宋軼民,郝呈曄,岳維亮,孫?濤,連賓賓,楊志岳
新型變形輪腿式移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)分析及設(shè)計(jì)
宋軼民1,2,郝呈曄1,岳維亮3,孫?濤1,連賓賓1,楊志岳1
(1. 天津大學(xué)機(jī)構(gòu)理論與裝備設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300354;2. 天津仁愛學(xué)院機(jī)械工程系,天津 301636;3. 天津創(chuàng)智機(jī)器人科技有限公司,天津 300300)
移動(dòng)機(jī)器人作為智能勘探與偵察的自動(dòng)化裝備,在航天探測、軍事偵察、搶險(xiǎn)救災(zāi)等領(lǐng)域具有廣闊的應(yīng)用前景.兼具良好的機(jī)動(dòng)性及越障性是移動(dòng)機(jī)器人快速適應(yīng)非結(jié)構(gòu)化復(fù)雜環(huán)境的首要性能指標(biāo),結(jié)合輪式行進(jìn)機(jī)構(gòu)強(qiáng)機(jī)動(dòng)性與腿式行進(jìn)機(jī)構(gòu)優(yōu)越障性的變形輪腿式移動(dòng)機(jī)器人受到普遍青睞.然而,現(xiàn)有變形輪腿式移動(dòng)機(jī)器人在設(shè)計(jì)與優(yōu)化方面仍存在變形形式過于復(fù)雜、設(shè)計(jì)方法缺乏理論依據(jù)等不足.針對上述問題,提出一種結(jié)構(gòu)緊湊、操作簡便的新型輪腿變換結(jié)構(gòu),借助電磁離合器分離運(yùn)動(dòng)的原理,通過改變輪-腿變形動(dòng)力輸入促使輪與腿相對運(yùn)動(dòng),以曲柄滑塊機(jī)構(gòu)觸發(fā)輪-腿結(jié)構(gòu)徑向擴(kuò)展,完成由輪式變形為腿式的過程.定義變形過程中曲柄滑塊機(jī)構(gòu)的壓力角為機(jī)動(dòng)性指標(biāo)、變形前后結(jié)構(gòu)的展開比為越障性指標(biāo),進(jìn)而開展變形結(jié)構(gòu)的尺度綜合,優(yōu)化結(jié)果表明新型變形輪腿式移動(dòng)機(jī)器人的展開比為1.92,可越過高度為150mm的障礙物.基于優(yōu)化后的尺度參數(shù),建立變形輪腿式移動(dòng)機(jī)器人越障過程的動(dòng)力學(xué)模型,確定驅(qū)動(dòng)電機(jī)參數(shù),設(shè)計(jì)并制造物理樣機(jī).最終開展軟件仿真與實(shí)驗(yàn)研究,仿真結(jié)果與理論分析結(jié)果一致,表明優(yōu)化設(shè)計(jì)方法與動(dòng)力學(xué)建模方法的有效性,實(shí)驗(yàn)結(jié)果證明所設(shè)計(jì)的變形輪腿式機(jī)器人具有較強(qiáng)的機(jī)動(dòng)性與越障性.
移動(dòng)機(jī)器人;變形輪腿結(jié)構(gòu);尺度綜合;運(yùn)動(dòng)學(xué)分析;動(dòng)力學(xué)建模
移動(dòng)機(jī)器人是一種在復(fù)雜環(huán)境下工作,具有自行組織、自主運(yùn)行、自主規(guī)劃的智能機(jī)器人[1],可代替人類進(jìn)入危險(xiǎn)惡劣工作環(huán)境進(jìn)行勘探或搜救作業(yè),近年來受到機(jī)器人學(xué)者的普遍青睞.
拓?fù)浣Y(jié)構(gòu)設(shè)計(jì)是研制面向復(fù)雜非結(jié)構(gòu)環(huán)境高性能移動(dòng)機(jī)器人的基礎(chǔ),傳統(tǒng)移動(dòng)機(jī)器人采用輪式、腿式或履帶式行進(jìn)機(jī)構(gòu),僅在機(jī)動(dòng)性能或越障性能單一方面具備優(yōu)勢,難以兼顧兩者的特性,無法適應(yīng)復(fù)雜環(huán)境.針對此問題,有學(xué)者提出了將輪、腿結(jié)合于同一行進(jìn)機(jī)構(gòu)的理念,復(fù)合式輪腿移動(dòng)機(jī)器人應(yīng)運(yùn)而?生[2].復(fù)合式輪腿移動(dòng)機(jī)器人在結(jié)構(gòu)上將輪式和腿式融為一體,按其結(jié)構(gòu)原理可進(jìn)一步分為異形輪式、輪腿一體式和變形輪腿式移動(dòng)機(jī)器人.異形輪式移動(dòng)機(jī)器人又被稱為類輪式移動(dòng)機(jī)器人,通常是基于仿生學(xué)的原理,通過去除完整輪緣的一部分將圓形車輪改造為離散支叉形,典型代表有RHex系列機(jī)器人[3]、Whegs系列機(jī)器人[4]和Asgard系列機(jī)器人[5].此類異形輪式移動(dòng)機(jī)器人雖極大簡化了機(jī)器人的整體結(jié)構(gòu)和控制難度,但輪緣的不完整性導(dǎo)致機(jī)身質(zhì)心波動(dòng),易影響移動(dòng)機(jī)器人行進(jìn)運(yùn)動(dòng)的穩(wěn)定性.輪腿一體式機(jī)器人在腿式結(jié)構(gòu)末端添加旋轉(zhuǎn)輪裝置,通過附加電機(jī)或特殊機(jī)構(gòu)使機(jī)器人在輪式和腿式兩種狀態(tài)之間切換,典型代表有PAW機(jī)器人[6]、ATHLETE機(jī)器人[7]和Rolling-Wolf機(jī)器人[8]等.盡管輪腿一體式移動(dòng)機(jī)器人解決了腿式結(jié)構(gòu)行進(jìn)過程中的機(jī)動(dòng)性能問題,但由于其整體部分以腿式結(jié)構(gòu)為主,機(jī)器人結(jié)構(gòu)的復(fù)雜程度和控制難度仍較大.變形輪腿式移動(dòng)機(jī)器人可通過變形結(jié)構(gòu)實(shí)現(xiàn)機(jī)器人輪式形態(tài)和腿式形態(tài)的自由切換,即平坦地形上以輪式快速平穩(wěn)行進(jìn),崎嶇地形上以腿式靈活越障,可最大程度結(jié)合輪式和腿式移動(dòng)機(jī)器人的行進(jìn)優(yōu)勢,典型代表有Wheel Transformer[9-10]、Passive Leg[11]、TurboQuad[12]、T-shape Leg[13]、Land Devil Ray[14]、WheeLeR[15]等.
對比上述3類復(fù)合式輪腿移動(dòng)機(jī)器人,變形輪腿式移動(dòng)機(jī)器人是開發(fā)強(qiáng)機(jī)動(dòng)性能和優(yōu)越障能力移動(dòng)機(jī)器人的最佳解決方案.輪腿變形結(jié)構(gòu)設(shè)計(jì)是變形式輪腿機(jī)器人設(shè)計(jì)的核心,分析國內(nèi)外現(xiàn)有的變形式輪腿機(jī)器人設(shè)計(jì)方案可知:①大多數(shù)變形結(jié)構(gòu)采用額外電機(jī)直接驅(qū)動(dòng)輪腿狀態(tài)的切換和保持,不僅增加了機(jī)器人的整體能耗,而且部分變形結(jié)構(gòu)對位置精度要求較高,增加了機(jī)器人加工成本;②變形結(jié)構(gòu)尺度優(yōu)化設(shè)計(jì)方面缺少兼顧機(jī)器人機(jī)動(dòng)性能和越障性能的綜合優(yōu)化方法;③變形式輪腿機(jī)器人的物理樣機(jī)開發(fā)依賴于軟件仿真分析,缺乏系統(tǒng)的理論分析.
針對目前研究中的不足,本文提出一種新型三相并列滑塊式變形結(jié)構(gòu),利用電磁離合器實(shí)現(xiàn)機(jī)器人輪腿狀態(tài)的切換,相較于添加額外電機(jī),此方法控制難度小,系統(tǒng)能耗低;兼顧機(jī)器人的機(jī)動(dòng)性和越障性,以大展開比和高效靈活變形過程為綜合優(yōu)化目標(biāo),進(jìn)行變形結(jié)構(gòu)的尺度優(yōu)化;基于優(yōu)化后的尺度參數(shù)建立了機(jī)器人完整的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)模型,為物理樣機(jī)開發(fā)選定關(guān)鍵參數(shù);開展變形輪腿式移動(dòng)機(jī)器人仿真分析,驗(yàn)證理論分析方法的有效性;最后制造了變形輪腿式移動(dòng)機(jī)器人物理樣機(jī),通過實(shí)驗(yàn)驗(yàn)證它的變形能力和越障能力.
基于曲柄滑塊機(jī)構(gòu)的運(yùn)動(dòng)原理,本文提出了一種三相并列滑塊式的拓?fù)渥冃谓Y(jié)構(gòu).如圖1所示,該變形結(jié)構(gòu)由3組相同且中心對稱的曲柄滑塊機(jī)構(gòu)組成,每組均包含曲柄、連桿和滑動(dòng)輪腿(滑塊).在圓形車輪內(nèi)加工出與滑動(dòng)輪腿相同形狀和厚度的導(dǎo)軌(見圖1(b)),使得滑動(dòng)輪腿能在導(dǎo)軌上定向滑動(dòng),形成移動(dòng)副.
當(dāng)曲柄繞著輪心順時(shí)針旋轉(zhuǎn)時(shí),通過連桿的作用將動(dòng)力傳輸?shù)交瑒?dòng)輪腿上,使得滑動(dòng)輪腿沿著定向?qū)к壱苿?dòng).曲柄與連桿的連接處設(shè)置了限位裝置,如圖1(b)所示,當(dāng)旋轉(zhuǎn)曲柄轉(zhuǎn)過120°時(shí),曲柄和連桿拉直共線,曲柄內(nèi)部加工出的槽面與連桿側(cè)面重合,曲柄的旋轉(zhuǎn)運(yùn)動(dòng)被連桿側(cè)面所卡住,此時(shí)輪腿到達(dá)了極限位置,機(jī)器人由輪式狀態(tài)完全切換成三輪輻腿式狀態(tài).
圖1?變形結(jié)構(gòu)的組成
移動(dòng)機(jī)器人需要?jiǎng)恿υ打?qū)動(dòng)行進(jìn)結(jié)構(gòu)實(shí)現(xiàn)前進(jìn)運(yùn)動(dòng),在此基礎(chǔ)上,變形結(jié)構(gòu)仍需要額外的驅(qū)動(dòng)力觸發(fā)輪腿狀態(tài)轉(zhuǎn)換.本文提出了一種依靠電磁離合器觸發(fā)變形過程的方法,可將一臺電機(jī)的驅(qū)動(dòng)力以兩種方式傳送到變形結(jié)構(gòu)中,控制變形結(jié)構(gòu)在任意時(shí)刻主動(dòng)完成輪腿狀態(tài)切換.
圖2為傳動(dòng)裝置的結(jié)構(gòu)示意圖,其中銜鐵、旋轉(zhuǎn)法蘭、車輪后蓋和圓形車輪固結(jié),曲柄和動(dòng)力輸入軸通過連接軸相連,定子的止動(dòng)孔與機(jī)架通過銷固定,阻止其旋轉(zhuǎn),同一側(cè)前后兩組車輪通過同步帶輪和傳送帶相連接,由同一電機(jī)所驅(qū)動(dòng).驅(qū)動(dòng)力由動(dòng)力輸入軸輸入,帶動(dòng)電磁離合器轉(zhuǎn)子旋轉(zhuǎn).
圖2?觸發(fā)變形過程的動(dòng)力傳動(dòng)裝置
驅(qū)動(dòng)力輸出按電磁離合器是否通電可分為兩種情況:①電磁離合器通電,銜鐵吸附在轉(zhuǎn)子上隨轉(zhuǎn)子旋轉(zhuǎn),進(jìn)而驅(qū)動(dòng)車輪后蓋和圓形車輪同步旋轉(zhuǎn),此時(shí)曲柄和圓形車輪均由電機(jī)驅(qū)動(dòng),二者不存在相對運(yùn)動(dòng),輪腿無法展開,機(jī)器人以輪式狀態(tài)前進(jìn);②電磁離合器不通電,銜鐵與轉(zhuǎn)子分離,此時(shí)驅(qū)動(dòng)力僅由連接軸輸出到曲柄上,曲柄和圓形車輪之間產(chǎn)生相對運(yùn)動(dòng)觸發(fā)變形過程,輪腿到達(dá)極限位置后以腿式結(jié)構(gòu)帶動(dòng)機(jī)器人前進(jìn).
上述觸發(fā)變形的過程只需控制電磁離合器通電/斷電即可實(shí)現(xiàn),相較于添加額外電機(jī)的方法,控制難度小,成本和系統(tǒng)能耗也大幅度降低,而且此方法屬于主動(dòng)式觸發(fā)機(jī)制,不依賴于環(huán)境地形,在任意時(shí)刻任意地形均可快速實(shí)現(xiàn)輪腿狀態(tài)切換.
變形輪腿式移動(dòng)機(jī)器人的越障能力通常用展開比進(jìn)行評價(jià),展開比是指變形輪腿式移動(dòng)機(jī)器人由輪式狀態(tài)切換到腿式狀態(tài)前后行進(jìn)部旋轉(zhuǎn)半徑的比值,較大的展開比可使機(jī)器人以腿式形態(tài)越過更高的障礙物.此外,輪腿變形過程需保證變形結(jié)構(gòu)運(yùn)動(dòng)的靈活性和流暢性,由于本文提出的變形結(jié)構(gòu)通過曲柄滑塊機(jī)構(gòu)實(shí)現(xiàn),可采用壓力角作為指標(biāo)評價(jià).綜合考慮變形結(jié)構(gòu)相關(guān)尺度參數(shù)對機(jī)器人越障性能和機(jī)動(dòng)性能的影響,將變形結(jié)構(gòu)的展開比和變形過程的壓力角同時(shí)作為尺度綜合的評價(jià)指標(biāo),實(shí)現(xiàn)變形結(jié)構(gòu)多目標(biāo)尺度優(yōu)化.
圖3?變形過程示意
(6)
圖5?變形過程中的壓力角變化
表1?現(xiàn)有的變形輪腿式移動(dòng)機(jī)器人展開比
Tab.1 Expansion ratio of the existingtransformable wheeled-legged mobile robot
本節(jié)基于變形結(jié)構(gòu)優(yōu)化后的尺度參數(shù),展開變形輪腿式移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)分析,建立移動(dòng)機(jī)器人以腿式狀態(tài)行進(jìn)的位移和速度模型,得到機(jī)器人以腿式狀態(tài)行進(jìn)的運(yùn)動(dòng)規(guī)律.
圖6?移動(dòng)機(jī)器人腿式狀態(tài)下運(yùn)動(dòng)軌跡
圖7(b)為機(jī)器人輪心點(diǎn)以腿式狀態(tài)在平緩路面上行進(jìn)的速度規(guī)律,速度模型的建立為后續(xù)的動(dòng)力學(xué)建模奠定了理論基礎(chǔ).
圖7?P點(diǎn)在x和z方向的位移和速度
剛體做勻速轉(zhuǎn)動(dòng)時(shí),外力的矢量由質(zhì)心指向轉(zhuǎn)軸,在轉(zhuǎn)軸的力矩代數(shù)和為0,可建立方程為
式中:為輪腿結(jié)構(gòu)的質(zhì)量;分別為機(jī)身對前輪腿的作用力在水平和豎直方向上的分力;M是機(jī)身對前輪的等效力矩;為電機(jī)的驅(qū)動(dòng)力矩.
式中P為電機(jī)功率,kW.設(shè)定越障高度,變形輪半徑時(shí),的大小為 ,查詢資料可得橡膠輪胎與水泥地面的靜摩擦系數(shù)左右,已知電機(jī)功率,機(jī)身質(zhì)量,軸距,可得出支反力與角、輪腿旋轉(zhuǎn)角速度的關(guān)系如圖9所示.
本節(jié)建立變形輪腿式移動(dòng)機(jī)器人的動(dòng)力學(xué)模型,著重分析機(jī)器人以腿式狀態(tài)越障過程中的運(yùn)動(dòng)與受力特征,為電機(jī)功率選型奠定基礎(chǔ).圖10(a)是移動(dòng)機(jī)器人越障過程中的運(yùn)動(dòng)軌跡,前輪的一條輪腿與障礙物的最高點(diǎn)相接觸時(shí),接觸點(diǎn)為,此時(shí)前輪與地面接觸的另一條輪腿剛剛離地,移動(dòng)機(jī)器人的輪腿部分繞著點(diǎn)轉(zhuǎn)動(dòng)一定角度,直至整個(gè)輪腿越上障礙物.
本文采用拉格朗日公式建立變形輪腿式移動(dòng)機(jī)器人的動(dòng)力學(xué)模型.拉格朗日公式的一般形式為
若整個(gè)越障過程中,輪腿機(jī)構(gòu)一直處于勻速轉(zhuǎn)動(dòng)狀態(tài),則轉(zhuǎn)動(dòng)的角加速度,此時(shí)電機(jī)輸出轉(zhuǎn)矩只與輪腿機(jī)構(gòu)的旋轉(zhuǎn)角度有關(guān),二者的關(guān)系如圖11所示.
本節(jié)首先利用動(dòng)力學(xué)仿真軟件ADAMS模擬了機(jī)器人以腿式狀態(tài)在平緩路面行走和在特定高度下越障的運(yùn)動(dòng)過程,驗(yàn)證運(yùn)動(dòng)學(xué)模型和動(dòng)力學(xué)模型的正確性.隨后開發(fā)物理樣機(jī),通過實(shí)驗(yàn)驗(yàn)證變形輪腿式移動(dòng)機(jī)器人的變形能力和越障能力.
如圖13所示,分析兩組仿真結(jié)果可知,無論是、方向上的位移曲線、速度曲線還是越障過程中的電機(jī)輸出轉(zhuǎn)矩曲線,軟件仿真曲線與理論分析曲線的重合程度均非常高,驗(yàn)證了運(yùn)動(dòng)學(xué)分析和動(dòng)力學(xué)建模過程的有效性和準(zhǔn)確性.
圖12?ADMAS軟件仿真過程
圖13?仿真結(jié)果對比
圖14?物理樣機(jī)和越障實(shí)驗(yàn)
針對現(xiàn)有輪腿式機(jī)器人在結(jié)構(gòu)設(shè)計(jì)、運(yùn)動(dòng)學(xué)分析與設(shè)計(jì)方面的不足,本文提出了一種新型變形輪腿式移動(dòng)機(jī)器人,開展了變形方法、結(jié)構(gòu)尺度優(yōu)化、運(yùn)動(dòng)學(xué)分析、動(dòng)力學(xué)建模、軟件仿真及樣機(jī)實(shí)驗(yàn)等研究,全文得出的結(jié)論如下.
[1] Thueer T,Siegwart R. Mobility evaluation of wheeled all-terrain robots[J]. Robotics and Autonomous Systems,2010,58(5):508-519.
[2] Velimirovic A,Velimirovic M,Hugel V,et al. A new architecture of robot with “wheels-with-legs(WWL)”[C]// 1998 5th International Workshop on Advanced Motion Control. Coimbra,Portugal,1998:434-439.
[3] Altendorfer R,Moore N,Komsuoglu H,et al. RHex:A biologically inspired hexapod runner[J]. Autonomous Robots,2001,11(3):207-213.
[4] Quinn R D,Offi J T,Kingsley D A,et al. Improved mobility through abstracted biological principles[C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. Lausanne,Switzerland,2002:2652-2657.
[5] Eich M,Grimminger F,Kirchner F. A versatile stair-climbing robot for search and rescue applications[C]// 2008 IEEE International Workshop on Safety,Security and Rescue Robotics. Sendai,Japan,2008:35-40.
[6] Smith J A,Sharf I,Trentini M. PAW:A hybrid wheeled-leg robot[C]// IEEE International Conference on Robotics & Automation. Orlando,USA,2006:4043-4048.
[7] Wilcox B H,Litwin T,Biesiadecki J,et al. ATHLETE:A cargo handling and manipulation robot for the moon[J]. Journal of Field Robotics,2007,24(5):421-434.
[8] Luo Y,Li Q,Liu Z X. Design and optimization of wheel-legged robot:Rolling-wolf[J]. Chinese Journal of Mechanical Engineering,2014,27(6):1133-1142.
[9] Kim Y S,Jung G P,Kim H,et al. Wheel transformer:A miniaturized terrain adaptive robot with passively transformed wheels[C]// 2013 IEEE International Conference on Robotics and Automation. Karlsruhe,Germany,2013:5625-5630.
[10] Kim Y S,Jung G P,Kim H,et al. Wheel transformer:A wheel-leg hybrid robot with passive transformable wheels[J]. IEEE Transactions on Robot-ics,2014,30(6):1487-1498.
[11] She Y,Hurd C J,Su H. A transformable wheel robot with a passive leg[C]// 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems(IROS). Hamburg,Germany,2015:4165-4170.
[12] Chen W H,Lin H S,Lin Y M,et al. TurboQuad:A novel leg-wheel transformable robot with smooth and fast behavioral transitions[J]. IEEE Transactions on Robot-ics,2017,33(5):1025-1040.
[13] Sun T,Xiang X,Su W H,et al. A transformable wheel-legged mobile robot:Design,analysis and experiment[J]. Robotics and Autonomous Systems,2017,98:30-41.
[14] Bai L,Guan J,Chen X D,et al. An optional passive/active transformable wheel-legged mobility concept for search and rescue robots[J]. Robotics and Autonomous Systems,2018,107:145-155.
[15] Zheng C,Lee K. WheeLeR:Wheel-leg reconfigurable mechanism with passive gears for mobile robot applications[C]// 2019 International Conference on Robotics and Automation(ICRA). Montreal,Canada,2019:9292-9298.
Kinematic Analysis and Design of a Novel Transformable Wheeled-Legged Mobile Robot
Song Yimin1, 2,Hao Chengye1,Yue Weiliang3,Sun Tao1,Lian Binbin1,Yang Zhiyue1
(1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education,Tianjin University,Tianjin 300354,China;2. Department of Mechanical Engineering,Tianjin Renai College,Tianjin 301636,China;3. Tianjin Creative Robot Technology Co.,Ltd.,Tianjin 300300,China)
Mobile robots as automatic instruments for intelligent exploration and reconnaissance have broad application prospects in space exploration,military reconnaissance,emergency rescue,and disaster relief. Good mobility and over-obstacle capacity are the primary performance indices for mobile robots to quickly adapt to unstructured and complex environments. Transformable wheeled-legged mobile robots are popular because they combine the strong mobility of wheel mechanism and the superior obstacle-overcoming capacity of leg mechanism. However,there are still some deficiencies in the design and optimization of the existing transformable wheeled-legged mobile robots,such as the too-complex deformation process and the lack of theoretical basis in the design methods. To solve the above problems,we propose a novel transformable wheeled-legged structure with compact structure and simple operation. Based on the principle of electromagnetic clutch separation motion,we changed the wheeled-legged deformation power input to promote the relative motion between wheel and leg and used the crank slider mechanism to trigger the radial expansion of the wheeled-legged structure to complete the process of wheel-mode deformation into leg mode. We defined the pressure angle of the crank slider mechanism in the deformation process as the mobility index and the expansion ratio of the structure before and after deformation as the obstacle-surmounting index,and performed the dimensional synthesis of the deformation mechanism. The optimization results show that the expansion ratio of the neotype transformable wheeled-legged mobile robot is 1.92 and the over-obstacle height is 150mm. Based on this,we established a dynamic model of the over-obstacle process,determined the driving motor parameters,and designed the physical prototype. Finally,we performed software simulation and experimental research. The simulation results were consistent with the theoretical analysis results,indicating the effectiveness of the optimization design method and dynamics modeling method. The experimental results prove that the designed transformable wheeled-legged mobile robot has strong mobility and over-obstacle capacity.
mobile robot;transformable wheeled-legged structure;dimensional synthesis;kinematics analysis;dynamics modeling
10.11784/tdxbz202008010
TP242.6
A
0493-2137(2022)02-0111-11
2020-08-09;
2020-08-25.
宋軼民(1971—??),男,博士,教授,ymsong@tju.edu.cn.Email:m_bigm@tju.edu.cn
孫?濤,stao@tju.edu.cn.
天津市重點(diǎn)研發(fā)計(jì)劃科技支撐重點(diǎn)資助項(xiàng)目(18YFZCSF00590).
Tianjin Key Research and Development Program(No.18YFZCSF00590).
(責(zé)任編輯:王曉燕)