柳洋,于江,李雪飛,馬文杰,牛磊,齊環(huán)環(huán)
基于內(nèi)彈道仿真的火藥點(diǎn)火器燃喉比優(yōu)化與試驗(yàn)驗(yàn)證
柳洋1,于江2,李雪飛1,馬文杰1,牛磊3,齊環(huán)環(huán)1
(1.北京航天動(dòng)力研究所,北京 100076;2. 陜西應(yīng)用物理化學(xué)研究所,西安 710061;3.北京理工大學(xué) 爆炸科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100081)
減小火藥點(diǎn)火器不同藥劑批次下的散差,提高其工作可靠性。分析火藥點(diǎn)火器不同批次藥劑性能與內(nèi)彈道數(shù)據(jù),發(fā)現(xiàn)在恒定燃喉比下,藥劑性能波動(dòng)會(huì)顯著影響其工作可靠性,因此應(yīng)根據(jù)不同批次組合下的藥劑性能選取合理的燃喉比。首先,通過(guò)標(biāo)準(zhǔn)試驗(yàn)測(cè)試火藥點(diǎn)火器內(nèi)裝藥劑的關(guān)鍵性能參數(shù)。然后,通過(guò)建立火藥點(diǎn)火器內(nèi)彈道的仿真模型,計(jì)算基線燃喉比附近的內(nèi)彈道參數(shù),輸入到基于歷史點(diǎn)火沖量數(shù)據(jù)建立的正態(tài)容許限法模型。最后,在預(yù)設(shè)燃喉比范圍內(nèi)進(jìn)行發(fā)火試驗(yàn),并利用正態(tài)容許限法計(jì)算出不同燃喉比對(duì)應(yīng)的點(diǎn)火可靠度。共模擬了8種水平的燃喉比試驗(yàn),計(jì)算出對(duì)應(yīng)的可靠度為0.177 242~0.999 999。根據(jù)模型計(jì)算出的可靠度及火工品相關(guān)標(biāo)準(zhǔn)的要求,確定合理的燃喉比,并增加樣本,進(jìn)一步驗(yàn)證其可靠度。此外,在選定燃喉比附近進(jìn)行的裕度試驗(yàn),試驗(yàn)數(shù)據(jù)均符合預(yù)期。通過(guò)內(nèi)彈道仿真建模,結(jié)合可靠性試驗(yàn)數(shù)據(jù)分析,為火藥點(diǎn)火器優(yōu)選了燃喉比,工作可靠度達(dá)到了0. 999 908,比改進(jìn)前的可靠度0.999有了顯著提升。
火藥點(diǎn)火器;內(nèi)彈道仿真;火工品可靠性;正態(tài)容許限法;燃喉比;點(diǎn)火沖量
火藥點(diǎn)火器是我國(guó)某新型火箭發(fā)動(dòng)機(jī)的重要組件,其功能是利用固體推進(jìn)劑的燃燒火焰,為液體發(fā)動(dòng)機(jī)內(nèi)部工質(zhì)提供初始點(diǎn)火能源?;鸺l(fā)動(dòng)機(jī)的工作介質(zhì)為液氫和液氧,屬于超低溫燃料,因此要求該火藥點(diǎn)火器在低至?40 ℃環(huán)境下應(yīng)可靠工作,對(duì)于配套產(chǎn)品提出了較高的要求?;鹚廃c(diǎn)火器由殼體、電點(diǎn)火器、點(diǎn)火藥盒、推進(jìn)劑等組成,其結(jié)構(gòu)和原理接近燃?xì)獍l(fā)生器。在產(chǎn)品研制過(guò)程中,調(diào)研國(guó)內(nèi)相關(guān)文獻(xiàn)表明[1-2],具備低溫、大流量、體積小、點(diǎn)火時(shí)間長(zhǎng)(推進(jìn)劑低燃速)且高可靠性的產(chǎn)品較少,多為常溫或高燃速推進(jìn)劑火藥點(diǎn)火器,因此研制難度較大。本文將重點(diǎn)介紹其關(guān)鍵參數(shù)優(yōu)化及可靠性提升工作。
該火藥點(diǎn)火器(結(jié)構(gòu)見(jiàn)圖1)內(nèi)部傳火序列構(gòu)成比較復(fù)雜,包含3個(gè)發(fā)火單元,分別承擔(dān)點(diǎn)、傳、輸?shù)?個(gè)不同的功能,構(gòu)成3級(jí)傳火序列。電點(diǎn)火器屬始發(fā)器件,內(nèi)裝點(diǎn)火藥,點(diǎn)火藥盒起到“接收能量—激發(fā)放大—再次輸出”的作用,是其核心組成和關(guān)鍵部件,內(nèi)部裝有點(diǎn)火藥和推進(jìn)劑2種藥劑。下游的推進(jìn)劑可實(shí)現(xiàn)長(zhǎng)時(shí)穩(wěn)定燃燒,是該火藥點(diǎn)火器實(shí)現(xiàn)其功能的基礎(chǔ)。
圖1 火藥點(diǎn)火器結(jié)構(gòu)
火藥點(diǎn)火器的基本工作參數(shù)見(jiàn)表1。其中,考慮到火藥點(diǎn)火器殼體結(jié)構(gòu)強(qiáng)度,工作壓力設(shè)計(jì)上限為30 MPa,為提高結(jié)構(gòu)強(qiáng)度可靠性,工作壓力尤其是點(diǎn)火峰應(yīng)盡可能低。初始燃喉比是火藥點(diǎn)火器的一個(gè)重要結(jié)構(gòu)參數(shù),當(dāng)推進(jìn)劑狀態(tài)和初溫一定時(shí),燃喉比會(huì)直接影響火藥點(diǎn)火器燃燒室壓力,進(jìn)而影響其工作狀態(tài)[3]。燃喉比的定義及計(jì)算方法見(jiàn)式(1)。
(1)
式中:b為推進(jìn)劑的初始燃面面積,m2;t為點(diǎn)火器出口噴管的流通面積,m2;為燃喉比。由于火藥點(diǎn)火器的初始燃面面積是確定的,且不便于調(diào)整,后續(xù)計(jì)算及分析中用便于測(cè)量的噴管喉部直徑表征燃喉比。
表1 點(diǎn)火器主要工作參數(shù)(?40 ℃)
Tab.1 Key working parameters of igniter (?40 ℃)
火藥點(diǎn)火器是否能可靠工作主要取決于燃燒室中推進(jìn)劑能否穩(wěn)定自持燃燒。由于該點(diǎn)火器所使用的推進(jìn)劑燃速較低,且在低溫下工作,進(jìn)入穩(wěn)定燃燒前,往往無(wú)法自持,需上游持續(xù)傳火,而該火藥點(diǎn)火器存在多級(jí)傳火序列交錯(cuò)和相互作用的現(xiàn)象,對(duì)整體性能產(chǎn)生了影響[4-6]。
對(duì)于火藥點(diǎn)火器,初始點(diǎn)火階段非常關(guān)鍵,該階段的工作參數(shù)主要受藥劑性能的影響較大。如藥劑出現(xiàn)不穩(wěn)定燃燒,推進(jìn)劑處于臨界燃燒狀態(tài),即點(diǎn)火階段燃燒室壓力低于或接近推進(jìn)劑的臨界壓力(如圖2所示),火藥點(diǎn)火器的工作可靠性很低,甚至可能導(dǎo)致火藥點(diǎn)火器熄火,必須進(jìn)行改善[7]。推進(jìn)劑的臨界壓力是推進(jìn)劑的固有特性,是由其牌號(hào)決定的,該火藥點(diǎn)火器選用推進(jìn)劑的臨界壓力為3.5 MPa。
圖2 不穩(wěn)定燃燒狀態(tài)
分析低燃速推進(jìn)劑特性可知[8-10],影響低燃速推進(jìn)劑點(diǎn)火的主要因素為初溫、點(diǎn)火持續(xù)時(shí)間、燃燒室壓力和燃燒流速等。對(duì)于該火藥點(diǎn)火器,工作初溫一定,燃燒流速的影響因素較多,在火藥點(diǎn)火器結(jié)構(gòu)不變的情況下,不便于定量控制。因此,考慮從點(diǎn)火持續(xù)時(shí)間、燃燒室壓力出發(fā),進(jìn)行重點(diǎn)分析和優(yōu)化。工作曲線的定義如圖3所示。其中,d為點(diǎn)火結(jié)束瞬態(tài)壓力,應(yīng)當(dāng)高于推進(jìn)劑的臨界壓力3.5 MPa;ip為點(diǎn)火峰;a為工作時(shí)間;d為點(diǎn)火持續(xù)時(shí)間,應(yīng)大于推進(jìn)劑所需的點(diǎn)火持續(xù)時(shí)間,由式(2)計(jì)算獲得。通過(guò)分析可知,上述2個(gè)參數(shù)是決定點(diǎn)火過(guò)程穩(wěn)定性的關(guān)鍵參數(shù),如低于臨界值,會(huì)導(dǎo)致熄火或下游推進(jìn)劑不穩(wěn)定燃燒。
式中:λp為推進(jìn)劑的熱傳導(dǎo)系數(shù),W/(m×℃);cp為推進(jìn)劑的比熱容,J/(kg·℃);ρp為推進(jìn)劑密度,kg/m3;αc為對(duì)流換熱系數(shù),W/(m2×℃);θig為推進(jìn)劑的發(fā)火溫度,℃;θg為火藥燃?xì)鉁囟?,℃;?為系統(tǒng)初始溫度,℃。
對(duì)于一般雙基推進(jìn)劑,其點(diǎn)火時(shí)的熱交換系數(shù)[8]為:
由于火藥點(diǎn)火器實(shí)際工作過(guò)程非常復(fù)雜,各影響因素存在耦合,上述公式只能對(duì)火藥點(diǎn)火器工作過(guò)程進(jìn)行簡(jiǎn)單分析,計(jì)算誤差較大。為進(jìn)一步分析火藥點(diǎn)火器的工作過(guò)程,利用MATLAB的Simulink模塊計(jì)算建立點(diǎn)火器的內(nèi)彈道模型。內(nèi)彈道模型考慮了點(diǎn)火藥盒內(nèi)2種點(diǎn)火藥、燃燒室內(nèi)推進(jìn)劑的點(diǎn)火燃燒過(guò)程、鋁箔和膜片的破裂過(guò)程、點(diǎn)火藥盒與頂蓋的間隙產(chǎn)生和泄露以及由于對(duì)流和輻射產(chǎn)生的熱散失,忽略點(diǎn)火延遲時(shí)間和電爆管中裝藥的燃燒。假定點(diǎn)火后,點(diǎn)火藥盒中2種火藥共同燃燒,在點(diǎn)火藥盒內(nèi)建壓,隨后鋁箔失效,高能粒子流從排火孔中流出,燃燒室中壓力快速上升,燃燒室內(nèi)壓力和達(dá)到推進(jìn)劑臨界點(diǎn)火溫度和臨界點(diǎn)火壓力后,推進(jìn)劑開(kāi)始燃燒,隨后火焰沖破膜片,從噴管?chē)姵?,?shí)現(xiàn)點(diǎn)火功能。建立的仿真模型如圖4所示,主要包括3種藥劑燃燒計(jì)算模塊、能量守恒模塊、氣體狀態(tài)方程模塊、熱散失計(jì)算模塊、鋁箔打開(kāi)時(shí)刻和膜片打開(kāi)時(shí)刻判斷模塊以及記憶和顯示模塊等[12]。
圖4 內(nèi)彈道仿真模型
模型建立后,利用火藥點(diǎn)火器已有的近200個(gè)樣本的試驗(yàn)數(shù)據(jù)對(duì)模型進(jìn)行修正與訓(xùn)練,修正后,模型的預(yù)測(cè)誤差不超過(guò)5%。從廠家獲取火工藥劑的燃速、爆燃等關(guān)鍵性能參數(shù),將其輸入到內(nèi)彈道仿真模型中。噴管喉徑分別取3.2~3.9 mm,計(jì)算出對(duì)應(yīng)的內(nèi)彈道參數(shù)。通過(guò)模型仿真的火藥點(diǎn)火器工作曲線如圖5所示。
圖5 不同噴管喉徑下的內(nèi)彈道仿真曲線
訓(xùn)練后的模型還具備臨界燃喉比–點(diǎn)火邊界預(yù)測(cè)的功能,如圖6所示。圖6中的3條實(shí)線均為實(shí)際發(fā)火試驗(yàn)數(shù)據(jù),虛線為模擬的邊界線。經(jīng)試驗(yàn)證明,當(dāng)火藥點(diǎn)火器工作在邊界線以下區(qū)域時(shí),往往會(huì)發(fā)生不穩(wěn)定燃燒或熄火[13]。例如,噴管喉徑3.9 mm樣本在試驗(yàn)中熄火,噴管喉徑3.6、3.7 mm樣本在試驗(yàn)時(shí)正常工作。
正態(tài)容許限是目前較為成熟的小樣本可靠性分析方法,該火藥點(diǎn)火器輸出參數(shù)均為計(jì)量型數(shù)據(jù),因此選用正態(tài)容許限進(jìn)行可靠性分析[14-16]。
圖6 點(diǎn)火邊界仿真與驗(yàn)證
正態(tài)容許限分析的關(guān)鍵是選取準(zhǔn)確、有區(qū)分度的評(píng)估參數(shù)。根據(jù)1.4節(jié)的分析,火藥點(diǎn)火器點(diǎn)火段的壓力和時(shí)間對(duì)其能否穩(wěn)定工作至關(guān)重要。經(jīng)分析大量歷史數(shù)據(jù),最終選取點(diǎn)火階段的壓力–時(shí)間積分——點(diǎn)火沖量點(diǎn)火作為評(píng)估參數(shù),其定義及計(jì)算方法為:
式中:P為火藥點(diǎn)火器燃燒室壓強(qiáng),MPa;td為點(diǎn)火時(shí)間,s。點(diǎn)火沖量綜合了點(diǎn)火壓力P和點(diǎn)火時(shí)間t這2方面的因素,作為對(duì)點(diǎn)火器點(diǎn)火能力的重要監(jiān)測(cè)指標(biāo)。不同噴管喉徑下的點(diǎn)火沖量有顯著差異,非常適合作為表征火藥點(diǎn)火器工作穩(wěn)定性的敏感性能參量。點(diǎn)火沖量的物理含義如圖7所示。對(duì)于不同工況下的試驗(yàn),點(diǎn)火沖量的計(jì)算方法是唯一的,可以用來(lái)分析不同工況點(diǎn)火器的工作特性差異[17]。統(tǒng)計(jì)點(diǎn)火器成功發(fā)火歷史數(shù)據(jù),確定點(diǎn)火沖量為單側(cè)邊界,其臨界下限為0.87。
利用根據(jù)內(nèi)彈道仿真獲得的參數(shù)計(jì)算點(diǎn)火沖量,并進(jìn)行正態(tài)性檢驗(yàn)。滿足條件后,輸入上述可靠性模型,計(jì)算出不同噴管喉徑下的可靠度,結(jié)果見(jiàn)表2。考慮到過(guò)小的噴管喉徑會(huì)導(dǎo)致高溫工況工作壓力較高,影響產(chǎn)品結(jié)構(gòu)強(qiáng)度的可靠性,因此在可靠性滿足要求的前提下,初步確定火藥點(diǎn)火器噴管喉徑為3.6 mm。
表2 噴管喉徑與點(diǎn)火器工作可靠度的關(guān)系
Tab.2 Relationship between nozzle throat diameter and working reliability of the igniter
以初步確定的噴管喉徑=3.6 mm為基線,分別進(jìn)行噴管尺寸3.7 mm(+0.1)在?40 ℃、3.5 mm(?0.1)在50 ℃下的試驗(yàn),每組試驗(yàn)至少3個(gè)樣本,以驗(yàn)證其不同工況下的裕度,工作曲線如圖8、圖9所示。
圖8 喉徑3.7 mm低溫裕度試驗(yàn)曲線
圖9 喉徑3.5 mm高溫裕度試驗(yàn)曲線
分析數(shù)據(jù),用正態(tài)容許限模型分別計(jì)算不同試驗(yàn)條件下的可靠度,結(jié)果見(jiàn)表3?;鹚廃c(diǎn)火器工作可靠度綜合了結(jié)構(gòu)強(qiáng)度可靠性,這是高溫工況應(yīng)重點(diǎn)關(guān)注的,具體方法不再詳細(xì)展開(kāi)。
可以看出,隨著噴管喉徑的減小,低溫點(diǎn)火“凹坑”現(xiàn)象明顯改善,同時(shí)點(diǎn)火峰相應(yīng)升高,且3.5 mm噴管50 ℃工作點(diǎn)火峰為24.28 MPa,距產(chǎn)品設(shè)計(jì)上限30 MPa仍有較大安全裕度。3.5 mm噴管?40 ℃的平均點(diǎn)火沖量為1.03,為4組最低,與邊界值0.87仍有一定空間,對(duì)應(yīng)的可靠度0.999 995也處于較高水平。整體變化趨勢(shì)符合理論分析及模型仿真結(jié)果。
通過(guò)試驗(yàn)數(shù)據(jù)計(jì)算出的可靠度與模型仿真結(jié)果一致性好,因此,噴管喉徑=3.6 mm的選取是合理的,有較為充足的裕度[18-21]。
表3 火藥點(diǎn)火器可靠度試驗(yàn)數(shù)據(jù)分析
Tab.3 Analysis of reliability test data of gunpowder igniter
火藥點(diǎn)火器燃喉比優(yōu)化與改進(jìn)的主要流程如圖10所示。通過(guò)理論仿真結(jié)合試驗(yàn)驗(yàn)證,最終確定了火藥點(diǎn)火器燃喉比的最終狀態(tài),此時(shí)的可靠度達(dá)到了0.999 908,比改進(jìn)前的可靠度0.999有了顯著提升。
圖10 改進(jìn)流程
本文針對(duì)某火藥點(diǎn)火器在低溫下不穩(wěn)定燃燒現(xiàn)象提出了改進(jìn)措施。通過(guò)內(nèi)彈道仿真模型計(jì)算獲得火工品內(nèi)彈道參數(shù),設(shè)計(jì)并采用點(diǎn)火沖量作為評(píng)價(jià)點(diǎn)火器點(diǎn)火性能的靈敏參量,運(yùn)用內(nèi)彈道仿真模型和正態(tài)容許限模型的方法評(píng)估可靠性,大幅減少了發(fā)火試驗(yàn)數(shù)量。經(jīng)試驗(yàn)驗(yàn)證表明,改進(jìn)效果明顯,試驗(yàn)效率高,通過(guò)內(nèi)彈道仿真優(yōu)選的燃喉比裕度,可靠度達(dá)到了0.999 908。同時(shí),該方法為業(yè)內(nèi)其他同類燃?xì)獍l(fā)生器設(shè)計(jì)提供了借鑒,避免出現(xiàn)低溫下不能可靠點(diǎn)火的問(wèn)題。
[1] (蘇)阿列瑪索夫(АлемасовB.E.). 火箭發(fā)動(dòng)機(jī)原理[M]. 張中欽, 等譯. 北京: 宇航出版社, 1993.
ALYMASOV B E. Principle of Rocket Engine[M]. ZHANG Zhong-qin, et al.Translated. Beijing: China Astronautic Publishing House, 1993.
[2] HICKS B L. Theory of Ignition Considered as a Thermal Reaction[J]. The Journal of Chemical Physics, 1954, 22(3): 414-429.
[3] 柳洋, 何昆, 牛磊, 等. 燃喉比對(duì)氫氧發(fā)動(dòng)機(jī)點(diǎn)火器的低溫點(diǎn)火性能影響[J]. 火工品, 2021(4): 15-18.
LIU Yang, HE Kun, NIU Lei, et al. Influence of Fuel Throat Ratio on Low Temperature Ignition Performance of Propellant Igniter of Hydrogen-Oxygen Engine[J]. Initiators & Pyrotechnics, 2021(4): 15-18.
[4] HASA SP-8051. Solid Rocket Motor Igniters[S].
[5] 楊金虎. 多級(jí)旋流分級(jí)燃燒室點(diǎn)火/熄火特性、機(jī)理和預(yù)測(cè)方法研究[D]. 北京: 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院工程熱物理研究所), 2020.
YANG Jin-hu. Performance, Mechanism and Prediction of Ignition and LBO for Multi-Swirl Staged Injector[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020.
[6] WANG J. Experimental Study of some Ignition Problems of Small Solid Propellant Rockets[C]//13th Propulsion Conference. Orlando: AIAA, 1977: 902.
[7] 劉攀. 點(diǎn)火藥的低壓燃速規(guī)律及點(diǎn)火性能研究[D]. 南京: 南京理工大學(xué), 2018.
LIU Pan. Study of Ignition Powder Burning Rate Law and Ignition Ability under Low Pressure Environment[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[8] 史斐菲. 典型爆破片爆破壓力的溫度影響研究[D]. 上海: 華東理工大學(xué), 2015.
SHI Fei-fei. Study on the Effect of Temperature on the Bursting Pressure of Bursting Discs[D]. Shanghai: East China University of Science and Technology, 2015.
[9] 陳軍, 董師顏. 一種確定侵蝕函數(shù)的新方法[J]. 推進(jìn)技術(shù), 1998, 19(3): 13-16.
CHEN Jun, DONG Shi-yan. A New Method to Form Erosive Function[J]. Journal of Propulsion Technology, 1998, 19(3): 13-16.
[10] 陳軍. 固體復(fù)合推進(jìn)劑火箭發(fā)動(dòng)機(jī)侵蝕界限參數(shù)的預(yù)測(cè)方法與應(yīng)用[J]. 彈道學(xué)報(bào), 2020, 32(3): 30-34.
CHEN Jun. Approach and Application Predicting Critical Erosion Parameters of Solid Composite Propellant Rocket Motors[J]. Journal of Ballistics, 2020, 32(3): 30-34.
[11] 柳洋, 牛磊, 董海平, 等. 某型火箭發(fā)動(dòng)機(jī)點(diǎn)火器故障分析與改進(jìn)[J]. 科技創(chuàng)新導(dǎo)報(bào), 2021(11): 15-23.
LIU Yang, NIU Lei, DONG Hai-ping, et al. Failure Analysis and Improvement forRocket Engine Igniter[J]. Science and Technology Innovation Herald, 2021(11): 15-23.
[12] 李建, 羅思璇, 吳飛春, 等. 固體軌控發(fā)動(dòng)機(jī)用環(huán)形點(diǎn)火器優(yōu)化設(shè)計(jì)[J]. 火工品, 2017(5): 1-3.
LI Jian, LUO Si-xuan, WU Fei-chun, et al. The Optimum Design on Annular Igniter of Solid Divert Motor[J]. Initiators & Pyrotechnics, 2017(5): 1-3.
[13] 翁國(guó)棟, 趙兵, 李前, 等. 試驗(yàn)溫度對(duì)氣瓶閥用爆破片的影響[J]. 閥門(mén), 2018(6): 9-10.
WENG Guo-dong, ZHAO Bing, LI Qian, et al. Research on the Effect of Temperature on the Bursting Pressure of Rupture Discs for Cylinder Valve[J]. Valve, 2018(6): 9-10.
[14] 董海平, 董笑, 張?zhí)祜w, 等. 加嚴(yán)條件下火工品高可靠性試驗(yàn)驗(yàn)證[J]. 北京理工大學(xué)學(xué)報(bào), 2013, 33(3): 221-224.
DONG Hai-ping, DONG Xiao, ZHANG Tian-fei, et al. Reliability Verification of Initiating Devices Based on Rigorous Test[J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 221-224.
[15] 溫玉全, 張利敏, 洪東跑. 基于感度的火工品發(fā)火可靠性試驗(yàn)數(shù)據(jù)分析[J]. 兵工學(xué)報(bào), 2010, 31(11): 1498- 1501.
WEN Yu-quan, ZHANG Li-min, HONG Dong-pao. Analysis on Reliability for Explosive Initiator Based on Sensitivity[J]. Acta Armamentarii, 2010, 31(11): 1498-1501.
[16] WANG Lei, CHEN Shao-bin. The Analysis of the Causes of Cartridge Igniter in Industrial Boiler Water Cooling Wall[C]//Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering.Melbourne: Springer, 2011
[17] 王鵬, 杜志明. 火工煙火裝置裕度研究與設(shè)計(jì)方法綜述[J]. 火工品, 2005(2): 34-38.
WANG Peng, DU Zhi-ming. Summarize of Margin Research and Design Method of Pyrotechnic Devices[J]. Initiators & Pyrotechnics, 2005(2): 34-38.
[18] 張強(qiáng). 火工品可靠性評(píng)定方法的分析與研究[J]. 艦船科學(xué)技術(shù), 2010, 32(5): 92-94.
ZHANG Qiang. Analysis and Study on Reliability Assessment Method of Initiating Devices[J]. Ship Science and Technology, 2010, 32(5): 92-94.
[19] 田玉斌, 王典鵬. 火工品發(fā)火可靠性小樣本鑒定試驗(yàn)方法[J]. 兵工學(xué)報(bào), 2011, 32(4): 426-431.
TIAN Yu-bin, WANG Dian-peng. A Qualification Test Method for Firing Reliability of Initiator with Small Samples[J]. Acta Armamentarii, 2011, 32(4): 426-431.
[20] 于江, 柳洋. 一種采用自定義參量實(shí)現(xiàn)小樣本評(píng)估可靠性的方法[J]. 火工品, 2022(5): 13-16.
YU Jiang, LIU Yang. A Method for Assessing Reliability in Small Samples Using Custom Parametrics[J]. Initiators & Pyrotechnics, 2022(5): 13-16.
[21] MC ALEVY R F, COWAN P L, SUMMERFIELD M. The Mechanism of Ignition of Composite Solid Propellants by Hot Gases[M]. New York: AIAA, 1960: 623-652.
Optimization and Experimental Verification of Fuel Throat Ratio of Gunpowder Igniter Based on Interior Trajectory Simulation
LIU Yang1, YU Jiang2, LI Xue-fei1, MA Wen-jie1, NIU Lei3, QI Huan-huan1
(1. Beijing Aerospace Power Research Institute, Beijing 100076, China; 2. Shaanxi Institute of Applied Physical Chemistry, Xi'an 710061, China; 3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
The work aims to reduce the dispersion of different batches of powder igniter and improve its working reliability. Based on the analysis of the performance and internal ballistic data of different batches of gunpowder igniter, it was found that the performance fluctuation of the agent would significantly affect its working reliability under the constant fuel throat ratio. Therefore, a reasonable fuel throat ratio should be selected according to the performance of the agent under different batch combinations. First, key performance parameters of the new batch of gunpowder igniter were tested by standard test. Then, the internal ballistic parameters near the baseline fuel throat ratio were calculated by establishing the simulation model of gunpowder igniter internal ballistic parameters, which were input into the normal allowable method model based on the historical ignition impulse data. Further, the ignition test was carried out in the preset range of combustion and fuel throat ratio, and the ignition reliability corresponding to different combustion and fuel throat was calculated with the normal allowable limit method. A total of 8 kinds of combustion and fuel throat tests were simulated, and the corresponding reliability was calculated, from 0.177 242 to 0.999 999. According to the reliability calculated by the model and the requirements of related standards of pyrotechnics, the reasonable fuel throat ratio was determined, and more samples were added to further verify its reliability. In addition, the margin test was carried out near the selected fuel throat ratio, and the experimental data were in line with expectations. Through the internal ballistic simulation modeling combined with the reliability test data analysis, the fuel throat ratio is optimized for the gunpowder igniter, and the working reliability approaches 0. 999 908, which is significantly improved compared with the reliability of 0.999 before the improvement.
gunpowder igniter; interior trajectory simulation; reliability of pyrotechnics; normal admissibility method; fuel throat ratio; impulse of ignition
TJ450
A
1672-9242(2022)12-0026-07
10.7643/ issn.1672-9242.2022.12.005
2022?11?23;
2022?12?03
2022-11-23;
2022-12-03
柳洋(1988—),男,碩士,高級(jí)工程師,主要研究方向?yàn)橐后w火箭發(fā)動(dòng)機(jī)結(jié)構(gòu)及火工品設(shè)計(jì)。
LIU Yang (1988-), Male, Master, Senior engineer, Research focus:liquid-propellant rocket engine structure and initiating explosive device design.
于江(1979—),男,高級(jí)工程師,主要研究方向?yàn)榛鸸に巹┭兄坪突鸸て吩O(shè)計(jì)。
YU Jiang (1979-), Male, Senior engineer, Research focus: initiating explosive material and explosive device design.
柳洋, 于江, 李雪飛, 等. 基于內(nèi)彈道仿真的火藥點(diǎn)火器燃喉比優(yōu)化與試驗(yàn)驗(yàn)證[J]. 裝備環(huán)境工程, 2022, 19(12): 026-032.
LIU Yang, YU Jiang, Li Xue-fei, et al. Optimization and Experimental Verification of Fuel Throat Ratio of Gunpowder Igniter Based on Interior Trajectory Simulation[J]. Equipment Environmental Engineering, 2022, 19(12): 026-032.
責(zé)任編輯:劉世忠