方曉晗
3月份,年級里的施老師要在數(shù)學教師專業(yè)培訓活動中上一節(jié)示范課,內(nèi)容是北師大版四年級下冊“圖形中的規(guī)律”,本節(jié)課的教學目標是“讓學生經(jīng)歷直觀操作、探索的過程,體驗發(fā)現(xiàn)圖形的規(guī)律的方法?!蹦眠@節(jié)課上公開課是需要勇氣的,因為能夠參考、查閱的資料很少,那么對于這樣一節(jié)課施老師是如何讓演繹的呢?我參與了以下所有的磨課過程:
第一次嘗試
師:(小小的拍手游戲之后)同學們,一根小棒一條邊,你知道擺兩個三角形要幾根小棒嗎?請你把它畫出來。
師:誰來說說你是怎么畫的?(板書: ? ? ? ? ? ? ? ?)
師:如果要用更少的小棒擺更多的三角形你會選擇哪種呢?(第二種)
師:(指著第二種)這樣的圖形是有規(guī)律的,今天我們就來研究圖形中的規(guī)律。
師:(ppt出示:)一根小棒一條邊,擺10個這樣連續(xù)的三角形需要幾根小棒? ? ? ? ? …,請你在老師為你準備的表格中試一試。
生1:老師我已經(jīng)知道了,是21個。
生2、3、4(齊):老師我們也知道了,是21個!
師(著急):如果你已經(jīng)知道答案的話,請你把你的想法畫出來在表格中畫一畫,填一填,說說你發(fā)現(xiàn)了什么?
生2:我不想畫。
這時全班在完成表格,教師巡視,發(fā)現(xiàn)學生遲遲完成不了表格。觀察了幾個學生的表格發(fā)現(xiàn)他們大多數(shù)都是把10個三角形都在用尺子仔仔細細地畫,難怪會那么慢呢!4分鐘后,教師拿了3副作品
師:你看明白了嗎?
生1 ? ? ? ? ? ? ? ? ? 生2 ? ? ? ? ? ? ? ? 生3
師:你覺得誰的方法讓你更容易看到圖形中的規(guī)律呢?第三種
接著教師引導學生著重理解生3的方法,讓學生知道,為什么10個三角形一共用了21根小棒。
師:剛才你們是先看三根,再兩根兩根加上去的,還可以怎樣觀察呢?
學生沒有反映,在老師的追問下說了一些漫無邊際的方法,最后只好由施老師自己呈現(xiàn)“1+2×10=21”、“3×10-9=21”這兩種方法,但學生并不能很好地理解。
……
聽課思考
在課堂觀察中,我們發(fā)現(xiàn),有些學生不愿畫圖,因為他們已經(jīng)知曉答案。課后訪談中,我們了解到多數(shù)學生不知道為什么需要畫圖,因為老師要求他們畫,所以他們只能畫。換而言之,下次學生遇到這樣的問題,還是不知道該用什么樣的策略來解決它。當學生沒有主動提出問題、發(fā)現(xiàn)問題的意識的時候,他們是不可能體驗到找規(guī)律帶來的優(yōu)勢的,更不可能感受到解決這類問題的方法和策略。其次,在匯報交流的環(huán)節(jié),當老師追問“剛才你們是先看三根小棒,再兩根兩根加上去這樣觀察的,想一想,還可以怎樣觀察呢?”時,學生似乎不明白老師的意思,最根本的原因在于,因為有了“3+2”這個例子的參照,學生已經(jīng)先入為主地認定解決這個問題就是應(yīng)該先把三根小棒不動,后面每增加一個三角形就多2根小棒,即由3+9×2=21的方法得到結(jié)果,因為這樣理解順理成章。施老師的解釋是直接讓孩子自己寫小棒的根數(shù),學生必定只寫一個得數(shù),這樣對學生發(fā)現(xiàn)規(guī)律是有阻礙作用的,因此就舉了一個例子讓孩子們參照。這樣設(shè)計的結(jié)果就是限制了學生的思維,迫使孩子們發(fā)現(xiàn)規(guī)律的過程只出現(xiàn)單一的方法。
基于以上的觀察與訪談,引發(fā)筆者作如下思考:
思考一:從學生“最需要什么“的角度出發(fā),“圖形中的規(guī)律”作為一節(jié)綜合與實踐課,它的教學目標到底是什么?查閱教參,上面給出的目標是:“讓學生經(jīng)歷直觀操作、探索的過程,體驗發(fā)現(xiàn)圖形的規(guī)律的方法。”施老師在課堂中讓學生動手操作畫三角形,探索圖形的規(guī)律,似乎也體驗了發(fā)現(xiàn)規(guī)律的方法,但是最關(guān)鍵的一點是所有活動都是由教師牽著學生的鼻子走,學生在不知道為何而列表的情況之下畫出了10個三角形,解決了10個三角形需要幾根小棒這個問題,這樣的情形之下,找規(guī)律已經(jīng)成為了解決問題的傀儡,也就沒有真正讓學生體驗到發(fā)現(xiàn)規(guī)律的方法?!稊?shù)學課程標準》指出:綜合與實踐(第二學段)應(yīng)讓學生經(jīng)歷有目的、有設(shè)計、有步驟的綜合與實踐活動,積累數(shù)學活動的經(jīng)驗;應(yīng)結(jié)合實際情境讓學生體驗發(fā)現(xiàn)和提出問題、分析和解決問題的過程;初步獲得在給定目標下,設(shè)計解決問題方案的經(jīng)驗。從標準中我們不難看出,綜合實踐活動應(yīng)該是學生在教師的指導下,在已有知識體驗的基礎(chǔ)上,從實際問題中發(fā)現(xiàn)、選擇、確定問題、主動應(yīng)用知識解決問題的學習活動,是通過活動發(fā)展學生的思維能力、相機滲透一定的數(shù)學思想方法的過程?,F(xiàn)在再回看“圖形中的規(guī)律”這節(jié)課,重新審視教學目標,我們首先應(yīng)該讓學生感受到要解決一個不能直接用某個算式或圖形解決的復(fù)雜問題時,可以轉(zhuǎn)化成簡單的問題,這需要教師滲透轉(zhuǎn)化的策略,然后通過從簡單情形開始找規(guī)律的方法,解決較復(fù)雜問題;接著學生就會主動地想用找規(guī)律的方法來解決10個三角形需要幾根小棒的問題。
課堂效果
本節(jié)課教師與學生一起經(jīng)歷了發(fā)現(xiàn)問題、選擇合適的方法“找規(guī)律”來解決問題的過程,在這個過程當中學生體驗到了發(fā)現(xiàn)圖形規(guī)律的方法,積累了解決這類較為復(fù)雜問題的經(jīng)驗,具體表現(xiàn)為:遇到一個復(fù)雜問題,我們可以將它轉(zhuǎn)化成簡單情形來分析,然后試著從簡單情形開始尋找規(guī)律,尋找規(guī)律時可以借助表格、算式、圖形等方法。這就是本節(jié)課學生最重要的收獲,它是比學生知道了什么規(guī)律更為重要的收獲!
結(jié)束語
《圖形中的規(guī)律》作為一節(jié)數(shù)學“綜合與實踐課”,我們已經(jīng)作了上述的教學嘗試。從這節(jié)課說開去,教材中還有許多這樣的“綜合與實踐”課,比如“雞兔同籠”、“包裝中的學問”、“植樹問題”等,這樣的課程如果教師不加以研究,把它當成是一種可有可無的課,那么學生就失去了體驗生活、積累經(jīng)驗、應(yīng)用知識來解決問題的機會。我們教師應(yīng)該清醒地知道綜合實踐活動的目的不是就解決某個知識點本身,而是要讓學生通過活動有所感悟,從而培養(yǎng)學生發(fā)現(xiàn)問題、提出問題和綜合運用數(shù)學思想方法分析解決問題的能力,不斷提升解決問題的策略。老師們,讓我們的課堂真正地從學生“最需要什么”出發(fā)吧,使學生實實在在地體會到數(shù)學的本原,讓他們擁有喜歡數(shù)學、了解數(shù)學和希望把握數(shù)學的動力!