劉昕暉 楊子康 曹丙偉 張萃 程鑫 楊闊
摘要:針對裝載機(jī)在轉(zhuǎn)向過程中因油缸鉸點(diǎn)布置位置產(chǎn)生的壓力沖擊和壓力波動問題,以最小行程差、最小力臂差及最小轉(zhuǎn)向系統(tǒng)功率為目標(biāo)函數(shù),通過遺傳算法進(jìn)行優(yōu)化,結(jié)合AMESim仿真及實(shí)驗(yàn)驗(yàn)證了優(yōu)化結(jié)果的可行性.優(yōu)化后行程差平均值減少了89.23%,力臂差平均值減少了88.40%,發(fā)動機(jī)怠速和全速時轉(zhuǎn)向所消耗的平均功率分別減少了32.56%和24.03%.通過深入研究行程差和力臂差曲線,確立了力臂差是引起壓力波動的主導(dǎo)因素,結(jié)合遺傳算法對油缸鉸點(diǎn)坐標(biāo)進(jìn)行二次優(yōu)化.優(yōu)化結(jié)果表明,行程差和力臂差的最大值較第一次優(yōu)化分別減少了14.29%和19.44%,實(shí)車油缸鉸點(diǎn)改造后進(jìn)行滿載全轉(zhuǎn)速快轉(zhuǎn)實(shí)驗(yàn),其壓力曲線未見明顯壓力異常.
關(guān)鍵詞:液壓傳動;裝載機(jī);仿真建模;鉸接轉(zhuǎn)向;壓力控制
中圖分類號:TH243文獻(xiàn)標(biāo)志碼:A
Optimization Analysis on Pressure Fluctuation of Loader Steering System Considering Multiple Factors
LIU Xinhui1,YANG Zikang1,CAO Bingwei1,2,ZHANG Cui1,CHENG Xin1,YANG Kuo1
(1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China;2. Weihai Institute for Bionics-Jilin University,Jilin University,Weihai 264402,China)
Abstract:As the loader in the process of steering produces pressure shock and pressure fluctuation due to the position of the cylinder hinge point arrangement,in this paper,the minimum stroke difference,the minimum arm difference,and the minimum steering power are set as objective functions,and Genetic algorithms are used to optimize it. The AMESim simulation and experiment are combined to verify the feasibility of the optimization results. After the optimization,the average stroke difference is reduced by 89.23%. The average moment arm difference is reduced by 88.40%. The average power consumed by the engine at idle and full speed is reduced by 32.56% and 24.03%,respectively. Through an in-depth study of stroke difference and moment arm difference curves,moment arm difference is identified as the dominant factor causing pressure fluctuation. Genetic algorithm is used to optimize the cylinder hinge coordinates quadratic. The optimization results show that the maximum stroke difference and moment arm difference are reduced by 14.29% and 19.44%,respectively,compared with the first optimization. A full load and full speed fast rotation experiment are carried out after the cylinder is modified by the hinge point. There is no obviouspressure anomaly in its pressure curve.
Key words:hydraulic drives;loaders;simulation modeling;articulated steering;pressure control
裝載機(jī)是應(yīng)用最廣泛的工程機(jī)械之一,其轉(zhuǎn)向操作頻繁[1-2].轉(zhuǎn)向油缸鉸點(diǎn)布置位置引起的行程差和力臂差,會帶來轉(zhuǎn)向過程中液壓油的非恒定流動,造成壓力沖擊和壓力波動,同時會增大轉(zhuǎn)向系統(tǒng)整體能耗,影響整機(jī)節(jié)能性[3].
目前,國內(nèi)外許多學(xué)者對裝載機(jī)轉(zhuǎn)向系統(tǒng)進(jìn)行了大量研究.桂乃磐等[4]以最小行程差和最小油泵功率組成多目標(biāo)函數(shù)進(jìn)行優(yōu)化,達(dá)到了預(yù)期的效果.莫雄超[5]通過建立裝載機(jī)轉(zhuǎn)向系統(tǒng)原地轉(zhuǎn)向模型,分析其轉(zhuǎn)向力矩和阻力矩,形成了一套評價裝載機(jī)轉(zhuǎn)向系統(tǒng)性能的體系.朱博[6]建立了轉(zhuǎn)向過程中行程差和力臂差最小化的優(yōu)化函數(shù),將其代入MATLAB優(yōu)化工具箱中,分析在不同情況下,應(yīng)用不同約束條件進(jìn)行絞點(diǎn)優(yōu)化設(shè)計(jì).劉昕暉等[7]利用等效參數(shù)建立了轉(zhuǎn)向系統(tǒng)數(shù)學(xué)模型,從系統(tǒng)頻率特性和系統(tǒng)穩(wěn)定性出發(fā),分析了轉(zhuǎn)向液壓系統(tǒng)壓力波動現(xiàn)象,確定了轉(zhuǎn)向過程中壓力波動的原因及影響因素.由上述分析可以看出,對裝載機(jī)轉(zhuǎn)向過程的壓力沖擊和壓力波動問題已經(jīng)取得了較大的進(jìn)展,但大部分的優(yōu)化只局限最小行程差、最小力臂差等分目標(biāo)函數(shù)進(jìn)行一至兩個組合研究,而針對裝載機(jī)轉(zhuǎn)向過程壓力沖擊和壓力波動問題進(jìn)行多目標(biāo)函數(shù)綜合考慮的研究相對較少[8-9].
隨著人工智能的發(fā)展,各類智能學(xué)習(xí)算法應(yīng)用到裝載機(jī)轉(zhuǎn)向系統(tǒng)優(yōu)化之中,其中Sivaramkumar等[10]利用遺傳算法求解有時間窗的車輛路徑問題,使總距離最小和車輛總數(shù)最少,并通過實(shí)驗(yàn)驗(yàn)證遺傳算法的優(yōu)化結(jié)果.Knust等[11]利用遺傳算法完成了熱加工預(yù)制件的優(yōu)化,研究表明,基于遺傳算法的方法可以有效地實(shí)現(xiàn)熱加工預(yù)制件的優(yōu)化.李春英等[12]利用MATLAB遺傳算法工具箱編寫轉(zhuǎn)向力矩遺傳算法優(yōu)化程序,得到鉸接點(diǎn)優(yōu)化位置.郝志軍[13]以左、右兩側(cè)油缸最小行程差和轉(zhuǎn)向系統(tǒng)所需最小功率為適應(yīng)度函數(shù),在約束條件下,利用遺傳算法對鉸接轉(zhuǎn)向機(jī)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),有一定的局限性.由上述分析可以看出,遺傳算法已廣泛應(yīng)用于裝載機(jī)各個領(lǐng)域[14-15],可以用于本文轉(zhuǎn)向油缸鉸點(diǎn)位置尋優(yōu).
基于以上研究,本文基于遺傳算法優(yōu)化轉(zhuǎn)向油缸鉸點(diǎn)布置位置,利用AMESim仿真轉(zhuǎn)向系統(tǒng)的功率曲線,進(jìn)行了轉(zhuǎn)向系統(tǒng)試驗(yàn),并對壓力波動影響因素進(jìn)行深度優(yōu)化分析.
1優(yōu)化設(shè)計(jì)模型
1.1轉(zhuǎn)向機(jī)構(gòu)幾何分析
輪式裝載機(jī)鉸接轉(zhuǎn)向機(jī)構(gòu)原理如圖1所示.點(diǎn)
A、B、C、D分別為轉(zhuǎn)向油缸與前車架及后車架鉸接點(diǎn),前后車架鉸接點(diǎn)記為O,當(dāng)折腰角為θ時,坐標(biāo)系旋轉(zhuǎn)至x′Oy′,對應(yīng)的鉸接點(diǎn)為A′、B′、C′、D′[16].選取a、b、c、d作為輔助計(jì)算變量,設(shè)與前車架鉸接的兩點(diǎn)連線中點(diǎn)與前后車架鉸接點(diǎn)O的距離為b,后車架鉸接的兩點(diǎn)連線中點(diǎn)與前后車架鉸接點(diǎn)O的距離為d,此處為0,具體關(guān)系如下:
根據(jù)圖1中幾何關(guān)系,裝載機(jī)車體折腰角為θ.
1)左、右轉(zhuǎn)向油缸的行程差ΔL.
式中:ΔLl、ΔLx分別為左、右側(cè)轉(zhuǎn)向油缸行程.
2)左、右轉(zhuǎn)向油缸力臂差Δh.
令
則
由式(3)~式(11)可知,由于折腰角的變化,會產(chǎn)生行程差和力臂差.
1.2建立目標(biāo)函數(shù)
為了優(yōu)化裝載機(jī)轉(zhuǎn)向油缸鉸點(diǎn)位置坐標(biāo),采用遺傳算法建立由行程差、力臂差和轉(zhuǎn)向系統(tǒng)功率3 個優(yōu)化目標(biāo)加權(quán)的優(yōu)化函數(shù),如式(12)所示.
min F(X)=m1f1(x)+m2f2(x)+m3f3(x)(12)
式中:f1(x)為行程差最小分目標(biāo)函數(shù);f2(x)為力臂差最小分目標(biāo)函數(shù);f3(x)為轉(zhuǎn)向系統(tǒng)功率最小分目標(biāo)函數(shù);m1、m2、m3分別為行程差、力臂差和轉(zhuǎn)向系統(tǒng)功率3個最小分目標(biāo)函數(shù)的加權(quán)因子.三者權(quán)重對現(xiàn)階段所研究問題及后續(xù)試驗(yàn)結(jié)果并無影響,故采用均勻計(jì)權(quán)法,取m1=m2=m3=1/3.三者權(quán)重分配問題將在后文探討.
分目標(biāo)函數(shù):
式中:P為轉(zhuǎn)向液壓系統(tǒng)壓力,MPa;D為轉(zhuǎn)向油缸缸徑,mm;d為轉(zhuǎn)向油缸活塞桿直徑,mm;η為轉(zhuǎn)向系統(tǒng)效率.
1.3設(shè)計(jì)變量及約束條件
根據(jù)圖1,以CD為x軸且以C朝向D的方向?yàn)檎?/p>
方向,以CD中點(diǎn)為起點(diǎn),垂直于CD向上為y軸建立坐標(biāo)系,設(shè)4個鉸點(diǎn)位置坐標(biāo)分別為A(-x1,y1),B(x1,y1),C(-x2,y2),D(x2,y2),故設(shè)計(jì)變量為:
X=[x1,x2,x3,x4]=[x1,y1,x2,y2]T(14)
由設(shè)計(jì)過程可知約束條件如下:
1)油缸鉸接點(diǎn)邊界約束.在實(shí)際設(shè)計(jì)中,必須在變化范圍內(nèi)設(shè)置裝載機(jī)的整體尺寸、轉(zhuǎn)向機(jī)構(gòu)布局及其他參數(shù)[17].本設(shè)計(jì)方案中4個設(shè)計(jì)變量有8個邊界約束,可表示為:
2)機(jī)構(gòu)的傳動角約束.
10°≤∠OBD≤170°(16)
式中:∠OBD為轉(zhuǎn)向油缸的傳動角.
3)油缸伸縮比約束.為了保證液壓油缸的工作
穩(wěn)定性,油缸的伸縮比限制為:
式中:Lmax、Lmin分別為轉(zhuǎn)向油缸最大、最小安裝尺寸.
2優(yōu)化設(shè)計(jì)結(jié)果分析
2.1遺傳算法
遺傳算法是一種在優(yōu)化過程中保留無用或去除模擬生物進(jìn)化的算法[18-19].一方面,遺傳算法通過對變量進(jìn)行編碼來確保其不受變量本身性質(zhì)的限制;另一方面,其目標(biāo)是群體而不是個體.遺傳算法從分組開始就隱含了并行搜索和全局隨機(jī)搜索的特征,這大大降低了獲得最優(yōu)解的可能性[20].
在基于遺傳算法的優(yōu)化設(shè)計(jì)過程中,選擇的適應(yīng)度函數(shù)為:
目標(biāo)函數(shù)值越大,適應(yīng)值越小.為了便于計(jì)算,基于遺傳算法的優(yōu)化是通過MATLAB進(jìn)行的.遺傳算法工作機(jī)制的流程如圖2所示.
步驟1識別設(shè)計(jì)變量,以固定長度的二進(jìn)制字符串的形式編碼所需變量.使用二進(jìn)制編碼是因?yàn)橛幸韵聝?yōu)點(diǎn):①簡單的編碼和解碼操作;②如選擇、交叉和變異等遺傳操作易于實(shí)施;③它符合最小符號集編碼的原則[21].
由式(12)可知,本文以兩個轉(zhuǎn)向油缸鉸接點(diǎn)位置坐標(biāo)為設(shè)計(jì)變量.由于遺傳算法的參數(shù)沒有固定的標(biāo)準(zhǔn),只能通過實(shí)踐不斷調(diào)參,根據(jù)不同的場景需求選擇,故經(jīng)過不斷調(diào)整,初定其主要種群數(shù)為1 000,交叉概率為0.4,突變概率為0.02.
步驟2創(chuàng)建隨機(jī)初始群體.人口中的個體是數(shù)字化的代碼,將進(jìn)化代數(shù)計(jì)數(shù)器和最大進(jìn)化代數(shù)分別設(shè)置為0和T.
步驟3通過式(18),為步驟2的種群及下一步新繁殖的種群計(jì)算其相應(yīng)的適應(yīng)值.轉(zhuǎn)向系統(tǒng)正常工作的前提是沒有轉(zhuǎn)向死角和干擾,約束條件如式(15)~式(17)所示,構(gòu)造的約束函數(shù)如下:
式中:m為約束函數(shù)的個數(shù).
將上述約束函數(shù)與目標(biāo)函數(shù)相結(jié)合,并采用相反的方法,最終將適應(yīng)度函數(shù)構(gòu)造如下:
步驟4檢查是否已經(jīng)達(dá)到遺傳算法的迭代終止標(biāo)準(zhǔn).如果遺傳算法的輸出不滿足終止標(biāo)準(zhǔn),則應(yīng)執(zhí)行后續(xù)步驟.
步驟5通過選擇、交叉和變異創(chuàng)造新的種群,繼續(xù)計(jì)算適應(yīng)度函數(shù),直到得到最優(yōu)結(jié)果.
適應(yīng)度函數(shù)曲線如圖3所示.由圖3可知,適應(yīng)度函數(shù)的最大值為0.36,出現(xiàn)在第62代.
2.2行程差和力臂差仿真
以圖1所建立的坐標(biāo)系為參考,對裝載機(jī)樣機(jī)的轉(zhuǎn)向油缸鉸點(diǎn)坐標(biāo)進(jìn)行測量,得A(- 150,1 160),B(150,1 160),C(- 360,0),D(360,0).將行程差、力臂差、轉(zhuǎn)向系統(tǒng)功率計(jì)算公式、遺傳算法程序及約束條件代入MATLAB/Simulink進(jìn)行封裝.將4個鉸點(diǎn)位置坐標(biāo)代入封裝好的程序中,可得最大行程差為23.6 mm,最大力臂差為51.2 mm,如圖4所示.
借助遺傳算法進(jìn)行優(yōu)化后,得到優(yōu)化后的鉸點(diǎn)位置坐標(biāo)分別為:A(- 273,1 230);B(273,1 230);C(- 315,0);D(315,0).將鉸點(diǎn)坐標(biāo)代入封裝于MATLAB/Simulink環(huán)境中的遺傳算法,得到優(yōu)化后的左右轉(zhuǎn)向油缸行程差、力臂差曲線,如圖5所示.
根據(jù)仿真結(jié)果可知,行程差隨折腰角的增大呈現(xiàn)先增大后減小的趨勢,在折腰角為30°時達(dá)到最大值1.4 mm,繼而回落;當(dāng)折腰角為40°時,行程差為0.6 mm.與優(yōu)化前相比行程差最大值減少了94.07%. 力臂差隨折腰角的增大呈現(xiàn)先增大后減小又增大的趨勢,在折腰角為30°時達(dá)到最小值0 mm,在折腰角為40°時達(dá)到最大值10.8 mm.與優(yōu)化前相比力臂差最大值減少了78.91%.
上述結(jié)果表明,優(yōu)化后的轉(zhuǎn)向機(jī)構(gòu)轉(zhuǎn)向過程產(chǎn)生的行程差和力臂差與優(yōu)化前相比有很大程度減小,驗(yàn)證了通過遺傳算法得到的轉(zhuǎn)向油缸鉸點(diǎn)的可行性.
2.3轉(zhuǎn)向系統(tǒng)功率仿真
上述對行程差和力臂差兩個分目標(biāo)函數(shù)進(jìn)行驗(yàn)證,下面利用AMESim軟件對分目標(biāo)函數(shù)f3(x)進(jìn)行仿真.轉(zhuǎn)向液壓系統(tǒng)由轉(zhuǎn)向器、優(yōu)先閥、負(fù)載敏感泵和轉(zhuǎn)向負(fù)載模型組成[22-23].
泵排量為80 mL/r,系統(tǒng)壓力為16 MPa.定量轉(zhuǎn)向系統(tǒng)由定量泵與優(yōu)先閥組成,不轉(zhuǎn)向時通過優(yōu)先閥低壓卸荷,轉(zhuǎn)向時優(yōu)先閥類似于一個定差減壓閥,將多余流量溢出.
優(yōu)化前后轉(zhuǎn)向系統(tǒng)功率仿真對比曲線如圖6所示,由圖6可知,在一個完整的轉(zhuǎn)向過程中,優(yōu)化前后轉(zhuǎn)向系統(tǒng)功率最大值分別為10.3 kW和9.2 kW;在極限位置時,優(yōu)化前后轉(zhuǎn)向系統(tǒng)功率分別在6.5 kW 和6.3 kW附近波動;轉(zhuǎn)向過程中轉(zhuǎn)向系統(tǒng)功率分別在2.3 kW和1.3 kW附近波動.相較于原機(jī)構(gòu),優(yōu)化后轉(zhuǎn)向系統(tǒng)功率的最大值減少了10.68%,在轉(zhuǎn)向過程中,優(yōu)化后的轉(zhuǎn)向系統(tǒng)功率減少了43.48%.上述仿真結(jié)果表明,優(yōu)化后的轉(zhuǎn)向機(jī)構(gòu)可有效地減少轉(zhuǎn)向系統(tǒng)功率.
3優(yōu)化結(jié)果實(shí)驗(yàn)驗(yàn)證
為了驗(yàn)證上述優(yōu)化及仿真的合理性,利用優(yōu)化后油缸鉸點(diǎn)位置對實(shí)車改裝并進(jìn)行實(shí)車轉(zhuǎn)向?qū)嶒?yàn). 通過查閱文獻(xiàn)發(fā)現(xiàn),車輛原地轉(zhuǎn)向阻力矩要遠(yuǎn)大于行駛過程中的轉(zhuǎn)向阻力矩[24-25],所以本文主要進(jìn)行裝載機(jī)原地轉(zhuǎn)向過程中的實(shí)驗(yàn).干燥的水泥路面附著系數(shù)最大,為0.7~1.0,輪胎在其上產(chǎn)生的阻力矩也最大,利于放大實(shí)驗(yàn)效果[26].為規(guī)避路況這一影響因素,所有的轉(zhuǎn)向?qū)嶒?yàn)均在相同的干燥水泥路面上進(jìn)行.
3.1轉(zhuǎn)向油缸行程實(shí)驗(yàn)
實(shí)驗(yàn)設(shè)備及仿真試驗(yàn)對比分別如圖7和圖8所示.通過實(shí)驗(yàn)得出了左右轉(zhuǎn)向油缸行程曲線,與仿真曲線進(jìn)行了對比.從對比結(jié)果可以看出,在實(shí)際轉(zhuǎn)向過程中,左、右轉(zhuǎn)向缸的行程與仿真結(jié)果基本一致,驗(yàn)證了仿真結(jié)果的準(zhǔn)確性.
3.2優(yōu)化前后轉(zhuǎn)向系統(tǒng)功率對比實(shí)驗(yàn)
本文通過CANalyst-II分析儀及采集軟件實(shí)現(xiàn)發(fā)動機(jī)狀態(tài)信息的采集,如圖9所示.經(jīng)過數(shù)據(jù)處理后,得到優(yōu)化前與優(yōu)化后轉(zhuǎn)向過程發(fā)動機(jī)功率對比曲線如圖10所示.
1)優(yōu)化前:怠速轉(zhuǎn)向時,其消耗功率在8kW上下波動,峰值為11.2 kW;全速轉(zhuǎn)向時,其消耗功率為37~40 kW,在70 s左右達(dá)到峰值85.2 kW.
2)優(yōu)化后:怠速轉(zhuǎn)向時,其消耗功率在5 kW上下波動,較優(yōu)化前減少了37.5%,峰值為8.7 kW,減少了26.4%;全速轉(zhuǎn)向時,其消耗功率在27 kW上下波動,較優(yōu)化前減少了27.0%,在60s左右達(dá)到峰值47.1 kW,減少了44.7%.
由實(shí)驗(yàn)結(jié)果可知,與優(yōu)化前比較,優(yōu)化后的轉(zhuǎn)向系統(tǒng)較大地減少了消耗功率,提高了整機(jī)的節(jié)能性,從而進(jìn)一步驗(yàn)證了目標(biāo)函數(shù)中添加轉(zhuǎn)向系統(tǒng)功率這一分目標(biāo)函數(shù)的必要性.
3.3優(yōu)化前后轉(zhuǎn)向油缸壓力波動對比實(shí)驗(yàn)
由于難以測量力臂差,而壓力曲線也可反應(yīng)力臂的變化,故對裝載機(jī)轉(zhuǎn)向油缸壓力進(jìn)行優(yōu)化前后的對比實(shí)驗(yàn),通過數(shù)據(jù)采集儀(圖11)對轉(zhuǎn)向過程中油缸壓力曲線進(jìn)行采集.
工作裝置處于空載狀態(tài),動臂提升至空載運(yùn)輸狀態(tài)時的適當(dāng)高度,進(jìn)行怠速下的原地轉(zhuǎn)向?qū)嶒?yàn),得到優(yōu)化前后轉(zhuǎn)向油缸壓力實(shí)驗(yàn)曲線分別如圖12和圖13所示.壓力波動采用相近時段的標(biāo)準(zhǔn)差表示,標(biāo)準(zhǔn)差越小,表明壓力波動小,壓力越穩(wěn)定.優(yōu)化前后轉(zhuǎn)向油缸壓力標(biāo)準(zhǔn)差對比如表1所示.通過實(shí)驗(yàn)及仿真研究分析,其優(yōu)化前后各項(xiàng)性能指標(biāo)如表2所示.
4壓力波動影響因素分析
上述仿真與實(shí)驗(yàn)結(jié)果驗(yàn)證了優(yōu)化后轉(zhuǎn)向油缸鉸點(diǎn)坐標(biāo)的正確性,轉(zhuǎn)向系統(tǒng)功率明顯減小.下文將探究行程差和力臂差對裝載機(jī)轉(zhuǎn)向過程中壓力波動的影響程度.
4.1行程差
利用本文在MATLAB/Simulink中搭建的仿真模型,優(yōu)化目標(biāo)為轉(zhuǎn)向油缸行程差最小,得到轉(zhuǎn)向油缸行程差、力臂差曲線如圖14所示.
由圖14可知,折腰角為±20°時,行程差為最小值0.折腰角為±40°時行程差達(dá)到最大值3.4 mm,此時力臂差為最大值22.3 mm.
由圖5可知,在折腰角為30°時,轉(zhuǎn)向油缸力臂差為最小值0,而行程差為最大值1.4 mm,對應(yīng)于圖13,在3~5 s時存在一定壓力波動.下面以力臂差最小化為目標(biāo)函數(shù)進(jìn)行油缸鉸點(diǎn)優(yōu)化.
4.2力臂差
基于遺傳算法,優(yōu)化目標(biāo)為轉(zhuǎn)向油缸力臂差最小,得到的轉(zhuǎn)向油缸行程差、力臂差曲線如圖15 所示.
由圖15可知,當(dāng)折腰角為±30°時,行程差為最大值1.2 mm,此時力臂差為最小值0;當(dāng)折腰角為±40°時,力臂差為最大值8.7 mm.與圖5相比,深度優(yōu)化后行程差最大值減少了14.29%,力臂差最大值減少了19.44%.因此,可以確定力臂差是引起裝載機(jī)轉(zhuǎn)向過程中壓力波動的主導(dǎo)影響因素.
對裝載機(jī)樣機(jī)再次改造,進(jìn)行重載、全轉(zhuǎn)速快打轉(zhuǎn)向?qū)嶒?yàn).油缸壓力曲線如圖16所示.
在圖15中深度優(yōu)化所得到的轉(zhuǎn)向油缸鉸點(diǎn)坐標(biāo)為A(- 250,975),B(250,975),C(- 294,0),D(294,0).由圖16可知,壓力沖擊和壓力波動得到了大幅度的抑制,確立了力臂差是引起壓力波動的主要影響因素,以力臂差作為目標(biāo)函數(shù)進(jìn)行優(yōu)化是合理的.
5結(jié)論
本文提出了一種基于遺傳算法優(yōu)化輪式裝載機(jī)轉(zhuǎn)向油缸鉸點(diǎn)坐標(biāo)的方法,結(jié)合仿真和實(shí)驗(yàn)驗(yàn)證了該方法的可行性.具體結(jié)論如下:
1)基于遺傳算法確定了以最小行程差、最小力臂差及最小轉(zhuǎn)向系統(tǒng)功率為優(yōu)化目標(biāo)的目標(biāo)函數(shù),得到了優(yōu)化后的轉(zhuǎn)向油缸鉸點(diǎn)坐標(biāo),對實(shí)車進(jìn)行了改裝.
2)仿真結(jié)果顯示,優(yōu)化后的裝載機(jī)轉(zhuǎn)向系統(tǒng)行程差平均值減少了89.23%,力臂差平均值減少了88.40%,轉(zhuǎn)向系統(tǒng)功率最大值減少了10.68%;在改裝實(shí)驗(yàn)中,轉(zhuǎn)向系統(tǒng)行程差與仿真結(jié)果基本吻合,壓力波動得到了大幅度的抑制,發(fā)動機(jī)的平均功率在怠速轉(zhuǎn)向過程中減少了32.56%,在全速轉(zhuǎn)向過程中減少了24.03%,達(dá)到了節(jié)能的目標(biāo).
3)深入研究行程差、力臂差對壓力波動的影響可知,力臂差是轉(zhuǎn)向過程中壓力波動問題的主導(dǎo)影響因素,并對鉸點(diǎn)坐標(biāo)進(jìn)行二次優(yōu)化.對實(shí)車進(jìn)行重載、全轉(zhuǎn)速快打轉(zhuǎn)向?qū)嶒?yàn),相較于初次優(yōu)化,行程差和力臂差最大值分別減少了14.29%和19.44%,壓力沖擊和壓力波動得到進(jìn)一步抑制.
參考文獻(xiàn)
[1]樊文建,楊敬,權(quán)龍.鉸接式裝載機(jī)轉(zhuǎn)向特性的分析與試驗(yàn)研究[J].液壓與氣動,2014(9):43-47.
FAN W J,YANG J,QUAN L. Analysis and experimental research on steering characteristics of articulated loader [J]. Chinese Hydraulics & Pneumatics,2014(9):43-47. (In Chinese)
[2]譚鵬,劉昕暉,陳偉,等.裝載機(jī)卸載工況動臂油缸回縮現(xiàn)象分析[J].吉林大學(xué)學(xué)報(bào)(工學(xué)版),2021,51(4):1204-1212.
TAN P,LIU X H,CHEN W,et al. Analysis on retracting phenomenon of boom cylinder of loader under unloading condition [J]. Journal of Jilin University (Engineering and Technology Edition),2021,51(4):1204-1212.(In Chinese)
[3]李洪雪,李世武,孫文財(cái),等.安裝液壓互聯(lián)懸架鉸接車輛的穩(wěn)定性研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(2):21-28
LI H X,LI S W,SUN W C,et al. Stability study of articulated vehicles fitted with hydraulically interconnected suspension[J]. Journal of Hunan University(Natural Sciences),2020,47(2):21-28 (In Chinese)
[4]桂乃磐,羅佑新.裝載機(jī)鉸接轉(zhuǎn)向機(jī)構(gòu)的優(yōu)化設(shè)計(jì)[J].太原重型機(jī)械學(xué)院學(xué)報(bào),2001,22(2):106-108.
GUI N P,LUO Y X. Optimization design of articulated steering mechanism of loader[J]. Journal of Taiyuan Heavy Machinery Institute,2001,22 (2):106-108. (In Chinese)
[5]莫雄超.鉸接式裝載機(jī)的轉(zhuǎn)向系統(tǒng)計(jì)算和校核[J].液壓氣動與密封,2019,39(6):57-59.
MO X C. Steering system calculation and check of articulated loader[J]. Hydraulics Pneumatics & Seals,2019,39(6):57-59 (In Chinese)
[6]朱博.裝載機(jī)轉(zhuǎn)向機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J].工程機(jī)械,2011,42(1):45-47
ZHU B. Optimal design of steering mechanism for loaders [J]. (Construction Machinery and Equipment,2011,42(1):45-47.(In (Chinese )
[7]劉昕暉,張楊.鉸接式工程機(jī)械車輛轉(zhuǎn)向振擺現(xiàn)象分析[J].機(jī)床與液壓,2008,36(3):105-107.
LIU X H,ZHANG Y. Analysis for pressure fluctuations of the steering system of the articulated vehicle [J]. Machine Tool & Hy- draulics,2008,36(3):105-107.(In (hinese)
[8]范珍珍.基于油缸鉸接點(diǎn)位置鉸接車轉(zhuǎn)向機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造,2016(10):110-113.
FAN Z Z. Optimization design of steering system of articulated dump truck based on the hinge joint of cylinder[J]. Machinery Design & Manufacture,2016(10):110-113.(In (hinese)
[9]朱博.LG953裝載機(jī)轉(zhuǎn)向機(jī)構(gòu)的優(yōu)化設(shè)計(jì)及液壓轉(zhuǎn)向系統(tǒng)的分析[D].長春:吉林大學(xué),2009:17-30.
ZHU B. The optimum design of steering mechanism of LG953 loader and the analysis of steering hydraulic system[D]. (hangc- hun:jilin University,2009:17-30.(In (hinese)
[10] SIVARAMKUMAR V,THANSEKHAR M R,SARAVANAN R,et al. Multi-objective vehicle routing problem with time windows:improving customer satisfaction by considering gap time [J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2017,231(7):1248-1263.
[11] KNUST J,PODSZUS F,STONIS M,et al. Preform optimization for hot forging processes using genetic algorithms[J]. The International Journal of Advanced Manufacturing Technology,2017,89(5/6/7/8):1623-1634.
[12]李春英,師東波,錢振朋.基于遺傳算法鉸接式車輛油缸鉸接點(diǎn)位置的優(yōu)化研究[J].機(jī)械設(shè)計(jì)與制造,2017(1):94-96.
LI C Y,SHI D B,QIAN Z P. Optimization research of articulated vehicle cylinder hinged point location based on genetic algorithm [J]. Machinery Design & Manufacture,2017(1):94-96. (In (hinese)
[13]郝志軍.基于遺傳算法的鉸接轉(zhuǎn)向機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J].煤炭工程,2015,47(3):138-140.
HAO Z J. Optimal design for articulated steering mechanism based on genetic algorithm[J]. Coal Engineering,2015,47(3):138- 140.(In Chinese)
[14]閆旭冬,權(quán)龍,楊敬.電液流量匹配裝載機(jī)轉(zhuǎn)向系統(tǒng)特性分析[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):71-78.
YAN X D,QUAN L,YANG J. Analysis on steering characteristics of wheel loader based on electric-hydraulic flow matching prin- ciple[J]. Transactions of the Chinese Society of Agricultural Engi- neering,2015,31(18):71-78.(In Chinese)
[15]秦鵬濤.裝載機(jī)線控轉(zhuǎn)向系統(tǒng)的分析與研究[D].青島:青島科技大學(xué),2019:16-25.
QIN P T. Analysis and research of loader wire steering system[D]. Qingdao:Qingdao University of Science & Technology,2019:16- 25.(In Chinese)
[16]王同建.裝載機(jī)線控轉(zhuǎn)向技術(shù)研究[D].長春:吉林大學(xué),2006:15-18.
WANG T J. Research of steer-by-wire technology on wheelloder[D]. (hangchun:Jilin University,2006:15-18.(In Chinese)
[17]秦四成.現(xiàn)代工程機(jī)械設(shè)計(jì)技術(shù)及應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2013:65-73.
QIN S C. Modern engineering machinery design technology and ap- plication[M]. Beijing:Chemical Industry Press,2013:65-73.(In Chinese)
[18] YIN Y M,RAKHEJA S,YANG J,et al. Design optimization of an articulated frame steering system[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2018,232(10):1339-1352.
[19] CAO B W,LIU X H,CHEN W,et al. Mechanism analysis of pressure fluctuation in wheel loader articulated steering hydraulic system[J]. Journal of Mechanical Science and Technology,2020,34 (10):4137-4147.
[20] ZHOU C,LIU X H,XU F X. Design optimization of steering mechanisms for articulated off-road vehicles based on genetic Algorithms[J]. Algorithms,2018,11(2):1-13.
[21]譚建豪,章兢.基于遺傳算法的154T電動車牽引勵磁PID控制器的設(shè)計(jì)[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,34(1):33-36.
TAN J H,ZHAN G J. Design of towing excitation PID controllers for 154T motor dump trucks based on genetic algorithms[J]. Journal of Hunan University(Natural Sciences),2007,34(1):33-36. (In Chinese)
[22]王繼新,龔大鵬,張英爽,等.利用三參數(shù)自動換擋策略的輪式裝載機(jī)傳動系建模與遺傳算法優(yōu)化[J].吉林大學(xué)學(xué)報(bào)(工學(xué)版),2011,41(S1):27-33.
WANG J X,GONG D P,ZHANG Y S,et al. Modeling of wheel loader powertrain with three-parameters shift strategy and optimization with genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(S1):27-33.(In Chinese)
[23]曹丙偉.雙變量液壓系統(tǒng)裝載機(jī)動態(tài)功率匹配及節(jié)能控制技術(shù)研究[D].長春:吉林大學(xué),2020:37-49.
CAO B W. Study on dynamic power matching and energy-saving control technology of loaders with Bi-variable hydraulic system[D]. Changchun:Jilin University,2020:37-49.(In Chinese)[24] GUO K H,GUO Y H,LU D,et al. Notice of retraction:prediction of automobile tire driving force characteristics[C]//2010 International Conference on Computer,Mechatronics,Control and Electronic Engineering. August 24-26,2010,Changchun,China:IEEE,2010:295-298.
[25]王剛.同軸流量放大全液壓轉(zhuǎn)向系統(tǒng)特性研究[D].長春:吉林大學(xué),2014:11-28.
WANG G. Characteristics research on full hydraulic steering system with coaxial flow amplification[D]. Changchun:Jilin University,2014:11-28.(In Chinese)
[26]余志生.汽車?yán)碚揫M].5版.北京:機(jī)械工業(yè)出版社,2009:112-130.
YU Z S. Automotive theory[M]. 5th ed. Beijing:China Machine Press,2009:112-130.(In Chinese)