楊川 李棟龍 周虹
摘? 要:應(yīng)用Hirota方法及擴(kuò)展的同宿測試法對(duì)廣義的Vakhnenko方程進(jìn)行研究,獲得了該方程周期孤立波解。
關(guān)鍵詞:Hirota方法;擴(kuò)展的同宿測試法;廣義Vakhnenko方程;周期孤立波解
中圖分類號(hào):O175.2? ? ? ? ? DOI:10.16375/j.cnki.cn45-1395/t.2022.03.018
0? ?引言
隨著當(dāng)代數(shù)學(xué)和物理學(xué)的發(fā)展,非線性科學(xué)日顯重要,其中非線性偏微分方程是非線性科學(xué)的重要內(nèi)容之一,故尋找非線性偏微分方程的精確解是數(shù)學(xué)家和物理學(xué)家的重要研究課題。至今,人們創(chuàng)造并發(fā)展了很多求非線性方程精確解的方法,如逆散射法[1]、B?cklund變換法[2]、齊次平衡法[3]、雙曲函數(shù)展開法[4]、擴(kuò)展的雙曲函數(shù)展開法[5]、Jacobi橢圓函數(shù)展開法[6]和Hirota變換法[7]等。近年來,許多學(xué)者致力于Hirota變換法的各種推廣和應(yīng)用[8-11],使得Hirota變換法有了進(jìn)一步的發(fā)展和拓展。這些求解非線性方程精確解的方法有力地推動(dòng)了非線性科學(xué)的發(fā)展。
Vakhnenko方程(Vakhnenko equation,VE)是研究某種處于松弛介質(zhì)中的高頻波的數(shù)學(xué)模型[12],公式如式(1)所示:
[??xAu+u=0 ].? ? ? ? ? ? ? ? ? ? ? ? (1)
其中:[A=??t+u??x] ,[u]表示無維壓力變量,[x]和[t]分別表示空間和時(shí)間變量。對(duì)于邊界條件,即當(dāng)[|x|→∞]時(shí),[u→0],具有多回形孤子解[13]。
廣義的Vakhnenko方程(generalised Vakhnenko equation,GVE)[14],即:
[??x(A2u+qu2+βu)+qAu=0] .? ? ? ? ?(2)
其中:[β]、[q]是任意的非零常數(shù),其具有回形孤子解、駝峰型和尖型孤子解。Vakhnenko等[15]用B?cklund轉(zhuǎn)換法和逆散射法對(duì)方程在[q=1]時(shí)進(jìn)行了求解,分別得到了方程具有一個(gè)無限序列守恒定律的結(jié)論和N-孤子解。El-Nahhas[16]用同倫分析法對(duì)Vakhnenko方程求解并得到了單回形孤子解。Hirota等[17]用因變量轉(zhuǎn)換法(dependent variables transition,DVT)求出多孤子解。Li[18]通過研究描述電磁物理學(xué)中高頻波(high frequency wave,HFW)傳播的Vakhnenko方程來描述一種新型的呼吸器。通過在Hirota雙線性法中將雙線性函數(shù)擴(kuò)展為混合指數(shù)函數(shù)和三角余弦函數(shù),構(gòu)建了一個(gè)解析多值函數(shù)解,這是一個(gè)經(jīng)過驗(yàn)證的環(huán)狀扭結(jié)呼吸器。Abdou等[19]基于三波法得到Vakhnenko方程單一的周期孤立波解。Li等[20]基于擴(kuò)展的同宿測試法獲得Vakhnenko方程的N-loop解。本文主要應(yīng)用Hirota方法及擴(kuò)展的同宿測試法在文獻(xiàn)[14]基礎(chǔ)上對(duì)廣義的Vakhnenko方程(GVE) 求解其周期孤立波解并對(duì)解進(jìn)行討論。
1? ? 精確解及解的分析
式(2)([q=1])對(duì)應(yīng)的雙線性形式[14]為:
[(βDXDT+D3XDT+D2X)f?f=0].? ? ? ? ? ? (3)
其中:X、T分別表示空間和時(shí)間變量。
Hirota雙線性算子定義為:
[DmxDkt(a?b)=(??x-??x)m(??t-]
[??t)ka(x, t)b(x, t)|x=x, t=t]? .? ? ? ? ?(4)
為了獲得新周期孤立波解,作如下假設(shè):
假設(shè)1
[f=e-Ω(X+α2T)+b1cosp(X-α1T)+b2eΩ(X+α2T)].(5)
其中:[αj、bj、p、Ω(j=1, 2)]是實(shí)數(shù)。
將式(5)代入式(3)化簡后得到:
[2b1b2pΩ[(3p2-Ω2-β)α1+? ? ? ? ? ? ? ? ? ? ? ? ? (3Ω2-p2+β)α2+2]sin(η)sinh(ξ)+2b1b2[p2(3Ω2-p2+β)α1+Ω2(Ω2-3p2+β)α2+? ? ? ? ? ? ? ? ? ? ? ? ?(Ω2-p2)]cos(η)cosh(ξ)+b21p2(β-4p2)α1-1]+? ? ? ? ? ? ? ? ? ? ? ? ?[4b2Ω2[(β+4Ω2)α2+1]=0.]
其中:[η=p(X-α1T)], [ξ=Ω(X+α2T)+lnb2],令[sin(η)sinh(ξ)]、[cos(η)cosh(ξ)]的系數(shù)及常數(shù)項(xiàng)等于0,可求得:
[α1=-p2+Ω2-β(p2+Ω2)2+2β(Ω2-p2)+β2, α2=-p2+Ω2+β(p2+Ω2)2+2β(Ω2-p2)+β2,b2=-14b21p2(3p2-Ω2-3β)Ω2(p2-3Ω2-3β).]? ? ? ? (6)
并可得到周期孤立波解:
[U=6(lnf)XX=12b1b2(Ω2-p2)cosp(X-α1T)cosh[Ω(X+α2T)+lnb2]{b1cosp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2+24b1b2pΩsinp(X-α1T)sinh[Ω(X+α2T)+lnb2]{b1cosp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2+][24b2Ω2-6b21p2{b1cosp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2].(7)
[U]中的各常數(shù)關(guān)系由式(6)給出:
1)若[α1α2>0],[b2>14b21],[U]中的[X]和[T]取任何值都不會(huì)使其分母為0,此時(shí)得到非奇異的周期孤立波解,見圖1。
2)若[α1α2>0],[0<b2<14b21],此時(shí)當(dāng)[X]和[T]取某些值時(shí),可使表達(dá)式(7)的分母為0,則這時(shí)的[U]為奇異的周期孤立波解,見圖2,奇異的部分已被截?cái)唷?/p>
假設(shè)2
[f=e-Ω(X+α2T)+b1sinp(X-α1T)+b2eΩ(X+α2T)] . (8)
將式(8)代入式(3)化簡后得到:
[2b1b2pΩ[(3p2-Ω2-β)α1+(3Ω2-p2+β)α2+2]cos(η)sinh(ξ)+2b1b2[p2(3Ω2-p2+β)α1+Ω2(Ω2-3p2+β)α2+(Ω-p2)]sin(η)cosh(ξ)+b21p2[(β-4p2)α1-1]+4b2Ω2[(β+4Ω2)α2+1]=0.]
其中:[η=p(X-α1T)],[ξ=Ω(X+α2T)][+lnb2],令[cos(η)sinh(ξ)]、[sin(η)cosh(ξ)]的系數(shù)及常數(shù)項(xiàng)等于0,得到的系數(shù)關(guān)系同假設(shè)1的式(6),此時(shí)可得到周期孤立波解為:
[U=12b1b2(Ω2-p2)sinp(X-α1T)cosh[Ω(X+α2T)+lnb2]{b1sinp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2+? ? ? ? 24b1b2pΩcosp(X-α1T)sinh[Ω(X+α2T)+lnb2]{b1sinp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2+][? ? ? 24b2Ω2-6b21p2{b1sinp(X-α1T)+2b2cosh[Ω(X+α2T)+lnb2]}2] . (9)
[U]中的各常數(shù)關(guān)系由式(6)決定:
1)若[α1α2>0,],[b2>14b21],得到非奇異的周期孤立波解,見圖1。
2)若[α1α2>0],[0<b2<14b21],此時(shí)當(dāng)[X]和[T]取某些值時(shí),使表達(dá)式(9)的分母為0,則這個(gè)時(shí)候的[U]為奇異的周期孤立波解,見圖2,奇異的部分已被截?cái)唷?/p>
假設(shè)3
[f=b1cosp(X-α1T)+b2eΩ(X+α2T)-e-Ω(X+α2T)]. (10)
將式(10)代入式(3)得到的系數(shù)關(guān)系同式(6),此時(shí)的周期孤立波解為:
[U=12b1b2(Ω2-p2)cosp(X-α1T)sinh[Ω(X+α2T)+lnb2]{b1cosp(X-α1T)+2b2sinh[Ω(X+α2T)+lnb2]}2+? ? ? 24b1b2pΩsinp(X-α1T)cosh[Ω(X+α2T)+lnb2]{b1cosp(X-α1T)+2b2sinh[Ω(X+α2T)+lnb2]}2-][? ? ? 24b2Ω2+6b21p2{b1cosp(X-α1T)+2b2sinh[Ω(X+α2T)+lnb2]}2.](11)
這完全是一個(gè)奇異的周期孤立波解,見圖3和圖4。
假設(shè)4
[f=b1sinp(X-α1T)+b2eΩ(X+α2T)-e-Ω(X+α2T)]. (12)
將式(11)代入式(3)運(yùn)算化簡得到的系數(shù)關(guān)系同式(6),此時(shí)的周期孤立波解為:
[U= 12b1b2(Ω2-p2)sin[p(X-α1T)]sinh[Ω(X+α2T)+lnb2]{b1sin[p(X-α1T)]+2b2sinh[Ω(X+α2T)+lnb2]}2 -? ? ?24b1b2pΩcos[p(X-α1T)]cosh[Ω(X+α2T)+lnb2]{b1sin[p(X-α1T)]+2b2sinh[Ω(X+α2T)+lnb2]}2-][? ? ?24b2Ω2+6b21p2{b1sin[p(X-α1T)]+2b2sinh[Ω(X+α2T)+lnb2]}2 .](13)
這也完全是一個(gè)奇異的周期孤立波解,見圖3和圖4。
2? ? 結(jié)論
本文主要應(yīng)用Hirota方法及擴(kuò)展的同宿測試法獲得了廣義的Vakhnenko方程的周期孤立波解。這些解是包含一個(gè)周期解和一個(gè)孤立波的雙波,它反映了周期解和孤立波的彈性碰撞,這是一個(gè)有趣的物理現(xiàn)象,證明了廣義的Vakhnenko方程解的復(fù)雜性以及各種動(dòng)力學(xué)行為。
參考文獻(xiàn)
[1]? ? ?ABLOWITZ M J,SEGUR H. Solitons and inverse scattering transform[M]. Philadelphia:SIAM,1981.
[2]? ? ?B?CKLUND A V. Concerning surfaces with constant negative curvature[M]. Lancaster:New Era Printing,1905.
[3]? ? WANG M L,ZHOU Y B,LI Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A,1996,216(1-5):67-75.
[4]? ? ?PARKES E J,DUFY B R. Travelling solitary wave solutions to a compound KdV-Burgers equation[J]. Physics Letters A,1997,229:217-220.
[5]? ? ?FAN E G. Extend tanh-function method and its applications to nonlinear equations[J]. Physics Letters A,2000,277(4-5): 212-218.
[6]? ? ?FU Z T,LIU S K,LIU S D,et al. New Jacobi elliptic functione expansion and new periodic solutions of nonlinear wave equations[J]. Physics Letters A,2001,290(1-2):72 -76.
[7]? ? ?HIROTA R,GILSON C,NIMMO J,et al. The direct method in soliton theory[M]. Cambridge:Cambridge University Press,2004.
[8]? ? ?DAI Z D,JIANG M R,DAI Q Y,et a1. Homoclinic bifurcation for the Boussinesq equation with even constraints[J]. Chinese Physics Letters,2012,23(5):1065-1067.
[9]? ? ?DAI Z D,LIU Z J,LI D L. Exact periodic solitary-wave solutions for KdV equation[J]. Chinese Physics Letters,2008,25(5):1531-1533.
[10]? ?DAI Z D,LIU J,ZENG X P,et al. Periodic kink-wave and kinky periodic-wave solutions for the Jimbo-Miwa equation[J]. Physics Letters A,2008,372(38):5984-5986.
[11]? DAI Z D,LIN S Q,F(xiàn)U H M,et al. Exact three-wave solutions for the KP equation[J]. Applied Mathematics and Computation,2010,216(5):1599-1604.
[12]? ?VAKHNENKO V O. High-frequency soliton-like waves in a relaxing medium[J]. Journal of Mathematical Physics,1999,40(4):2011-2020.
[13]? ?WU Y Y,WANG C,LIAO S J. Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method[J]. Chaos, Solitons and Fractals,2005,23(5):1733-1740.
[14]? ?MORRISON A J,PARKES E J. The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation)[J]. Chaos, Solitons and Fractals,2003,16(1):13-26.
[15]? ?VAKHNENKO V O,PARKES E J,MORRISON A J. A B?cklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation[J]. Chaos, Solitons and Fractals,2003,17(4):683-692.
[16]? ?NAHHAS A E. Analytic approximations for the one-loop soliton solution of the Vakhnenko equation[J]. Chaos, Solitons and Fractals,2009,40(5):2257-2264.
[17]? ?HIROTA R,SATSUMA J. N-soliton solutions of model equations for shallow water waves[J]. Journal of the Physical Society of Japan,1976,40(2):611-612.
[18]? ?LI B Q. Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics[J]. Applied Mathematics Letters,2021,112:106822.
[19]? ?ABDOU M A,SOLIMAN A A,ELGARAYHI A. New periodic solitary wave solutions for an extended generalization of Vakhnenko equation[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences,2015,18(C): 99-101.
[20]? ?LI B Q,MA Y L,MO L P,et al. The N-loop soliton solutions for (2+1)- dimensional Vakhnenko equation[J].Computers and Mathematics with Applications,2017,74(3):504-512.
New periodic solitary wave solutions for generalized Vakhnenko
equation
YANG Chuan1, LI Donglong2, ZHOU Hong1
(1. School of Electronic Information Engineering, Liuzhou Vocational and Technical College, Liuzhou 545006, China; 2.College of Science, Guangxi University of Science and Technology, Liuzhou 545006, China)
Abstract: Periodic solitary wave solutions of the generalized Vakhnenko equation are obtained by? ? ? Hirota method and the extended homoclinic test method.
Key words: Hirota method; extended homoclinic test method; generalized Vakhnenko equation;? ? ? ? ?periodic solitary wave solution
(責(zé)任編輯:于艷霞)