嵌石蠟的海馬和皮質(zhì)腦切片,經(jīng)脫蠟和梯度乙醇水合后,用不含DNase的蛋白酶K(終濃度為20 mg/L)孵育10 min,PBS浸洗3次×3 min,滴加NeuN(1∶500)抗體和FITC標(biāo)記的TUNEL檢測液(50 μL),37 ℃下在避光的潮濕環(huán)境中孵育60 min。PBS浸洗3次×3 min,滴加羊抗兔TRITC熒光Ⅱ抗(1∶500),37 ℃下在避光的潮濕環(huán)境中孵育45 min。用DAPI孵育2 min。在顯微鏡下拍攝圖像。每個切片任選5個不重疊的隨機(jī)視野,并計數(shù)每個視野下的皮層和海馬中凋亡神經(jīng)元(TUNEL+NeuN+細(xì)胞)數(shù)量和NeuN+細(xì)胞數(shù)量,每個視野下凋亡神經(jīng)元的比例(%)=TUNEL+NeuN+細(xì)胞數(shù)/TUNEL+細(xì)胞數(shù)×100%。每組納入5只大鼠,每只大鼠至少計數(shù)6個切片。
3.6氧化應(yīng)激指標(biāo)的檢測將10 d齡大鼠左側(cè)半球的海馬和皮質(zhì)組織用0.9%生理鹽水勻漿以制備10%的腦組織勻漿液,然后以2 500×、4 ℃離心10 min獲得上清液后,利用商用試劑盒通過酶標(biāo)儀來對SOD、GSH-Px、CAT和MDA的水平以及蛋白質(zhì)濃度進(jìn)行測定。GSH-Px的水平由其在反應(yīng)體系中消耗每1 mg中含有1 μmol/L GSH的蛋白質(zhì)的速率來表示,單位為U/mg。用亞硝酸鹽法測定SOD的活性(生成的紫紅色化合物,檢測550 nm處吸光度,SOD活性用U/mg表示)。用鉬酸銨法測定CAT活性(生成蠟黃色絡(luò)合物,檢測405 nm處吸光度,CAT活性用U/mg表示)。用巰基苯甲酸法檢測MDA的含量(生成紅色化合物,檢測532 nm處吸光度,MDA含量用nmol/mg表示)。
3.7Western blot檢測p-PI3K、PI3K、p-Akt、Akt和VEGF的蛋白水平通過RIPA裂解緩沖液裂解各組左側(cè)半球海馬和皮質(zhì)組織,超聲破碎后,在4 ℃下以11 000×離心12 min,取上清。并通過BCA試劑盒對上清進(jìn)行蛋白濃度檢測。取等量蛋白通過SDS-PAGE凝膠電泳分離蛋白質(zhì)樣品,并轉(zhuǎn)移到PVDF膜上并封閉。4 ℃下,將膜分別與1∶1 000稀釋的NRF-2、HO-1和GADPH抗體孵育過夜,用TBS浸洗3次×5 min,之后將膜與1∶1 000稀釋羊抗兔IgG (H+L)-HRP Ⅱ抗室溫孵育2 h,用TBS浸洗3次×5 min。用BeyoECL Plus試劑盒顯示條帶蛋白,并用eBlot化學(xué)發(fā)光成像系統(tǒng)采集圖像和分析目的蛋白相對GADPH的表達(dá)水平。
3.8水迷宮實驗將大鼠飼養(yǎng)至35日齡后,進(jìn)行水迷宮實驗。將35日齡大鼠置于站臺(置于水下1.5 cm)外的一個象限入水(水溫25 ℃),連續(xù)5 d,每天用攝影儀監(jiān)測的大鼠的游泳路徑并計算逃避潛伏期。第6天,撤除站臺,監(jiān)測大鼠穿越原站臺位置的次數(shù)和原站臺所在象限滯留的時間。
數(shù)據(jù)表示為均數(shù)±標(biāo)準(zhǔn)差(mean±SD),用SPSS 20.0軟件采用單因素方差分析法對數(shù)據(jù)進(jìn)行分析,均數(shù)的兩兩比較采用事后Bonferroni校正。以<0.05為差異有統(tǒng)計學(xué)意義。
如圖1所示,與sham組相比,HIBD組腦梗死體積(圖1A)和左半球腦含水量(圖1B)均顯著增加(<0.05或<0.01);與HIBD組相比,HIBD+Lut組腦梗死體積(圖1A)和腦含水量(圖1B)均顯著減少(<0.05或<0.01)。
Figure 1. Luteolin (Lut) alleviated cerebral infarction and cerebral edema after HIBD. A: representative TTC staining images and quantitative analysis of cerebral infarct size in each group (red represented normal brain tissue, and pale represented infarcted brain tissue); B: quantitative analysis of brain water content in each group. Mean±SD. n=5. #P<0.05,###P<0.01 vs sham group;*P<0.05,**P<0.01 vs HIBD group.
HE染色(圖2A)顯示,sham組腦組織中細(xì)胞核大、細(xì)胞漿少,且密度多正常;HIBD組缺血半球的皮質(zhì)和海馬區(qū)細(xì)胞呈現(xiàn)腫脹、球囊樣變、細(xì)胞稀疏、間隙增寬、細(xì)胞排列紊亂,且部分細(xì)胞發(fā)生核固縮;HIBD+Lut組缺血半球的皮質(zhì)和海馬區(qū)中細(xì)胞形態(tài)和密度趨向正常。NeuN和TUNEL雙標(biāo)熒光共定位染色顯示,與sham組相比,HIBD組缺血半球腦組織皮質(zhì)(圖2B)和海馬CA1區(qū)(圖2C)凋亡神經(jīng)元均顯著增多(<0.01);與HIBD組相比,HIBD+Lut組缺血半球腦組織皮質(zhì)(圖2B)和海馬CA1區(qū)(圖2C)凋亡神經(jīng)元均顯著減少(<0.01)。
Figure 2. Luteolin (Lut) reduced neuronal injury after HIBD. A: representative HE staining images of the cortex and hippocampal CA1 region in each group (scale bar=20 μm); B: representative NeuN (red) and TUNEL (green) co-location staining images and quantified results of apoptotic neurons in the cortex (scale bar=20 μm); C: representative NeuN (red) and TUNEL (green) co-location staining images and quantified results of apoptotic neurons in the hippocampal CA1 region (scale bar=20 μm). Mean±SD. n=5. ##P<0.01 vs sham group;**P<0.01 vs HIBD group.
如圖3所示,與sham組相比,HIBD組缺血半球腦組織中MDA含量(圖3A)顯著升高(<0.01),SOD(圖3B)、CAT(圖3C)和GSH-Px(圖3D)活性均顯著降低(<0.01);與HIBD組相比,HIBD+Lut組缺血半球腦組織中MDA含量(圖3A)顯著降低(<0.05),SOD(圖3B)、CAT(圖3C)和GSH-Px(圖3D)活性均顯著升高(<0.05或<0.01)。
Figure 3. Luteolin (Lut) reduced oxidative stress in brain tissues after HIBD. A: quantitative analysis of MDA content; B: quantitative analysis of SOD activity; C: quantitative analysis of CAT activity; D: quantitative analysis of GSH-Px activity. Mean±SD. n=5. ##P<0.01 vs sham group;*P<0.05,**P<0.01 vs HIBD group.
Western blot結(jié)果顯示,與sham組相比,HIBD組缺血半球的海馬和皮質(zhì)中NRF-2和HO-1的蛋白表達(dá)水平均顯著增加(<0.05或<0.01);與HIBD組相比,HIBD+Lut組缺血半球海馬和皮質(zhì)中NRF-2和HO-1的蛋白表達(dá)水平均顯著增加(<0.01),見圖4。
Figure 4. Luteolin (Lut) promoted the protein expression of NRF-2 and HO-1 in brain tissues after HIBD. A: the protein expression levels of NRF-2 and HO-1 in the cortex were detected by Western blot; B: the protein expression levels of NRF-2 and HO-1 in the hippocampal CA1 region were detected by Western blot. Mean±SD. n=5. #P<0.05,##P<0.01 vs sham group;**P<0.01 vs HIBD group.
水迷宮實驗分析結(jié)果(圖5)顯示,在35日齡時,與sham組相比,HIBD組大鼠的逃避潛伏期顯著延長(<0.01),與HIBD組相比,HIBD+Lut組大鼠的逃避潛伏期顯著縮短(<0.01);各組大鼠的游泳速度并未見顯著差異(>0.05);移除站臺后,HIBD+Lut組較HIBD組大鼠探索隱藏站臺時間顯著延長(<0.01),且穿越隱藏站臺次數(shù)顯著增多(<0.01)。
Figure 5. Luteolin (Lut) improved cognitive function in HIBD rats. A: swimming track diagram of each group; B: escape latency of rats in each group; C: swimming speed of rats in each group; D: the time of exploring hidden platform in each group; E: the number of crossing hidden platform in each group. Mean±SD. n=5. ##P<0.01 vs sham group;**P<0.01 vs HIBD group.
由宮內(nèi)窒息、圍產(chǎn)期窒息或產(chǎn)后窒息造成的新生兒HIBD是導(dǎo)致全球新生兒因神經(jīng)系統(tǒng)致殘的常見病因之一[1-4]。目前并沒有根治新生兒HIBD的辦法。基于7日齡新生大鼠建立的Rice-Vannucci模型[10-12]是用于模擬新生兒HIBD的常用模型,本研究采用該模型研究Lut對新生大鼠HIBD的影響。腦梗死和腦水腫是評估藥物對缺氧缺血性腦病有效性的關(guān)鍵指標(biāo),腦梗死和腦水腫程度不僅能反映此病的急性期腦損傷狀況,而且也能影響此病的長期神經(jīng)恢復(fù)情況[15]。另外,未發(fā)育成熟的大腦海馬CA1區(qū)易受到缺血缺氧誘導(dǎo)的損傷,而海馬CA1區(qū)也是影響認(rèn)知和學(xué)習(xí)功能的關(guān)鍵區(qū)域[16]。本研究顯示,Lut不僅在腦損傷的急性期改善HIBD新生大鼠的腦梗死和腦水腫,減輕HIBD引起的皮質(zhì)和海馬CA1區(qū)神經(jīng)元損傷,并且在后期改善認(rèn)知功能,提示Lut可在HIBD新生大鼠中能發(fā)揮神經(jīng)保護(hù)作用,是潛在的HIBD候選治療藥物。
氧化應(yīng)激被認(rèn)為是新生兒腦損傷后最早出現(xiàn)的病理變化。新生兒腦代謝旺盛,腦耗氧需求量高,又含有高濃度的不飽和脂肪酸并且內(nèi)源性的抗氧化酶含量低,加之活性鐵的存在,極易受到氧化損傷[1, 5-7, 17]。Bratek等[18]研究表明,乙酰天冬氨酰谷氨酸治療可通過降低腦內(nèi)氧化應(yīng)激反應(yīng)進(jìn)而改善新生大鼠HIBD導(dǎo)致的腦損傷和認(rèn)知功能障礙。本研究顯示,Lut治療顯著增加了腦組織中內(nèi)源性抗氧化酶SOD、CAT和GSH-Px的活性,且降低了脂質(zhì)過氧化,體現(xiàn)了Lut在HIBD模型新生大鼠腦內(nèi)的抗氧化應(yīng)激的作用。NRF-2/HO-1信號通路是機(jī)體內(nèi)主要的抗氧化系統(tǒng)信號通路之一,其在受到氧化損傷時被激活[19]。已有研究[20]報道,在新生大鼠的腦缺血組織中NRF-2和HO-1表達(dá)上調(diào),進(jìn)一步增加NRF-2/HO-1信號活性則能增強(qiáng)下游抗氧化酶(如HO、SOD、CAT和GSH-Px等)活性,降低腦損傷。本研究也顯示,Lut能增強(qiáng)HIBD模型新生大鼠缺血腦半球皮質(zhì)和海馬中NRF-2/HO-1活性。
綜上所述,本研究證明了Lut在HIBD模型新生大鼠腦損傷的急性期可減輕腦梗死、腦水腫及皮質(zhì)和海馬CA1區(qū)神經(jīng)元損傷,降低腦內(nèi)氧化應(yīng)激反應(yīng),增強(qiáng)NRF-2/HO-1活性,并且在后期可改善認(rèn)知功能。
[1] Y?ld?z EP, Ekici B, Tatl? B. Righini, neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment[J]. Expert Rev Neurother, 2017, 17(5):449-459.
[2] Lee BL, Glass HC. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalo-pathy[J]. Clin Exp Pediatr, 2021, 64(12):608-618.
[3] Nair J, Kumar VHS. Current and emerging therapies in the management of hypoxic ischemic encephalopathy in neonates[J]. Children (Basel), 2018, 5(7):99.
[4] Papazian O. Neonatal hypoxic-ischemic encephalopathy[J]. Medicina (B Aires), 2018, 78(Suppl 2):36-41.
[5] Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2):277-288.
[6] Solev?g AL, Schm?lzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia[J]. Free Radic Biol Med, 2019, 142:113-122.
[7] Thornton C, Baburamani AA, Kichev A, et al. Oxidative stress and endoplasmic reticulum (ER) stress in the deve-lopment of neonatal hypoxic-ischaemic brain injury[J]. Biochem Soc Trans, 2017, 45(5):1067-1076.
[8]吳兵,生夢飛,張想旺,等. 木犀草素對脊髓損傷大鼠Nrf2/HO-1通路的影響[J]. 中國藥師, 2021, 24(10):1833-1837.
Wu B, Sheng MF, Zhang XW, et al. Effects of luteolin on Nrf2/HO-1 pathway in rats with spinal cord injury[J]. Chin Pharm, 2021, 24(10):1833-1837.
[9] Dong R, Huang R, Shi X, et al. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification[J]. Bioengineered, 2021, 12(2):12274-12293.
[10]蔡晨晨,葉麗霞,朱將虎,等. 鞣花酸通過降低自噬作用減輕缺氧缺血性腦損傷[J]. 中國病理生理雜志, 2019, 35(2):311-319.
Cai CC, Ye LX, Zhu JH, et al. Ellagic acid attenuates hypoxic-ischemic brain injury by alleviating autophagy[J]. Chin J Pathophysiol, 2019, 35(2):311-319.
[11]歐陽穎,蘇浩彬,薛紅漫,等. 丙酮酸乙酯對缺氧缺血性腦損傷新生大鼠腦組織的保護(hù)作用[J]. 中國病理生理雜志, 2013, 29(7):1181-1185.
Ou-yang Y, Su HB, Xue HM, et al. Protective effect of ethyl pyruvate on brain tissues in neonatal rats with hypoxic-ischemic brain damage[J]. Chin J Pathophysiol, 2013, 29(7):1181-1185.
[12] Lan XB, Wang Q, Yang JM, et al. Neuroprotective effect of vanillin on hypoxic-ischemic brain damage in neonatal rats[J]. Biomed Pharmacother, 2019, 118:109196.
[13] Su J, Xu HT, Yu JJ, et al. Luteolin ameliorates lipopolysaccharide-induced microcirculatory disturbance through inhibiting leukocyte adhesion in rat mesenteric venules[J]. BMC Complement Med Ther, 2021, 21(1):33.
[14] Huang Y, Zhang X. Luteolin alleviates polycystic ovary syndrome in rats by resolving insulin resistance and oxidative stress[J]. Am J Physiol Endocrinol Metab, 2021, 320(6):E1085-E1092.
[15] Nakano T, Nishigami C, Irie K, et al. Goreisan prevents brain edema after cerebral ischemic stroke by inhibiting aquaporin 4 upregulation in mice[J]. J Stroke Cerebrovasc Dis, 2018, 27(3):758-763.
[16] Li Z, Fang F, Wang Y, et al. Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats[J]. Pharmacol Biochem Behav, 2016, 146/147:21-27.
[17] Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies[J]. Int J Mol Sci, 2016, 17(12):2078.
[18] Bratek E, Ziembowicz A, Salinska E, et al.-acetylaspartylglutamate (NAAG) pretreatment reduces hypoxic-ischemic brain damage and oxidative stress in neonatal rats[J]. Antioxidants (Basel), 2020, 9(9):877.
[19] Yang BB, Zou M, Zhao L, et al. Astaxanthin attenuates acute cerebral infarction via Nrf-2/HO-1 pathway in rats[J]. Curr Res Transl Med, 2021, 69(2):103271.
[20] Qiu J, Chao D, Sheng S, et al. δ-opioid receptor-Nrf-2-mediated inhibition of inflammatory cytokines in neonatal hypoxic-ischemic encephalopathy[J]. Mol Neurobiol, 2019, 56(7):5229-5240.
Neuroprotective effect of luteolin on neonatal rats with hypoxic-ischemic brain damage
WANG Ming-he1, YANG Feng1, CHANG Cheng2, GAO Xiao-qun2△
(1,,450122,;2,,,450001,)
To investigate the effects of luteolin (Lut) on hypoxic-ischemic brain damage (HIBD) in neonatal rats and its mechanism.Seven-day-old neonatal rats were divided into sham group, model group (HIBD group) and Lut treatment group (HIBD+Lut group). The HIBD model of neonatal rats was established by Rice-Vannucci method. The rats in HIBD+Lut group were given 50 mg/kg Lut by intraperitoneal injection immediately after modeling for 3 consecutive days, while the rats in model group and sham group were intraperitoneally injected with the same volume of normal saline. Three days later, the size of cerebral infarction was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The cerebral edema of ischemic hemisphere was assessed by dry/wet weight brain water content method. The injury of neurons in the hippocampus and cortex of ischemic cerebral hemisphere was observed by HE staining and TUNEL-NeuN fluorescence co-location. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the content of malondialdehyde (MDA) in ischemic cerebral hemisphere were measured with commercial kits. The expression levels of nuclear factor E2-related factor-2(NRF-2) and heme oxygenase-1 (HO-1) proteins in the hippocampus and cortex of ischemic cerebral hemisphere were detected by Western blot. The cognitive function of 35-day-old rats was evaluated by water maze test.Compared with sham group, cerebral infarction, cerebral edema, and neuronal injury in the hippocampus and cortex were all significantly increased in HIBD group (<0.05 or<0.01). However, the above situation of HIBD rats was significantly improved after Lut treatment (<0.05 or<0.01). Meanwhile, Lut reversed the decrease in SOD, CAT and GSH-Px activity and the increase in MDA content in ischemic cerebral hemisphere induced by HIBD (<0.05 or<0.01). Western blot results showed that compared with sham group, the expression levels of NRF-2 and HO-1 proteins in the hippocampus and cortex of ischemic hemisphere in HIBD group were increased (<0.05 or<0.01), while Lut treatment further increased NRF-2 and HO-1 protein expression levels in the hippocampus and cortex of ischemic hemispheres of HIBD rats (<0.01).Treatment with Lut alleviates cerebral infarction, cerebral edema, neuronal damage in the cortex and hippocampal CA1 region and later cognitive dysfunction in neonatal HIBD rats through antioxidant effect.
Hypoxic-ischemic brain damage; Luteolin; Neuronal apoptosis; Cognitive function; NRF-2/HO-1 signaling pathway
R722.1; R363.2
A
10.3969/j.issn.1000-4718.2022.06.005
1000-4718(2022)06-0993-08
2022-02-09
2022-03-18
國家衛(wèi)生健康委出生缺陷預(yù)防重點(diǎn)實驗室2019年開放課題(No. ZD201901)
Tel: 0371-66658363; E-mail: gxq@zzu.edu.cn
(責(zé)任編輯:林白霜,李淑媛)