朱冬梅 肖凱莉 劉海平
摘要:通過在含X形機(jī)構(gòu)非線性三參數(shù)隔振器中引入中間質(zhì)量,提出一種改進(jìn)三參數(shù)隔振器并建立其理論模型.采用諧波平衡法得到隔振系統(tǒng)的穩(wěn)態(tài)解析解,利用四階龍格庫塔法和多體動(dòng)力學(xué)軟件ADAMS驗(yàn)證其正確性.將力傳遞率作為評(píng)價(jià)隔振系統(tǒng)動(dòng)態(tài)性能的技術(shù)指標(biāo),與傳統(tǒng)三參數(shù)隔振器以及含X形機(jī)構(gòu)非線性三參數(shù)隔振器進(jìn)行對(duì)比,結(jié)合工程實(shí)際,分別給出3種類型隔振器在多頻穩(wěn)態(tài)激勵(lì)下的時(shí)域位移響應(yīng),并進(jìn)行對(duì)比研究.分析了該隔振系統(tǒng)的功率流特性以及能量特征,選擇隔振系統(tǒng)部分關(guān)鍵設(shè)計(jì)參數(shù)進(jìn)行影響因素分析.從動(dòng)力吸振器的角度,討論了所提模型中非線性連接方式對(duì)其減隔振效果的影響.計(jì)算結(jié)果表明,合理選擇中間質(zhì)量可以在原隔振系統(tǒng)諧振頻率附近形成一個(gè)反共振低谷,且系統(tǒng)固有頻率向低頻移動(dòng),使隔振系統(tǒng)有效隔振頻帶變寬;相比于傳統(tǒng)三參數(shù)隔振器和含X形機(jī)構(gòu)非線性隔振器,隔振系統(tǒng)在低頻和高頻的隔振性能均得到有效提升;通過力傳遞率評(píng)估設(shè)計(jì)參數(shù),結(jié)果表明各參數(shù)均存在最優(yōu)值;將線性動(dòng)力吸振器與接地X形機(jī)構(gòu)連接,可進(jìn)一步改善其減隔振效果.
關(guān)鍵詞:非線性分析;隔振器;諧波平衡法;中間質(zhì)量;動(dòng)力學(xué)分析
中圖分類號(hào):TB123文獻(xiàn)標(biāo)志碼:A
Research on Dynamics Characteristics of Improved Three-parameter Isolator with Intermediate Mass
ZHU Dongmei,XIAO Kaili,LIU Haiping
(School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China)
Abstract:By introducing an intermediate-mass into the nonlinear three-parameter isolator with an X-shaped mechanism,an improved three-parameter isolator is proposed,and its theoretical model is established. The Harmonic Balance Method is used to obtain the steady-state analytical solution of the vibration isolation system,and the correctness is verified via the fourth order Runge-Kutta method and ADMAS. By using the force transmissibility as the indicator for evaluating the isolating performance,some comparisons are carried out among the proposed isolators. Meanwhile,according to the engineering application,the time-domain displacement responses of three types of isolating systems under multi-frequency steady excitation are solved,and a comparative study is carried out,respectively. The vibration power flow and maximum kinetic energy are investigated,and some typical design parameters are selected and analyzed. At last,from the perspective of the vibration dynamic absorber,the effects of the nonlinear connection on the vibration suppressing performance are further discussed. The calculation results show that the natural frequency of the vibration isolator can be decreased after the intermediate mass is introduced into the system,the effective vibration isolation frequency band of the vibration isolation system becomes wider,and an anti-resonance frequency is introduced at the original resonant frequency at the same time. Compared with the traditional three- parameter isolator and the nonlinear vibration isolator with an X-shaped mechanism,the vibration isolation performance of the developed isolator at both low and high frequencies is improved accordingly. In addition,the abovementioned all design parameters exist the optimal values when the force transmissibility of the nonlinear isolator is used as an evaluating index. Besides,the vibration suppressing performance of the vibration dynamic absorber with a grounded X-shaped mechanism is enhanced.
Key words:nonlinear analysis;isolator;harmonic balance method;intermediate mass;dynamic analysis
與傳統(tǒng)兩參數(shù)隔振器相比,三參數(shù)隔振器在阻尼元件上串聯(lián)了輔助剛度元件,相當(dāng)于整個(gè)系統(tǒng)與基礎(chǔ)彈性連接.與傳統(tǒng)兩參數(shù)隔振器相比,可以在抑制共振峰的同時(shí)顯著改善其高頻隔振效果.三參數(shù)隔振器最早由Ruzicka等提出[1-1].王杰等[3-4]針對(duì)三參數(shù)流體阻尼器模型提出一種確定模型阻尼系數(shù)的機(jī)械阻抗等效理論與測(cè)試方法.王超新等[5]給出三參數(shù)隔振系統(tǒng)最優(yōu)阻尼的設(shè)計(jì)方法,為后續(xù)微振動(dòng)減振平臺(tái)設(shè)計(jì)提供理論支持.
為了進(jìn)一步提升隔振器的減隔振效果,非線性隔振器受到研究人員持續(xù)廣泛的關(guān)注[6-9].一些研究人員將負(fù)剛度元件引入隔振系統(tǒng)中,使其具備“高靜低動(dòng)”的力學(xué)特性[10-13].Lorrain[11]將正負(fù)剛度并聯(lián)的低頻隔振原理用于隔振器和地震儀;Liu等[14]將歐拉壓桿作為一種負(fù)剛度元件與線性彈簧并聯(lián)安裝在隔振系統(tǒng)中;王保勵(lì)[15]利用水平彈簧連桿機(jī)構(gòu)提供負(fù)剛度,提出一種具備仿生特征的非線性低頻隔振器;劉彥琦等[16]利用兩組傾斜布置的彈簧和一根豎直彈簧分別實(shí)現(xiàn)隔振系統(tǒng)的負(fù)剛度和正剛度特性;董光旭等[17]利用磁性負(fù)剛度彈簧與機(jī)械彈簧的組合設(shè)計(jì)實(shí)現(xiàn)系統(tǒng)超阻尼輸出;邢昭陽等[18]以Voigt型動(dòng)力吸振器為基礎(chǔ)提出一種將杠桿機(jī)構(gòu)應(yīng)用于含負(fù)剛度彈簧元件的動(dòng)力吸振器模型;Wang等[19]提出一種新型的負(fù)剛度放大阻尼器,并將其應(yīng)用到地震工程研究中.因此,引入負(fù)剛度元件成為提升隔振器減隔振性能的熱點(diǎn)研究方向之一.
除了負(fù)剛度元件可以提供非線性特性以外,一些具有特殊性能的結(jié)構(gòu)/機(jī)構(gòu)由于其自身優(yōu)越的幾何非線性特性也被廣泛應(yīng)用到減隔振系統(tǒng)中,例如:X形機(jī)構(gòu)[20-23],薄片結(jié)構(gòu)等.Liu等[24]充分利用X形機(jī)構(gòu)的幾何非線性特性,將n層X形機(jī)構(gòu)與杠桿系統(tǒng)組合應(yīng)用到被動(dòng)隔振或者半主動(dòng)隔振中,實(shí)現(xiàn)較好的低頻寬帶隔振.受到自然界中動(dòng)物肢體形狀的啟發(fā),Wu等[25]提出一種包含不同桿長和不同線性剛度的仿生結(jié)構(gòu).Bian等[26]、Feng等[27]提出一系列基于X 形機(jī)構(gòu)的非線性隔振器,研究表明,X形機(jī)構(gòu)可以利用自身的幾何非線性特性對(duì)隔振系統(tǒng)的剛度和阻尼特性實(shí)現(xiàn)放大.Wang等[28]提出一種基于仿生學(xué)的垂直非對(duì)稱X形隔振器,研究表明,此類非對(duì)稱布置結(jié)構(gòu)比對(duì)稱布置的結(jié)構(gòu)擁有更低的固有頻率和傳遞率.劉海平等[29]、Liu等[30]基于傳統(tǒng)三參數(shù)隔振器和X形機(jī)構(gòu)在減隔振方面的優(yōu)良性能,提出一種含幾何非線性三參數(shù)隔振器模型.
在被動(dòng)振動(dòng)控制中,通過在隔振系統(tǒng)中增設(shè)質(zhì)量元件,可以有效降低系統(tǒng)固有頻率,并且改變系統(tǒng)原始的響應(yīng)特征,使原有質(zhì)量元件的共振轉(zhuǎn)變?yōu)楦郊淤|(zhì)量的共振,生成一個(gè)反共振頻率,從而改善系統(tǒng)的低頻隔振效果.
為了進(jìn)一步改善內(nèi)含X形機(jī)構(gòu)非線性三參數(shù)隔振器在低頻段的減隔振效果,本文提出一種含中間質(zhì)量的改進(jìn)三參數(shù)隔振器,并建立其動(dòng)力學(xué)模型.在此基礎(chǔ)上,利用諧波平衡法求解系統(tǒng)的頻響特性,通過四階龍格庫塔法和多體動(dòng)力學(xué)軟件ADAMS對(duì)系統(tǒng)解析解的正確性進(jìn)行驗(yàn)證.分析系統(tǒng)在不同質(zhì)量比條件下的功率流特性以及最大動(dòng)能,采用力傳遞率作為系統(tǒng)隔振性能的評(píng)價(jià)指標(biāo),通過與傳統(tǒng)三參數(shù)隔振器和含X形機(jī)構(gòu)非線性三參數(shù)隔振器進(jìn)行對(duì)比研究,討論了多頻寬帶穩(wěn)態(tài)激勵(lì)下不同類型隔振器的減隔振效果.在此基礎(chǔ)上,針對(duì)該類隔振系統(tǒng)的多個(gè)關(guān)鍵設(shè)計(jì)參數(shù)開展影響分析.最后,從動(dòng)力吸振器角度對(duì)X形機(jī)構(gòu)非線性特征的影響展開討論.相關(guān)工作可為新型隔振器設(shè)計(jì)奠定理論基礎(chǔ).
1含中間質(zhì)量改進(jìn)三參數(shù)隔振器模型
含中間質(zhì)量改進(jìn)三參數(shù)隔振器模型如圖1所示.其中,彈簧kv為主支撐彈性元件,ke為輔助支撐彈簧,附加質(zhì)量塊m和X形機(jī)構(gòu)依次串聯(lián).X形機(jī)構(gòu)由4根長度均為l的剛性桿鉸接組成,每根桿與水平軸的角度為θi,φ為剛性桿與水平軸的夾角變化量.阻尼元件c和剛度元件kh并聯(lián)并以鉸接方式與X形機(jī)構(gòu)相連.此外,F(xiàn)代表系統(tǒng)所受外部激勵(lì)力,y1和y2分別表示X形機(jī)構(gòu)左右兩側(cè)活動(dòng)鉸接點(diǎn)在運(yùn)動(dòng)過程中發(fā)生的位移,x1和x2分別代表質(zhì)量塊M和m的位移.
為了方便比較,給出含幾何非線性三參數(shù)隔振器模型以及傳統(tǒng)三參數(shù)隔振器的模型,分別如圖2 和圖3所示.其中,kv和ke表示系統(tǒng)的剛度;c和M分別代表系統(tǒng)的阻尼和質(zhì)量.以上4個(gè)參數(shù)均與含中間質(zhì)量改進(jìn)三參數(shù)隔振器相同.
2動(dòng)力學(xué)建模及計(jì)算驗(yàn)證
2.1動(dòng)力學(xué)建模
根據(jù)牛頓第二運(yùn)動(dòng)定律,建立隔振系統(tǒng)在力激勵(lì)下的運(yùn)動(dòng)微分方程:
由圖1可知,X形機(jī)構(gòu)內(nèi)部的幾何關(guān)系為:
假設(shè)系統(tǒng)所受外部激勵(lì)力F=F0cosωt,將式(2)中的幾何關(guān)系代入式(1),可得:
為了簡(jiǎn)化計(jì)算,定義以下兩個(gè)函數(shù):
將函數(shù)f1(x2)和f2(x2)在x=0處分別進(jìn)行三階泰勒級(jí)數(shù)展開,可得:
其中,β0、β1、β2、β3、β4、β5的詳細(xì)表達(dá)式如下.
將式(6)代入式(3)并忽略高次項(xiàng),可得:
引入以下無量綱參量:
此處,采用諧波平衡法對(duì)系統(tǒng)進(jìn)行求解,設(shè)u1和u2穩(wěn)態(tài)解的形式為:
u1=u10cos(Ωτ+β)
u2=u20cos(Ωτ+ψ)(9)
將式(9)代入式(8),略掉高次項(xiàng),并假設(shè)一次諧波項(xiàng)系數(shù)相等,可得:
定義A、B、C、D4個(gè)參數(shù):
則系統(tǒng)在力激勵(lì)條件下的幅頻響應(yīng)和相頻響應(yīng)分別表示為:
2.2計(jì)算結(jié)果驗(yàn)證
2.2.1與數(shù)值計(jì)算結(jié)果對(duì)比
為了驗(yàn)證含中間質(zhì)量改進(jìn)三參數(shù)隔振器所得解析解的正確性,利用四階龍格庫塔法給出系統(tǒng)的數(shù)值解并進(jìn)行驗(yàn)證.
為了便于對(duì)比,根據(jù)參考文獻(xiàn)[29]暫定kv=2 000 N/m,l=0.1 m,M=1 kg,c=1 Ns/m,γ1=kh/kv=0.05,γ2=ke/kv=3,θi=60°,μ=m/M=4.
隔振系統(tǒng)質(zhì)量塊M的位移幅頻響應(yīng)如圖4所示.同時(shí),圖4中還給出相應(yīng)模型的數(shù)值解.由圖4可見,該隔振系統(tǒng)的數(shù)值解和解析解結(jié)果基本吻合.
2.2.2與仿真計(jì)算結(jié)果對(duì)比
為了進(jìn)一步驗(yàn)證所建模型及解析解的正確性,利用多體動(dòng)力學(xué)軟件ADAMS進(jìn)行仿真計(jì)算,所建模型如圖5所示.利用ADAMS現(xiàn)有的鉸接桿模型建立四桿結(jié)構(gòu),4個(gè)鉸接桿兩兩鉸接,且在其內(nèi)部水平連接彈簧和阻尼單元,表征模型中的水平彈簧和阻尼;在四桿機(jī)構(gòu)頂部鉸接點(diǎn)與附加質(zhì)量塊鉸接,并在該質(zhì)量塊上添加垂向移動(dòng)副,在附加質(zhì)量塊與頂部矩形塊之間連接一個(gè)彈簧,表征模型中的垂向彈簧ke;頂部質(zhì)量塊與底部質(zhì)量塊用彈簧連接,表征模型中的彈簧kv.
本部分仿真模型參數(shù)與2.2.1節(jié)相同.利用所建模型,在上端主質(zhì)量施加激勵(lì)幅值為1 N的正弦激勵(lì),計(jì)算得到質(zhì)量塊M在1~1 000 Hz頻段內(nèi),步長為2 000條件下的位移響應(yīng),如圖6所示.由圖6可知,該隔振系統(tǒng)的解析結(jié)果與利用ADAMS仿真計(jì)算所得結(jié)果基本一致.
3不同類型隔振器隔振特性對(duì)比分析
3.1力傳遞率對(duì)比分析
用力傳遞率評(píng)價(jià)含中間質(zhì)量改進(jìn)三參數(shù)隔振器的隔振性能,采用簡(jiǎn)諧振動(dòng)的疊加方式,得到傳遞到基礎(chǔ)的力為:
傳統(tǒng)三參數(shù)隔振器的力傳遞率Tf1和含中間質(zhì)量改進(jìn)三參數(shù)隔振器的力傳遞率Tf2分別為:
另外,含X形機(jī)構(gòu)非線性三參數(shù)隔振器的力傳遞率參見文獻(xiàn)[29].
為了評(píng)價(jià)本文所提含中間質(zhì)量改進(jìn)三參數(shù)隔振器的隔振效果,將該模型與傳統(tǒng)三參數(shù)隔振器(參見圖3)和非線性三參數(shù)隔振器(參見圖1)進(jìn)行對(duì)比,具體設(shè)計(jì)參數(shù)分別為kv=2 000 N/m,l=0.1 m,M=1 kg,c=1 Ns/m,γ1=kh/kv=0.05,γ2=ke/kv=3,θi=60°,μ=m/M=4,3種隔振器中相同元件的參數(shù)相同.3種不同類型隔振器的力傳遞率計(jì)算結(jié)果如圖7所示.圖7 中“M-M”表示含中間質(zhì)量改進(jìn)三參數(shù)隔振器“X- M”表示非線性三參數(shù)隔振器“R-M”表示傳統(tǒng)三參數(shù)隔振器.
由圖7可知,與其他兩種隔振器不同,含中間質(zhì)量改進(jìn)三參數(shù)隔振器可形成一個(gè)反共振頻率.當(dāng)激勵(lì)頻率等于反共振頻率時(shí),含中間質(zhì)量改進(jìn)三參數(shù)隔振器的隔振效果最好;當(dāng)激勵(lì)頻率處于反共振頻率附近時(shí),含中間質(zhì)量改進(jìn)三參數(shù)隔振器的隔振效果明顯優(yōu)于傳統(tǒng)三參數(shù)隔振器和非線性三參數(shù)隔振器.因此,可通過調(diào)整隔振器的設(shè)計(jì)參數(shù),使反共振頻率接近設(shè)備的振動(dòng)頻率,從而使隔振器最大限度地發(fā)揮減隔振效果.而且,受中間質(zhì)量影響,隔振系統(tǒng)諧振頻率向低頻移動(dòng).
另外,與傳統(tǒng)三參數(shù)隔振器相比,引入X形機(jī)構(gòu)后非線性三參數(shù)隔振器的諧振振幅減小了8.64 dB,頻率比由1增大到1.08,且在頻率比約4.6~19.4頻段內(nèi),含中間質(zhì)量隔振器的傳遞率與傳統(tǒng)三參數(shù)隔振器基本一致;在頻率比大于19.4的隔振頻段,含中間質(zhì)量改進(jìn)三參數(shù)隔振器的力傳遞率較低,證明在高頻范圍含中間質(zhì)量隔振器的減隔振性能更優(yōu).
綜上,受中間質(zhì)量影響,三參數(shù)隔振器諧振頻率向低頻移動(dòng),在原隔振系統(tǒng)諧振頻率附近的響應(yīng)幅值顯著減小,在高頻段減隔振性能得到提升.
3.2時(shí)域特性對(duì)比分析
在工程實(shí)際中,系統(tǒng)所受的環(huán)境激勵(lì)一般為多頻寬帶激勵(lì),為了研究含中間質(zhì)量改進(jìn)三參數(shù)隔振器的振動(dòng)抑制效果,假設(shè)系統(tǒng)所受激勵(lì)頻率分別為22、34、42、52、63、71、85 rad·s-1.
圖8給出含中間質(zhì)量改進(jìn)三參數(shù)隔振器在多頻力激勵(lì)條件下的時(shí)域位移響應(yīng)曲線.由圖8可知,在0~3 s內(nèi),傳統(tǒng)三參數(shù)隔振器的最大位移響應(yīng)幅值為8.4×10-3m,非線性三參數(shù)隔振器的最大位移響應(yīng)幅值為5.3×10-3m,含中間質(zhì)量改進(jìn)三參數(shù)隔振器的最大位移響應(yīng)幅值為1.3×10-3m.結(jié)合計(jì)算結(jié)果可知,與傳統(tǒng)三參數(shù)隔振器相比,含中間質(zhì)量改進(jìn)三參數(shù)隔振器以及非線性三參數(shù)隔振器的隔振效果均有不同程度的提升.但是,含中間質(zhì)量改進(jìn)三參數(shù)隔振器的減隔振效果最優(yōu).
4含中間質(zhì)量改進(jìn)三參數(shù)隔振器動(dòng)力學(xué)特性
4.1不同質(zhì)量比對(duì)功率流與能量特性的影響
從系統(tǒng)內(nèi)部振動(dòng)能量分布情況出發(fā),采用功率流方法評(píng)價(jià)隔振器對(duì)慣性質(zhì)量動(dòng)態(tài)響應(yīng)的控制效果.在進(jìn)行振動(dòng)功率流特性分析時(shí),往往對(duì)該隔振系統(tǒng)單位時(shí)間內(nèi)的平均功率流進(jìn)行求解計(jì)算.對(duì)于本文提出的隔振系統(tǒng),采用剛性基礎(chǔ),在一個(gè)振動(dòng)周期T=2π/Ω內(nèi),系統(tǒng)的無量綱平均輸入功率與無量綱平均耗散功率相等.
系統(tǒng)的瞬時(shí)輸入功率為系統(tǒng)輸入的激勵(lì)與系統(tǒng)響應(yīng)的乘積,即
Pin=Pd=-u10Ωsin(Ωτ+α)f0cos Ωτ(18)
式中:Pin為系統(tǒng)的瞬時(shí)輸入功率;Pd為系統(tǒng)的瞬時(shí)耗散功率.系統(tǒng)在單位時(shí)間周期內(nèi)的無量綱平均輸入功率與無量綱平均耗散功率可以表示為分貝的形式:
將本文所提隔振系統(tǒng)中的質(zhì)量塊M在正弦諧波激勵(lì)下的最大動(dòng)能以分貝形式表示:
圖9和圖10分別為不同質(zhì)量比對(duì)應(yīng)的功率流曲線和最大動(dòng)能曲線.由圖9和圖10可以看出,改變質(zhì)量比,對(duì)隔振系統(tǒng)在高頻段及低頻段處的動(dòng)態(tài)特性無明顯影響;但隨著質(zhì)量比不斷增大,系統(tǒng)的功率流及最大動(dòng)能曲線對(duì)應(yīng)的兩個(gè)峰值均向低頻移動(dòng);隨著質(zhì)量比增大,兩個(gè)峰值之間的低谷頻率不斷降低,兩峰之間的頻段逐漸變寬.
4.2不同參數(shù)對(duì)力傳遞率影響分析
重點(diǎn)針對(duì)在隔振器中引入中間質(zhì)量后,阻尼比ζ、剛度比γ1和γ2、初始角度θi和質(zhì)量比μ對(duì)力傳遞率的影響進(jìn)行研究.初始設(shè)計(jì)參數(shù)與2.2.1節(jié)相同.
保持其他設(shè)計(jì)參數(shù)不變,選擇不同初始阻尼比ζ對(duì)應(yīng)系統(tǒng)力傳遞率,如圖11所示.由圖11可知,當(dāng)阻尼比ζ=0時(shí),在頻率比Ω=1.2兩側(cè)出現(xiàn)新的諧振峰,且隨著阻尼比增大諧振幅值減??;受中間質(zhì)量影響,在頻率比Ω=0.9附近,隔振系統(tǒng)的力傳遞率出現(xiàn)一低谷,且隨著阻尼比增大谷值增大;阻尼比增大,隔振系統(tǒng)的第2個(gè)諧振峰的諧振頻率向低頻移動(dòng)且頻帶變寬.當(dāng)阻尼比大于0.84時(shí),隨著阻尼比繼續(xù)增大,系統(tǒng)由于引入中間質(zhì)量所產(chǎn)生的低谷逐漸消失.因此,阻尼比的最優(yōu)值為[0,0.84].
僅考慮剛度比γ1變化對(duì)隔振系統(tǒng)力傳遞率的影響,如圖12所示.由圖12可知,當(dāng)-1<γ1<0時(shí),隔振系統(tǒng)中的水平彈簧呈現(xiàn)負(fù)剛度特征,此時(shí)系統(tǒng)的諧振峰對(duì)應(yīng)的頻率比Ω>2且僅呈現(xiàn)一個(gè)諧振峰;隨著剛度比增大且大于0時(shí),兩個(gè)諧振峰出現(xiàn)在頻率比Ω=1.6兩側(cè),隨著剛度比增大峰值增大,且第2個(gè)諧振峰對(duì)應(yīng)的諧振頻率向高頻移動(dòng),頻帶變窄;在頻率比Ω<3的高頻范圍,隔振系統(tǒng)的力傳遞率衰減特性良好.當(dāng)剛度比γ1為[0.01,0.08]時(shí),系統(tǒng)的低谷頻率位于Ω=1附近,且對(duì)應(yīng)位于低頻段的第1個(gè)諧振峰值較小.因此,剛度比的最優(yōu)值為[0.01,0.08].
考慮剛度比γ2變化對(duì)隔振系統(tǒng)力傳遞率的影響,計(jì)算結(jié)果如圖13所示.由圖13可知,當(dāng)γ2=0時(shí),隔振系統(tǒng)力傳遞率僅呈現(xiàn)一個(gè)諧振峰且對(duì)應(yīng)的頻率比Ω<1;隨著剛度比γ2增大,第1個(gè)諧振峰對(duì)應(yīng)的頻率向低頻移動(dòng),峰值逐漸降低;在頻率比Ω>2附近出現(xiàn)另一個(gè)幅值較小的諧振峰,且該諧振峰的峰值增大,頻帶逐漸變寬,導(dǎo)致高頻段的力傳遞率衰減效果變差;隨著剛度比γ2增大,隔振系統(tǒng)受中間質(zhì)量反共振特征影響出現(xiàn)的谷值增大.剛度比γ2存在最優(yōu)值為[2,5],對(duì)應(yīng)系統(tǒng)的低谷頻率處于Ω=1附近.
圖14給出不同初始角度θi對(duì)應(yīng)隔振系統(tǒng)的力傳遞率.由圖14可知,當(dāng)初始角度為[0°,45°]時(shí),隔振系統(tǒng)的力傳遞率在頻率比Ω=1.2的兩側(cè)呈現(xiàn)出新的諧振峰以及反共振特征引起的谷值;當(dāng)初始角度為[45°,75°]時(shí),隨著初始角度增大,位于低頻段的第1 個(gè)諧振峰對(duì)應(yīng)的頻率向高頻移動(dòng),且原有的兩個(gè)諧振峰的峰值逐漸減小;當(dāng)初始角度大于75°時(shí),隨著角度的進(jìn)一步增大,中間質(zhì)量引起的谷值減小,隔振系統(tǒng)僅呈現(xiàn)一個(gè)諧振峰且頻帶變寬,高頻范圍的力傳遞率衰減性能變差.因此,該初始角度的最優(yōu)值為[45°,75°].
考慮隔振系統(tǒng)選擇不同質(zhì)量比μ對(duì)其力傳遞率的影響,如圖15所示.由圖15可知,當(dāng)質(zhì)量比μ<0.25時(shí),系統(tǒng)存在2個(gè)諧振峰,第1個(gè)諧振峰出現(xiàn)在Ω=1處;當(dāng)質(zhì)量比μ>0.25時(shí),頻率比Ω=1處的諧振峰逐漸減小并逐漸消失,僅保留Ω=1的右側(cè)的第2個(gè)諧振峰,峰值隨著質(zhì)量比的增大而增大.當(dāng)質(zhì)量比為[0.1,0.3]時(shí),系統(tǒng)存在反共振特性,且2個(gè)諧振峰值較低.因此,質(zhì)量比也存在最優(yōu)值,為[0.1,0.3].
4.3非線性特征及連接方式對(duì)主振系動(dòng)態(tài)響應(yīng)特性的影響
在建立理論模型中,相對(duì)于主振系,中間質(zhì)量及附屬元件可視為動(dòng)力吸振器.本節(jié)進(jìn)一步討論相比常規(guī)線性動(dòng)力吸振器,X形機(jī)構(gòu)引入的非線性特征及連接方式的變化對(duì)主振系動(dòng)態(tài)響應(yīng)特性的影響.
為了便于對(duì)比,給出安裝線性動(dòng)力吸振器的系統(tǒng)動(dòng)力學(xué)模型,如圖16所示,并研究其受外部激勵(lì)力F=F0cosωt時(shí)對(duì)應(yīng)主振系的頻響特性.其中,x1和x2分別為質(zhì)量塊M和m的振動(dòng)位移,kv和ke均為線性彈簧,以上所有參數(shù)均與2.2.1節(jié)相同.
根據(jù)牛頓第二運(yùn)動(dòng)定律,安裝線性動(dòng)力吸振器系統(tǒng)受力激勵(lì)的運(yùn)動(dòng)微分方程為:
引入以下無量綱變量:
計(jì)算得到主振系的位移幅值x10為:
圖17為不同模型對(duì)應(yīng)主振系的位移頻響曲線. 其中“M-M”表示含中間質(zhì)量改進(jìn)三參數(shù)隔振器(參見圖2)“T-M”表示安裝線性動(dòng)力吸振器系統(tǒng)(參見圖16).為了便于對(duì)比,分別給出未安裝動(dòng)力吸振器系統(tǒng)模型(w/o VDA)和不考慮阻尼時(shí)對(duì)應(yīng)含中間質(zhì)量改進(jìn)三參數(shù)隔振器(M-M,c=0)的主振系位移頻響曲線.
由圖17可知,安裝動(dòng)力吸振器后線性系統(tǒng)諧振頻率附近峰值變?yōu)楣戎?,且在兩?cè)引入新的諧振峰;受X形機(jī)構(gòu)引入非線性特征影響,第1個(gè)諧振頻率高于線性吸振器且峰值降低;考慮阻尼影響,連接X形機(jī)構(gòu)動(dòng)力吸振器引起的諧振峰值被進(jìn)一步降低;第2個(gè)諧振頻率對(duì)應(yīng)峰值受X形機(jī)構(gòu)(不含阻尼)影響較小,與安裝線性動(dòng)力吸振器對(duì)應(yīng)頻響結(jié)果相近;當(dāng)考慮阻尼影響時(shí),第2個(gè)諧振頻率對(duì)應(yīng)峰值得到有效抑制.除了上述諧振頻率附近頻段,在Ω<0.2的低頻范圍和Ω>4的高頻范圍不同模型對(duì)應(yīng)頻響曲線一致.
5結(jié)論
本文建立了含中間質(zhì)量的改進(jìn)三參數(shù)隔振器動(dòng)力學(xué)模型,并進(jìn)行了相關(guān)動(dòng)力學(xué)特性研究,得到以下主要結(jié)論:
1)隨著質(zhì)量比不斷增大,系統(tǒng)的平均輸入功率流以及最大動(dòng)能特性對(duì)應(yīng)的兩個(gè)峰值以及兩峰之間的低谷向低頻移動(dòng),且兩峰之間的頻段逐漸變寬.因此,增大質(zhì)量比可以有效改善系統(tǒng)的隔振性能.
2)頻域力傳遞率和時(shí)域位移響應(yīng)對(duì)比表明,中間質(zhì)量進(jìn)一步改善了非線性三參數(shù)隔振器的減隔振性能,含中間質(zhì)量的非線性三參數(shù)隔振器不僅可以改善系統(tǒng)的高頻隔振性能,而且可以充分利用其反共振特性,使得激勵(lì)頻率為某一固定范圍時(shí)的隔振性能顯著提高.
3)在非線性三參數(shù)隔振器中引入中間質(zhì)量,使隔振系統(tǒng)的固有頻率向低頻移動(dòng)且原隔振系統(tǒng)的諧振峰受反共振特征影響而得到極大衰減;受中間質(zhì)量影響,隔振系統(tǒng)各關(guān)鍵設(shè)計(jì)參數(shù)的影響主要集中于低頻范圍,且存在最優(yōu)值.
4)將線性動(dòng)力吸振器與接地X形機(jī)構(gòu)連接,受其非線性特征影響,第1個(gè)諧振頻率被提高且峰值得到有效抑制.
參考文獻(xiàn)
[1] RUZICKA J E,CAVANAUGH R D. Elastically supported damper system provides a new method for vibration isolation [J]. Machine Design,1958,30(21):114-116.
[2] RUZICKA J E,DERBYTE. Influence of damping in vibration isolation [M]. Washington DC:Shock and Vibration Information Center,1971.
[3]王杰,趙壽根,吳大方,等.微振動(dòng)隔振器動(dòng)態(tài)阻尼系數(shù)的測(cè)試方法[J].航空學(xué)報(bào),2014,35(2):454-460.
WANG J,ZHAO S G,WU D F,et al. A test method of dynamic damping coefficient of micro-vibration isolators[J]. Acta Aeronautica et AstronauticaSinica,2014,35(2):454-460. (In Chinese)
[4]王杰,趙壽根,吳大方,等.隔振器動(dòng)力學(xué)參數(shù)的測(cè)試方法研究[J].振動(dòng)工程學(xué)報(bào),2014,27(6):885-892.
WANG J,ZHAO S G,WU D F,et al. A test method of dynamic parameters of vibration isolators [J]. Journal of Vibration Engineering,2014,27(6):885-892.(In Chinese)
[5]王超新,孫靖雅,張志誼,等.最優(yōu)阻尼三參數(shù)隔振器設(shè)計(jì)和試驗(yàn)[J].機(jī)械工程學(xué)報(bào),2015,51(15):90-96.
WANG C X,SUN J Y,ZHANG Z Y,et al. Design and experiment of a three-parameter isolation system with optimal damping [J]. Journal of Mechanical Engineering,2015,51 (15):90-96. (In Chinese)
[6]CARRELLA A,BRENNAN M J,WATERS TP,et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration,2008,315(3):712-720.
[7]LEE C M,GOVERDOVSKIY V N. A multi-stage high-speed railroad vibration isolation system with “negative”stiffness [J]. Journal of Sound and Vibration,2012,331:914-921.
[8]HUANG X C,LIU X T,SUN J Y,et al. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector:a theoretical and experimental study[J]. Journal of Sound and Vibration,2014,333(4):1132-1148.
[9]HUANG X C,CHEN Y,HUA H X,et al. Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector:theoretical and experimental study[J]. Journal of Sound and Vibration,2015,345:178-196.
[10] MOLYNEUX W G. The support of an aircraft for ground resonance tests:a survey of available methods[J]. Aircraft Engineering and Aerospace Technology,1958,30(6):160-166.
[11] LORRAIN P. Low natural frequency vibration isolator or seismograph [J]. Review of Scientific Instruments,1974,45(2):198-202.
[12] ANTONIADIS I A,KYRIAKOPOULOS K J,PAPADOPOULOS E G. Hyper-damping behavior of stiff and stable oscillators with embedded statically unstable stiffness elements [J]. International Journal of Structural Stability and Dynamics,2017,17(5):1740008.
[13] ANTONIADIS I,CHRONOPOULOS D,SPITAS V,et al. Hyperdamping properties of a stiff and stable linear oscillator with a negative stiffness element[J]. Journal of Sound and Vibration,2015,346:37-52.
[14] LIU X T,HUANG X C,HUA H X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J]. Journal of Sound and Vibration,2013,332 (14):3359-3376.
[15]王保勵(lì).一類幾何非線性準(zhǔn)零剛度系統(tǒng)的隔振理論與實(shí)驗(yàn)研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2016:9-27.
WANG B L. Theoretical and experimental study on a class of geometrically nonlinear quasi-zero stifness vibration isolation system[D]. Harbin:Harbin Institute of Technology,2016:9-27.(In Chinese)
[16]劉彥琦,王好奎,黃庭軒,等.一種正負(fù)剛度并聯(lián)低頻隔振器的剛度和動(dòng)力學(xué)特性分析[J].飛控與探測(cè),2019,2(5):68-77.
LIU Y Q,WANG H K,HUANG T X,et al. Stiffness and dynamics analysis of a vibration isolator with positive and negative stiffness [J]. Flight Control & Detection,2019,2(5):68-77. (In Chinese)
[17]董光旭,張希農(nóng),謝石林,等.基于負(fù)剛度機(jī)構(gòu)的高剛度-超阻尼隔振器設(shè)計(jì)與研究J].振動(dòng)與沖擊,2017,36(9):239-246.
DONG G X,ZHANG X N,XIE S L,et al. Design of a high stiffness and hyper-damping vibration isolator based on negative stiffness mechanism[J]. Journal of Vibration and Shock,2017,36 (9):239-246.(In Chinese)
[18]邢昭陽,申永軍,邢海軍,等.一種含放大機(jī)構(gòu)的負(fù)剛度動(dòng)力吸振器的參數(shù)優(yōu)化[J].力學(xué)學(xué)報(bào),2019,51(3):894-903.
XING Z Y,SHEN Y J,XING H J,et al. Parameters optimization of a dynamic vibration absorber with amplifying mechanism and negative stiffness[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):894-903.(In Chinese)
[19] WANG M,SUN F F,YANG J Q,et al. Seismic protection of SDOF systems with a negative stiffness amplifying damper[J]. Engineering Structures,2019,190:128-141.
[20] SUN X T,JING X J,XU J,et al. Vibration isolation via a scissorlike structured platform[J]. Journal of Sound and Vibration,2014,333(9):2404-2420.
[21] SUN X T,JING X J. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure[J]. Mechanical Systems and Signal Processing,2016,66/67:723-742.
[22] LIU C C,JING X J,CHEN Z B. Band stop vibration suppression using a passive X-shape structured lever-type isolation system[J]. Mechanical Systems and Signal Processing,2016,68/69:342-353.
[23] WU Z J,JING X J,SUN B,et al. A 6DOF passive vibration isolator using X-shape supporting structures[J]. Journal of Sound and Vi- bration,2016,380:90-111.
[24] LIU C C,JING X J,LI F M. Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure[J]. International Journal of Mechanical Sciences,2015,98:169-177.
[25] WU Z J,JING X J,BIAN J,et al. Vibration isolation by exploring bio-inspired structural nonlinearity[J]. Bioinspiration &Biomi- metics,2015,10(5):056015.
[26] BIAN J,JING X J.Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure[J]. Mechanical Systems and Signal Processing,2019,125:21-51.
[27] FENG X,JING X J,XU Z D,et al. Bio-inspired anti-vibration with nonlinear inertia coupling[J]. Mechanical Systems and Signal Processing,2019,124:562-595.
[28] WANG Y,JING X J,GUO Y Q. Nonlinear analysis of a bioinspired vertically asymmetric isolation system under different structural constraints[J]. Nonlinear Dynamics,2019,95(1):445-464.
[29]劉海平,申大山,趙鵬鵬,非線性三參數(shù)隔振器動(dòng)力學(xué)特性研究[J].振動(dòng)工程學(xué)報(bào),2021,34(3):490-498.
LIU H P,SHEN D S,ZHAO PP. Dynamic performance of a three- parameter isolator with nonlinear characteristic[J]. Journal of Vibration Engineering,2021,34(3):490-498.(In Chinese)
[30] LIU H P,ZHAO P P. Displacement transmissibility of a four- parameter isolator with geometric nonlinearity[J]. International Journal of Structural Stability and Dynamics,2020,20(8):2050092.