国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

長(zhǎng)壽命高可靠性焊接結(jié)構(gòu)

2022-11-29 07:51徐連勇
關(guān)鍵詞:晶界服役深海

徐連勇

長(zhǎng)壽命高可靠性焊接結(jié)構(gòu)

徐連勇1, 2, 3

(1. 天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300350;2. 天津市現(xiàn)代連接技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300350;3. 天津大學(xué)內(nèi)燃機(jī)燃燒學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300350)

現(xiàn)代裝備結(jié)構(gòu)的設(shè)計(jì)與成形制造面臨著極端復(fù)雜環(huán)境和長(zhǎng)壽命安全服役的雙重挑戰(zhàn),焊接接頭因其自身特性一直是焊接結(jié)構(gòu)可靠性的最薄弱環(huán)節(jié).本文以火電蒸汽管道和深海油氣管道等能源裝備中的主管道為對(duì)象,針對(duì)主管道在極端復(fù)雜環(huán)境下服役安全所面臨的共性問(wèn)題,以管道失效的材料微觀損傷機(jī)制為基礎(chǔ),提出了協(xié)同提升應(yīng)對(duì)復(fù)雜環(huán)境的焊接接頭綜合性能的組織調(diào)控原理,創(chuàng)建了含缺陷管道服役壽命的精準(zhǔn)預(yù)測(cè)理論,并形成標(biāo)準(zhǔn),從而構(gòu)建了材料-接頭-結(jié)構(gòu)一體化的長(zhǎng)壽命高可靠性焊接結(jié)構(gòu)設(shè)計(jì)、成形與評(píng)價(jià)理論及技術(shù)體系.

長(zhǎng)壽命;可靠性;焊接結(jié)構(gòu);成形制造;協(xié)同提升

焊接結(jié)構(gòu)是采用焊接工藝實(shí)現(xiàn)各零部件之間連接的結(jié)構(gòu),在船舶、橋梁、車輛、壓力容器、油氣管道、飛行器、工程機(jī)械等領(lǐng)域中大量應(yīng)用.隨著現(xiàn)代工業(yè)科技發(fā)展,焊接結(jié)構(gòu)正在向大型化、高參數(shù)、長(zhǎng)壽命發(fā)展,如大飛機(jī)、航天空間站、深海油氣裝備、高效清潔火電、核電、石化壓力容器、高鐵等,面臨高溫、疲勞、腐蝕、嚴(yán)寒、輻照等復(fù)雜惡劣的服役環(huán)境條件,長(zhǎng)壽命高可靠性成為現(xiàn)代裝備對(duì)焊接結(jié)構(gòu)的必然要求.焊接接頭因特有的材料、組織、性能不均勻性使其成為焊接結(jié)構(gòu)可靠性的薄弱環(huán)節(jié),且接頭中不可避免的焊接殘余應(yīng)力和焊接缺陷也加劇了薄弱性.因此,通過(guò)焊接結(jié)構(gòu)的設(shè)計(jì)、成形制造,獲得滿足其設(shè)計(jì)壽命的服役性能,并在結(jié)構(gòu)服役期間實(shí)現(xiàn)準(zhǔn)確的剩余壽命預(yù)測(cè),成為現(xiàn)代工業(yè)發(fā)展的迫切需求,也一直是學(xué)術(shù)界和工業(yè)界共同面臨的命題.

高溫蒸汽管道和深海油氣管道是高效潔凈超超臨界機(jī)組和深海油氣田的生命線,面臨著超高溫、超高壓、超強(qiáng)腐蝕、超大變形的威脅,在此極端復(fù)雜環(huán)境下焊接接頭因蠕變疲勞失效和腐蝕疲勞失效導(dǎo)致的管道裂爆是制約管道長(zhǎng)壽命服役安全的瓶頸.本文以這兩類主管道為例,針對(duì)其面臨的服役安全共性問(wèn)題,以提高接頭性能、精準(zhǔn)預(yù)測(cè)壽命為目標(biāo),從建立材料損傷微觀機(jī)制,提出接頭綜合性能協(xié)同提升的組織調(diào)控原理,創(chuàng)建管道服役壽命精準(zhǔn)預(yù)測(cè)模型3個(gè)維度,構(gòu)建了材料-接頭-結(jié)構(gòu)一體化的長(zhǎng)壽命高可靠性焊接結(jié)構(gòu)設(shè)計(jì)、成形與評(píng)價(jià)理論及技術(shù)體系,廣泛應(yīng)用于我國(guó)火電機(jī)組和深海油氣田項(xiàng)目.

1?極端復(fù)雜環(huán)境下材料的服役損傷微觀機(jī)制

1.1?基于析出物微觀演變的耐熱鋼高溫蠕變、疲勞及交互作用下的損傷機(jī)制

超超臨界火電機(jī)組主蒸汽管道主材通常采用P92、G115鋼等9Cr鐵素體耐熱鋼[1-3],蒸汽管道承受嚴(yán)苛的高溫蠕變、疲勞及交互作用,其焊接接頭細(xì)晶區(qū)的Ⅳ型蠕變裂紋(圖1)是制約管道壽命的主要因素[4-7].眾所周知,析出物的形核與長(zhǎng)大對(duì)鐵素體耐熱鋼的蠕變性能具有重要影響,如Laves相會(huì)嚴(yán)重劣化蠕變性能.在研究鐵素體耐熱鋼蠕變損傷機(jī)制中,發(fā)現(xiàn)正火處理后原奧氏體晶界處殘留有未溶解的M23C6碳化物,而蠕變過(guò)程中析出的Laves相總伴鄰M23C6存在(圖2),進(jìn)而揭示了原奧氏體晶界處殘留M23C6輔助Laves相形核并協(xié)同長(zhǎng)大(圖3)是鐵素體耐熱鋼蠕變損傷的主導(dǎo)微觀機(jī)制[8].繼而發(fā)現(xiàn)原奧氏體晶界處殘留M23C6對(duì)鐵素體耐熱鋼焊接接頭細(xì)晶區(qū)Ⅳ型裂紋形核長(zhǎng)大起到主導(dǎo)作用.如圖4所示,在焊接過(guò)程中,細(xì)晶區(qū)承受短暫熱循環(huán)作用,M23C6溶解并短程擴(kuò)散,在原奧氏體晶界附近形成部分高碳細(xì)晶粒,在隨后服役蠕變過(guò)程中高碳細(xì)晶粒在原奧氏體晶界處沉淀析出碳化物,繼而形核蠕變空穴,并聚合、連接,導(dǎo)致晶界分離,最終發(fā)展為裂紋[9-10].

圖1?鐵素體耐熱鋼焊接接頭組織與Ⅳ型裂紋

圖2?Laves相與M23C6相伴存在

圖3?M23C6輔助Laves相形核與協(xié)同長(zhǎng)大機(jī)制

圖4?Ⅳ型蠕變裂紋形成機(jī)制

另一方面,研究發(fā)現(xiàn)細(xì)晶區(qū)高拘束應(yīng)力狀態(tài)(圖5)和高焊接殘余拉應(yīng)力促進(jìn)蠕變空洞萌生[11-12],而三叉晶界處的蠕變空洞與晶界變形交互作用(圖6)促進(jìn)微裂紋萌生[13-14],從而建立了細(xì)晶區(qū)加速損傷的宏微觀力學(xué)機(jī)制.

圖5?焊接接頭細(xì)晶區(qū)高拘束應(yīng)力狀態(tài)

圖6?三晶粒交匯處微空穴與晶界變形交互作用

1.2?管線鋼焊接接頭大應(yīng)變與抗應(yīng)力腐蝕綜合性能協(xié)同提升機(jī)制

深海油氣管道在海上鋪設(shè)階段會(huì)經(jīng)受1%~3%反復(fù)塑性應(yīng)變(S-lay達(dá)1%,J-lay達(dá)2.5%,Reel-lay達(dá)3%),在海底服役階段由于海底沙脊沙坡運(yùn)動(dòng)和海洋內(nèi)波會(huì)經(jīng)受高達(dá)2.5%的反復(fù)高塑性應(yīng)變,并且管道輸送的油氣中還存在H2S酸性強(qiáng)腐蝕介質(zhì),使得深海油氣管道面臨高應(yīng)變疲勞和H2S強(qiáng)腐蝕的雙重挑戰(zhàn).塑性應(yīng)變帶來(lái)焊接粗晶區(qū)低溫脆化,斷裂韌性差,在高應(yīng)變疲勞下脆斷風(fēng)險(xiǎn)大,同時(shí)增加氫脆敏感性(圖7),又帶來(lái)嚴(yán)重的抗H2S腐蝕性能下降的問(wèn)題.因此,傳統(tǒng)方法僅調(diào)控晶粒尺寸無(wú)法實(shí)現(xiàn)綜合性能提升,而高應(yīng)變又會(huì)同時(shí)降低這兩種性能,更加劇了調(diào)控難度.

圖7?高應(yīng)變帶來(lái)的脆化與氫脆敏感性問(wèn)題

從微觀組織層面上,可以闡明循環(huán)高塑性應(yīng)變引起低合金高強(qiáng)管線鋼焊接熱影響區(qū)晶粒形態(tài)改變、氫陷阱數(shù)量增加、大角度晶界減少,降低斷裂韌性且增加氫脆敏感性,增加斷裂機(jī)制由延性向脆性轉(zhuǎn)變的風(fēng)險(xiǎn),通過(guò)揭示焊接熱循環(huán)與貝氏體形態(tài)、鏈狀M/A組元含量、板條貝氏體和粒狀貝氏體比例的關(guān)聯(lián),發(fā)現(xiàn)板條貝氏體和粒狀貝氏體等比例時(shí)既能保證最低氫脆敏感性,又可提高斷裂韌性,從而建立了斷裂韌性與抗H2S腐蝕性能協(xié)同提升的焊接熱循環(huán)調(diào)控原理[15-17](圖8、圖9).

圖8?不同T8/5下的焊接熱影響區(qū)組織

圖9?不同T8/5下的焊接熱影響區(qū)綜合性能

2?焊接接頭綜合性能協(xié)同提升的組織調(diào)控原理

對(duì)于在高溫、疲勞、腐蝕極端復(fù)雜環(huán)境下工作的高溫蒸汽管道和深海油氣管道,其材料及焊接接頭須具有優(yōu)異的綜合服役性能以適應(yīng)復(fù)雜服役環(huán)境,避免早期失效,滿足設(shè)計(jì)壽命要求.然而,對(duì)于經(jīng)歷急熱急冷焊接熱循環(huán)的焊接接頭,其綜合性能的提升調(diào)控是其難題.因此,以材料微觀損傷機(jī)制為基礎(chǔ),揭示焊接接頭微觀組織與宏觀性能的關(guān)聯(lián),開發(fā)實(shí)現(xiàn)最佳綜合服役性能的焊接工藝,對(duì)高性能焊接接頭的成形制造具有科學(xué)指導(dǎo)意義.

2.1?抑制Ⅳ型裂紋的鐵素體耐熱鋼焊接接頭組織調(diào)控原理

如前所述,Ⅳ型裂紋由細(xì)晶區(qū)的材料蠕變損傷引起,原奧氏體晶界處殘留的M23C6析出物、高焊接殘余應(yīng)力與高拘束應(yīng)力狀態(tài)是Ⅳ型裂紋產(chǎn)生的主導(dǎo)因素,而機(jī)組啟停機(jī)和調(diào)峰運(yùn)行帶來(lái)的疲勞會(huì)加劇細(xì)晶區(qū)的材料損傷.由此,提出了焊前多次短時(shí)正火處理充分溶解原奧氏體晶界殘留碳化物的調(diào)控原理,并開發(fā)了控制細(xì)晶區(qū)寬度和拘束度的小坡口角度、低熱輸入焊接工藝[11],發(fā)明了厚壁蒸汽管道壁厚外徑非等效加熱面積準(zhǔn)則的焊后局部熱處理方法[18],實(shí)現(xiàn)了原奧氏體晶界碳化物充分溶解,降低了細(xì)晶區(qū)寬度和拘束度,提高了焊接殘余應(yīng)力消除率(圖10),有效抑制了Ⅳ型早期開裂.

(a)細(xì)晶區(qū)拘束與HAZ寬度關(guān)系(b)低熱輸入降低HAZ寬度(c)新加熱面積準(zhǔn)則消應(yīng)力效果

2.2?協(xié)同提升大應(yīng)變與抗腐蝕綜合性能的管線鋼焊接接頭組織調(diào)控原理

針對(duì)深海油氣管道大應(yīng)變-強(qiáng)腐蝕服役對(duì)多層多道焊接接頭高抗應(yīng)力腐蝕性能、高斷裂韌性的要求,闡明了多層多道焊接熱循環(huán)對(duì)熱影響區(qū)微觀組織演變的影響機(jī)制,提出了提升綜合性能的二次調(diào)控法,即通過(guò)調(diào)控一次熱循環(huán)實(shí)現(xiàn)打底焊熱影響區(qū)組織內(nèi)板條貝氏體(LB)和粒狀貝氏體(GB)相近比例的最優(yōu)組合[19],以及獲得小晶粒尺寸、高比例大角度晶界、高密度不可逆氫陷阱,再通過(guò)低熱輸入的填充焊對(duì)打底焊熱影響區(qū)組織的二次熱循環(huán)調(diào)控[20],消除劣化斷裂韌性的鏈狀M-A組元(圖11),實(shí)現(xiàn)了焊接接頭抗應(yīng)力腐蝕性能和斷裂韌性的協(xié)同提升,從而開發(fā)抗應(yīng)力腐蝕、抗循環(huán)高塑性應(yīng)變最佳綜合性能的焊接工藝.

圖11?二次調(diào)控焊接熱循環(huán)

3?極端復(fù)雜環(huán)境下含缺陷結(jié)構(gòu)壽命的精準(zhǔn)預(yù)測(cè)理論

焊接結(jié)構(gòu)在成形制造及服役中不可避免產(chǎn)生缺陷,為保證結(jié)構(gòu)服役安全,必須對(duì)缺陷進(jìn)行科學(xué)準(zhǔn)確的斷裂評(píng)定和壽命預(yù)測(cè).然而,當(dāng)前國(guó)內(nèi)外通用標(biāo)準(zhǔn)難以準(zhǔn)確考慮結(jié)構(gòu)拘束水平、焊接殘余應(yīng)力對(duì)裂紋行為的影響,加之高溫、疲勞、腐蝕等極端復(fù)雜環(huán)境帶來(lái)裂紋尖端材料損傷機(jī)制與性能的改變,使得裂紋萌生與擴(kuò)展行為更為復(fù)雜,導(dǎo)致使用當(dāng)前國(guó)際通用標(biāo)準(zhǔn)的預(yù)測(cè)結(jié)果與實(shí)際差別很大,成為結(jié)構(gòu)壽命精準(zhǔn)預(yù)測(cè)的瓶頸性難題,給以“相似性原理”為基礎(chǔ)的結(jié)構(gòu)強(qiáng)度設(shè)計(jì)與評(píng)估帶來(lái)了嚴(yán)峻挑戰(zhàn).

3.1?高溫蠕變疲勞裂紋壽命精準(zhǔn)預(yù)測(cè)模型與服役性能評(píng)價(jià)方法

提升高溫蒸汽管道缺陷壽命的途徑包括兩個(gè)方面:一是開發(fā)科學(xué)合理的壽命預(yù)測(cè)模型;二是獲得考慮材料劣化的實(shí)時(shí)性能.針對(duì)當(dāng)前國(guó)際通用標(biāo)準(zhǔn)R5、R6[21-22]中壽命預(yù)測(cè)模型不能反映裂紋尖端的材料損傷機(jī)制,并且忽略實(shí)際管道裂紋尖端復(fù)雜應(yīng)力狀態(tài)與標(biāo)準(zhǔn)試樣的差別,提出了與載荷水平無(wú)關(guān)的蠕變拘束新參量*[23],建立了表征裂紋尖端應(yīng)力場(chǎng)的*-*雙參量表達(dá)式(圖12),實(shí)現(xiàn)了管道裂紋尖端真實(shí)應(yīng)力狀態(tài)的準(zhǔn)確表征[24].闡明了蠕變裂紋尖端的拘束效應(yīng)[25-28]與殘余應(yīng)力釋放效應(yīng)[29-30],并基于裂紋尖端蠕變韌性耗散的損傷機(jī)制,發(fā)明了精準(zhǔn)預(yù)測(cè)蠕變-疲勞裂紋孕育期和擴(kuò)展速率的*-*雙參量法模型[31-52](圖13和圖14),實(shí)現(xiàn)了損傷機(jī)制、應(yīng)力狀態(tài)和殘余應(yīng)力釋放的定量表征,預(yù)測(cè)精度比R5標(biāo)準(zhǔn)提高了5倍以上.為了便于推廣應(yīng)用,在此基礎(chǔ)上,并參考R5、BS7910等[53]國(guó)際通用標(biāo)準(zhǔn),創(chuàng)建了Ⅰ級(jí)簡(jiǎn)化評(píng)估-Ⅱ級(jí)常規(guī)評(píng)估-Ⅲ級(jí)精確評(píng)估的3級(jí)評(píng)估體系,制定了我國(guó)電力行業(yè)第1個(gè)含缺陷高溫高壓管道壽命評(píng)估標(biāo)準(zhǔn),填補(bǔ)了我國(guó)電力行業(yè)標(biāo)準(zhǔn)在此領(lǐng)域的空白.

圖13?C*-Q*雙參量法蠕變裂紋萌生預(yù)測(cè)模型

圖14?C*-Q*雙參量法蠕變裂紋擴(kuò)展預(yù)測(cè)模型

針對(duì)在役高溫蒸汽管道的實(shí)時(shí)性能,發(fā)明了便攜式微創(chuàng)取樣機(jī)、超小型微創(chuàng)高溫蠕變疲勞試驗(yàn)機(jī)等新裝置(圖15),建立了微損傷的管道取樣與蠕變、疲勞性能測(cè)試方法[54-56],開發(fā)了分段計(jì)算微試樣變形的改進(jìn)錐模型[57],實(shí)現(xiàn)了微小試樣與標(biāo)準(zhǔn)試樣性能數(shù)據(jù)的有效轉(zhuǎn)化(圖16).

圖15 便攜式微創(chuàng)取樣機(jī)與超小型微創(chuàng)高溫蠕變疲勞試驗(yàn)機(jī)

圖16?分段計(jì)算微試樣變形的改進(jìn)錐模型

3.2?深海油氣管道全壽期極端復(fù)雜工況下斷裂評(píng)定精準(zhǔn)模型與服役性能評(píng)價(jià)方法

圍繞深海管道海上鋪設(shè)階段單軸循環(huán)高塑性應(yīng)變加載、海底服役階段循環(huán)高塑性應(yīng)變與內(nèi)壓雙軸加載及H2S強(qiáng)腐蝕環(huán)境,建立了實(shí)現(xiàn)深埋裂紋向表面裂紋等效轉(zhuǎn)換的F參量法模型[58],提出了單軸與雙軸加載下改進(jìn)的參考應(yīng)變法計(jì)算模型[59-63]、雙金屬?gòu)?fù)合管焊縫裂紋驅(qū)動(dòng)力解析模型[64-65],建立了耦合上述模型的失效評(píng)定曲線(FAC-new),實(shí)現(xiàn)了覆蓋深海全類型管道、全類型缺陷、全壽期的精確斷裂評(píng)定,解決了DNV[66]、R6標(biāo)準(zhǔn)評(píng)估單軸高應(yīng)變加載偏保守、評(píng)估高應(yīng)變與內(nèi)壓雙軸極限加載偏危險(xiǎn)的不足(圖17).針對(duì)高應(yīng)變管道的性能評(píng)價(jià),發(fā)明了國(guó)內(nèi)首臺(tái)套全尺寸管道大變形極限評(píng)價(jià)裝置(圖18),建立了深海管道循環(huán)高應(yīng)變-腐蝕性能的測(cè)試方法[67].

圖18?全尺寸管道大變形極限評(píng)價(jià)裝置

4?結(jié)?語(yǔ)

長(zhǎng)壽命高可靠性是現(xiàn)代裝備的迫切需求和發(fā)展方向,對(duì)于裝備中必不可少的焊接結(jié)構(gòu),因運(yùn)行環(huán)境復(fù)雜化、結(jié)構(gòu)尺寸極端化導(dǎo)致失效模式和破壞機(jī)理均有異于傳統(tǒng)對(duì)象,必須從材料、接頭、結(jié)構(gòu)三級(jí)層級(jí)進(jìn)行一體化的設(shè)計(jì)、制造及評(píng)價(jià),才能實(shí)現(xiàn)滿足極端復(fù)雜環(huán)境下長(zhǎng)壽命安全服役的設(shè)計(jì)要求.本文基于這一理念,以高溫、高壓、腐蝕、疲勞等極端復(fù)雜環(huán)境下服役的高溫蒸汽管道和深海油氣管道為研究對(duì)象,介紹了從材料損傷微觀機(jī)制、焊接接頭綜合性能協(xié)同提升的組織調(diào)控原理、服役壽命精準(zhǔn)預(yù)測(cè)理論3個(gè)層級(jí)取得的理論創(chuàng)新成果,構(gòu)建的材料-接頭-結(jié)構(gòu)一體化的長(zhǎng)壽命高可靠性焊接結(jié)構(gòu)設(shè)計(jì)、成形與評(píng)價(jià)理論及技術(shù)體系,也可望用于航天航空、高鐵、核電、石化、艦船等其他領(lǐng)域重大裝備焊接結(jié)構(gòu)的長(zhǎng)壽命成形制造與評(píng)價(jià).

[1] Hasegawa Y,Ohgami M,Okamura Y. Creep properties of heat affected zone of weld in W containing 9%—12% chromium creep resistant martensitic steels at elevated temperature[C]// Advanced Heat Resistant Steels for Power Generation. Cambridge:IOM Communications,The University Press,1999:655-667.

[2] 徐連勇,荊洪陽(yáng),安俊超,等. P92鋼焊接接頭蠕變本構(gòu)關(guān)系[J]. 焊接學(xué)報(bào),2009,30(12):29-32.

Xu Lianyong,Jing Hongyang,An Junchao,et al. Creep constitutive relation of P92 steel welded joint[J]. Transactions of the China Welding Institution,2009,30(12):29-32(in Chinese).

[3] Xiao B,Xu L Y,Zhao L,et al. Tensile mechanical properties,constitutive equations,and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures[J]. Materials Science and Engineering:A,2017,690:104-119.

[4] Smith D J,Walker N S,Kimmins S T. Type Ⅳ creep cavity accumulation and failure in steel welds[J]. International Journal of Pressure Vessels and Piping,2003,80(6):617-627.

[5] Albert S K,Matsui M,Watanabe T,et al. Variation in the type Ⅳ cracking behaviour of a high Cr steel weld with post weld heat treatment[J]. International Journal of Pressure Vessels and Piping,2003,80:405-413.

[6] Francis J A,Mazur W,Bhadeshia H K D H. Type Ⅳ cracking in ferritic power plant steels[J]. Materials Science and Technology,2006,22(12):1387-1395.

[7] Abe F,Tabuchi M,Kondo M,et al. Suppression of type Ⅳ fracture and improvement of creep strength of 9Cr steel welded joints by boron addition[J]. International Journal of Pressure Vessels and Piping,2007,84(1/2):44-52.

[8] 肖?博. 新型馬氏體耐熱鋼G115蠕變微觀損傷機(jī)理及本構(gòu)模型[D]. 天津:天津大學(xué)材料科學(xué)與工程學(xué)院,2020.

Xiao Bo. Creep Microscopic Damage Mechanism and Constitutive Model of New Martensitic Heat Resistant Steel G115[D]. Tianjin:School of Materials Science and Engineering,Tianjin University,2020(in Chinese).

[9] Zhao L,Jing H Y,Xu L Y,et al. Investigation on mechanism of type Ⅳ cracking in P92 steel at 650℃[J]. Journal of Materials Research,2011,26(7):934-943.

[10] Zhao L,Jing H Y,Xu L Y,et al. Experimental study on creep damage evolution process of Type Ⅳ cracking in 9Cr-0.5Mo-1.8W-VNb steel welded joint[J]. Engineering Failure Analysis,2012,19:22-31.

[11] Zhao L,Jing H Y,Xu L Y,et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint[J]. Mterials and Design,2012,34:566-575.

[12] 姜運(yùn)建,荊洪陽(yáng),徐連勇. 焊接殘余應(yīng)力對(duì)P92鋼Ⅳ型蠕變開裂的影響[J]. 焊接學(xué)報(bào),2011,32(1):16-20.

Jiang Yunjian,Jing Hongyang,Xu Lianyong. Effect of welding residual stress on type Ⅳcreep cracking of P92 steel[J]. Transactions of the China Welding Institution,2011,32(1):16-20(in Chinese).

[13] Zhao Y X,Xu L Y. Effect of blunt nanocracks on the splitting transformation of grain boundary dislocation piled up at triple junctions[J]. International Journal of Solids and Structures,2018,141/142:232-244.

[14] Li Q F,Zhao Y X,Xu L Y. Effect of nanovoid on grain boundary migration and disclinated cracking in nanocrystalline materials[J]. International Journal of Solids and Structures,2018,155(15):140-154.

[15] Han Y D,Jing H Y,Xu L Y,Welding heat input effect on the hydrogen permeation in the X80 steel welded joints[J]. Materials Chemistry and Physics,2012,132(1):216-222.

[16] Lu Y X,Jing H Y,Xu L Y. Effect of welding heat input on the corrosion resistance of carbon steel weld metal[J]. Journal of Materials Engineering Performance,2016,25(2):565-576.

[17] Han Y D,Wang R Z,Wang H,et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain[J]. International Journal of Hydrogen Energy,2019,44(39):22380-22393.

[18] Xu L Y,Miao Y,Jing H Y,et al. Experimental and numerical investigation of heated band width for local post weld heat treatment of ASME P92 steel pipe[J]. Journal of Pressure Vessel Technology,2014,136(1):011401.

[19] Han Y D,Wang R Z,Jing H Y,et al. Sulphide stress cracking behaviour of the coarsegrained heat-affected zone in X100 pipeline steel under different heat inputs[J]. International Journal of Hydrogen Energy,2020,44(39):20094-20105.

[20] 王睿哲. 基于熱模擬技術(shù)的X100管線鋼焊接熱影響區(qū)硫化氫應(yīng)力腐蝕開裂行為研究[D]. 天津:天津大學(xué)材料科學(xué)與工程學(xué)院,2019.

Wang Ruizhe. Study on Stress Corrosion Cracking Behavior of Hydrogen Sulfide in Heat-affected Zone of X100 Pipeline Steel Welding Based on Thermal Simulation Technology[D]. Tianjin:School of Materials Science and Engineering,Tianjin University,2019(in Chinese).

[21] R5. Assessment Procedure for the High Temperature Response of Structure(Issue3)[S]. Gloucester,UK:British Energy,2003.

[22] R6. Assessment of the Integrity of Structures Containing Defects(Revision 4)[S]. Gloucester UK:British Energy,2001.

[23] Xu L Y,Zhang X F,Zhao L,et al. Quantifying the creep crack-tip constraint effects using a load-independent constraint parameter*[J]. International Journal of Mechanical Sciences,2016,119:320-332.

[24] Xu L Y,Zhang X F,Zhao L,et al. Characterization of creep crack-tip constraint levels for pressurized pipelines with axial surface cracks[J]. Advances in Engineering Software,2017,114:98-109.

[25] Zhao L,Jing H Y,Xu L Y,et al. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation[J]. Engineering Fracture Mechanics,2012,96:251-266.

[26] Zhao L,Jing H Y,Han Y D,et al. Prediction of creep crack growth behavior in ASME P92 steel welded joint[J]. Computational Materials Science,2012,61:185-193.

[27] Zhao L,Jing H Y,Xiu J J,et al. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint[J]. Materials and Design,2014,47:736-743.

[28] Wu D Q,Jing H Y,Xu L Y,et al. Numerical analysis of the creep crack constraint effects and the creep crack initiation for pressurized pipelines with circumferential surface cracks[J]. Advances in Engineering Software,2018,115:40-51.

[29] Zhao L,Jing H Y,Xu L Y,et al. Effect of residual stress on creep crack growth behavior in ASME P92 steel[J]. Engineering Fracture Mechanics,2013,110:233-248.

[30] Wu D Q,Jing H Y,Xu L Y,et al. Theoretical and numerical analysis of creep crack initiation combined with primary and secondary stresses[J]. Theoretical and Applied Fracture Mechanics,2018,95:143-154.

[31] Zhao L,Xu L Y,Han Y D,et al. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel[J]. International Journal of Mechanical Sciences,2015,94/95:63-74.

[32] Zhao L,Xu L Y,Han Y D,et al. Two-parameter characterization of constraint effect induced by specimen size on creep crack growth[J]. Engineering Fracture Mechanics,2015,143:121-137.

[33] Wu D Q,Jing H Y,Xu L Y,et al. Theoretical and numerical analysis of the creep crack initiation time considering the constraint effects for pressurized pipelines with axial surface cracks[J]. International Journal of Mechanical Sciences,2018,141:262-275.

[34] Wu D Q,Jing H Y,Xu L Y,et al. Analytical approaches of creep crack initiation prediction coupled with the residual stress and constraint effect[J]. European Journal of Mechanics/A Solids,2018,71:1-15.

[35] Wu D Q,Jing H Y,Xu L Y,et al. Investigation on creep crack initiation prediction considering constraint effect using constraint parameter[J]. Theoretical and Applied Fracture Mechanics,2018,96:631-641.

[36] Wu D Q,Jing H Y,Xu L Y,et al. Two-parameter approach of creep crack initiation times considering the constraint effect induced by specimen geometry[J]. Theoretical and Applied Fracture Mechanics,2018,96:31-44.

[37] Wu D Q,Jing H Y,Xu L Y,et al. Creep crack initiation prediction considering constraint effect for pressurized pipelines with circumferential surface cracks[J]. Fatigue & Fracture of Engineering Materials and Structures,2018,41(9):1900-1917.

[38] Wu D Q,Jing H Y,Xu L Y,et al. Analytical and numerical investigations of creep crack initiation considering the load-independent constraint parameter*[J]. Archive of Applied Mechanics,2018,88:2031-2050.

[39] Wu D Q,Jing H Y,Xu L Y,et al. Enhanced models of creep crack initiation prediction coupled the stress-regime creep properties and constraint effect[J]. European Journal of Mechanics/A Solids,2019,74:145-159.

[40] Wu D Q,Jing H Y,Xu L Y,et al. Engineering application of enhanced*-* two parameter approaches for predicting creep crack initiation times[J]. European Journal of Mechanics/A Solids,2020,82:104013.

[41] Wu D Q,Xu L Y,Zhai W,et al. Analysis of the constraint levels and the creep crack initiation times for pressurized pipes with long surface cracks[J]. Thin-Walled Structures,2020,153:106787.

[42] Xu L Y,Zhao L,Han Y D,et al. Characterizing crack growth behavior and damage evolution in P92 steel under creep-fatigue conditions[J]. International Journal of Mechanical Sciences,2017,134:63-74.

[43] Xu L Y,Rong J Y,Zhao L,et al. Creep-fatigue crack growth behavior of G115 steel at 650℃[J]. Materials Science & Engineering A,2018,726:179-186.

[44] Zhao L,Xu L Y,Gao Z F,et al. Characterization crack growth behavior in creep-fatigue loading conditions through different specimen geometries[J]. International Journal of Mechanical Sciences,2018,145:246-257.

[45] Tang Z X,Jing H Y,Xu L Y,et al. Investigating crack propagation behavior and damage evolution in G115 steel under combined steady and cyclic loads[J]. Theoretical and Applied Fracture Mechanics,2019,100:93-104.

[46] Tang Z X,Jing H Y,Xu L Y,et al. Investigation of creep-fatigue crack growth of G115 steel using a novel damage model[J]. International Journal of Mechanical Sciences,2020,183:105827.

[47] Zhao L,Xu L Y,Han Y D,et al. Analysis on stress-strain behavior and life prediction of P92 steel under creep-fatigue interaction conditions[J]. Fatigue & Fracture of Engineering Materials & Structures,2020,43:2731-2743.

[48] Tang Z X,Jing H Y,Xu L Y,et al. Temperature effect on dwell-fatigue crack propagation behavior of novel tempered martensitic ferritic steel G115[J]. Engineering Fracture Mechanics,2020,237:107250.

[49] Zhao L,Xu L Y,Han Y D,et al. Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation[J]. International Journal of Mechanical Sciences,2019,161/162:105016.

[50] Tang Z X,Jing H Y,Xu L Y,et al. Creep-fatigue crack growth behavior of G115 steel under different hold time conditions[J]. International Journal of Fatigue,2018,116:572-583.

[51] Tang Z X,Jing H Y,Xu L Y,et al. Crack growth behavior,fracture mechanism,and microstructural evolution of G115 steel under creep-fatigue loading conditions[J]. International Journal of Mechanical Sciences,2019,161/162:105037.

[52] Tang Z X,Jing H Y,Xu L Y,et al. Stress state and stress-induced microstructural evolution around the crack tip of G115 steel after dwell‐fatigue crack propagation[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(10):2290-2301.

[53] BS7910. Guide for Assessing the Significance of Flaws in Metallic Structures[S]. London:British Standards,2013.

[54] Zhao L,Jing H Y,Xu L Y,et al. Evaluating of creep property of distinct zones in P92 steel welded joint by small punch creep test[J]. Materials and Design,2013,47:677-686.

[55] Zhao L,Song K,Xu L Y,et al. Investigating creep rupture and damage behavior of 41Fe-25.5Cr-23.5Ni alloy small punch creep specimens using a novel microstructure meshing approach[J]. Materials Science & Engineering A,2019,766:138370.

[56] Song K,Zhao L,Xu L Y,et al. Experimental and numerical analysis of creep and damage behavior of P92 steel by small punch tests[J]. Theoretical and Applied Fracture Mechanics,2019,100:181-190.

[57] Zhao L,Song K,Xu L Y,et al. Determination of creep properties of an advanced Fe-Cr-Ni alloy using small punch creep test with a modified creep strain model[J]. Theoretical and Applied Fracture Mechanics,2019,104:102324.

[58] Jia P Y,Jing H Y,Xu L Y,et al. A modified engineering critical assessment method for deeply-embedded cracks in metallic pipelines subjected to large plastic strain[J]. Engineering Fracture Mechanics,2019,208:171-188.

[59] Jia P Y,Jing H Y,Xu L Y,et al. A modified reference strain method for engineering critical assessment of reeled pipelines[J]. International Journal of Mechanical Sciences,2016,105:23-31.

[60] Jia P Y,Jing H Y,Xu L Y,et al. A modified fracture assessment method for pipelines under combined inner pressure and large-scale axial plastic strain[J]. Theoretical and Applied Fracture Mechanics,2017,87:91-98.

[61] Zhao X X,Xu L Y,Jing H Y,et al. A modified strain-controlled reference stress approach for submarine pipelines under large-scale plastic strain[J]. Advances in Engineering Software,2018,119:12-20.

[62] Zhao X X,Xu L Y,Jing H Y,et al. A modification of reference strain approach for thin-walled submarine pipelines under large-scale plastic strain and internal pressure[J]. Thin-Walled Structures,2019,140:182-194.

[63] Zhao X X,Xu L Y,Jing H Y,et al. A strain-controlled fracture assessment for submarine thin-walled pipes with V-groove welds and circumferential embedded cracks[J]. Thin-Walled Structures,2019,145:106377.

[64] Jia P Y,Jing H Y,Xu L Y,et al. Investigation on plastic eta factors for SE(T)specimens with undermatched weld metal based on plane strain finite element analysis[J]. International Journal of Mechanical Sciences,2017,122:192-202.

[65] Zhao X X,Xu L Y,Jing H Y,et al. A strain-based fracture assessment for offshore clad pipes with ultra undermatched V groove weld joints and circumferential surface cracks under large-scale plastic strain[J]. European Journal of Mechanics / A Solids,2019,74:403-416.

[66] DNV-RP-F108. Offshorestandard-Fracture Control for Pipeline Installation Methods Introducing Cyclic Plastic Strain[S]. Hovik(Norway):Det NorskeVeritas,2006.

[67] Han Y D,Song S,Jing H Y,et al. Effects of full-scale reel-lay simulation on mechanical properties of X65 grade pipeline girth welds[J]. Materials Testing,2018,60(12):1145-1154.

Long-Life and High-Reliability Welded Structures

Xu Lianyong1, 2, 3

(1. School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;2. Tianjin Key Laboratory of Advanced Joining Technology,Tianjin 300350,China;3. State Key Laboratory of Engines,Tianjin University,Tianjin 300350,China)

Progress in research on the design and forming manufacturing of modern equipment structures is often challenged by extremely complex environments and requirements of long life and safe service. The weakest points of welded structures are the welded joints. This work proposes a collaborative microstructural control principle to improve the comprehensive performance of welded joints in complex environments by considering the characteristics of thermal power steam pipes,deep-sea oil and gas pipelines,and other energy equipment in the main line. Common problems related to the service safety of main pipelines in extremely complex environments are addressed by examining the material micro-damage mechanism of pipeline failure. Accurate life prediction theory for pipelines with defects is presented,and the corresponding standards are established. Finally,a long-life and high-reliability welded structure design,forming technology,evaluation theory,and technical system that integrates material joint structures is demonstrated.

long life;reliability;welded structure;forming manufacturing;collaborative improvement

TG142.25

A

0493-2137(2022)01-0001-10

10.11784/tdxbz202104056

2021-04-29;

2021-05-25.

徐連勇(1975—??),男,博士,教授.

徐連勇,xulianyong@tju.edu.cn.

國(guó)家杰出青年科學(xué)基金資助項(xiàng)目(52025052);國(guó)家自然科學(xué)基金資助項(xiàng)目(51975405,51575382,51475326,50975196,50805103).

Supported by the National Science Foundation for Distinguished Young Scholars of China(No. 52025052),the National Natural Science Foundation of China(No. 51975405,No. 51575382,No. 51475326,No. 50975196,No. 50805103).

徐連勇,天津大學(xué)北洋講席教授,國(guó)家杰出青年基金獲得者,長(zhǎng)期從事長(zhǎng)壽命高可靠性焊接方面的研究工作,發(fā)展了以長(zhǎng)壽命為目標(biāo)的焊接設(shè)計(jì)、成形制造及評(píng)價(jià)技術(shù)體系,解決了提高壽命預(yù)測(cè)精度、提升焊接接頭綜合性能等制約管道極端復(fù)雜環(huán)境長(zhǎng)壽命服役的關(guān)鍵瓶頸問(wèn)題,排名第一獲省部級(jí)科技進(jìn)步一等獎(jiǎng)3項(xiàng),牽頭制定了我國(guó)電力行業(yè)第一個(gè)高溫缺陷壽命評(píng)估標(biāo)準(zhǔn).以第一發(fā)明人獲授權(quán)發(fā)明專利35件(含美國(guó)1件)、軟件著作權(quán)4項(xiàng).以第一作者或通信作者在Acta Mater等期刊發(fā)表SCI收錄論文150余篇,SCI他引1200余次.現(xiàn)擔(dān)任中國(guó)焊接學(xué)會(huì)常務(wù)理事、焊接力學(xué)及結(jié)構(gòu)設(shè)計(jì)與制造專委會(huì)主任和國(guó)際焊接學(xué)會(huì)IIW C-Ⅹ委員會(huì)中國(guó)代表,主持撰寫《中國(guó)焊接技術(shù)路線圖》、《中國(guó)焊接1994—2016》中“焊接結(jié)構(gòu)”章節(jié),連續(xù)3年負(fù)責(zé)撰寫《IIW研究進(jìn)展報(bào)告》“焊接接頭性能與斷裂預(yù)防(IIW C-Ⅹ)”和“壓力容器、鍋爐與管道焊接(IIW C-Ⅺ)”兩個(gè)專委會(huì)的年度報(bào)告.

(責(zé)任編輯:田?軍)

猜你喜歡
晶界服役深海
基于截?cái)嗲驙钅P偷腇e扭轉(zhuǎn)晶界的能量計(jì)算
運(yùn)動(dòng)晶界與調(diào)幅分解相互作用過(guò)程的相場(chǎng)法研究*
基于深度卷積神經(jīng)網(wǎng)絡(luò)的α-Fe晶界能預(yù)測(cè)
晶界工程處理對(duì)304不銹鋼耐蝕性能和力學(xué)性能的影響
水下智能清洗機(jī)器人“服役”
隱藏在深海里的神秘生物
深海里的神秘生物
团风县| 当雄县| 娄烦县| 淮滨县| 平和县| 清流县| 历史| 佛山市| 新营市| 聂荣县| 德惠市| 万山特区| 方山县| 齐河县| 广安市| 特克斯县| 尚志市| 牙克石市| 武清区| 油尖旺区| 博野县| 临城县| 边坝县| 醴陵市| 威海市| 车致| 桂东县| 通州市| 基隆市| 清流县| 新龙县| 尉氏县| 紫阳县| 方正县| 宜昌市| 横山县| 旌德县| 修水县| 凌源市| 枝江市| 延津县|