賈璽泉,徐震霖,周生璇,何宜柱,杜曉潔
退火溫度對激光增材制造CoCrFeMnNi高熵合金耐點(diǎn)蝕性能的影響
賈璽泉,徐震霖,周生璇,何宜柱,杜曉潔
(安徽工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,安徽 馬鞍山 243002)
研究激光增材制造CoCrFeMnNi高熵合金經(jīng)不同溫度退火后,微觀組織演變對其在NaCl溶液中的耐點(diǎn)蝕性能的影響規(guī)律。采用激光選區(qū)熔化(SLM)技術(shù)制備CoCrFeMnNi高熵合金,通過X射線衍射(XRD)、光學(xué)顯微鏡(OM)和掃描電子顯微鏡(SEM)研究其退火后的微觀結(jié)構(gòu)。利用動(dòng)電位極化和電化學(xué)阻抗譜(EIS)測試研究SLM成形高熵合金的耐點(diǎn)蝕性能,并通過X射線光電子能譜(XPS)分析鈍化膜成分。經(jīng)過不同溫度退火后,高熵合金相組成并未改變,均為單一的面心立方結(jié)構(gòu)固溶體。然而高熵合金的微觀組織發(fā)生了明顯轉(zhuǎn)變,退火前微觀組織由熔池、柱狀晶及胞狀亞晶所組成。隨著退火溫度的升高,熔池邊界與亞晶結(jié)構(gòu)逐漸消失,晶粒逐漸長大。SLM成形高熵合金在3.5% NaCl溶液中的腐蝕類型主要為點(diǎn)蝕。隨著退火溫度從700 ℃提高至1 100 ℃,高熵合金的腐蝕電流密度先減小、后增加,700℃退火試樣相較于打印態(tài)試樣,腐蝕電流密度下降了97%。打印態(tài)和700 ℃退火試樣的鈍化膜中Co+Cr+Ni與Mn+Fe陽離子含量的比值分別為1.38和1.61,鈍化膜中Cr本征氧化層厚度分別為5.43 nm和5.75 nm。高熵合金耐點(diǎn)蝕性能隨退火溫度的升高,先提升、后降低。胞狀亞晶有利于阻礙點(diǎn)蝕坑的擴(kuò)展,并促使形成穩(wěn)定的鈍化膜。高熵合金經(jīng)700 ℃退火,在消除部分熔池邊界的同時(shí),保留了胞狀亞晶,因此表現(xiàn)出最佳的耐點(diǎn)蝕性能。
激光選區(qū)熔化;增材制造;高熵合金;微觀結(jié)構(gòu);點(diǎn)蝕;鈍化膜
高熵合金一般指混合熵在1.61以上的合金,通常由5種或5種以上元素所組成[1-2]。高熵合金具有優(yōu)異的力學(xué)性能,如高的強(qiáng)度、硬度[3-4],出色的耐磨性能[5-6],獨(dú)特的蠕變性能[7],同時(shí)具有良好的耐蝕性能[8-11]。但由于大部分高熵合金成形性較差[12],通過傳統(tǒng)制備方式難以得到合格的高熵合金結(jié)構(gòu)件。激光選區(qū)熔化(SLM)是一種通過激光束逐層掃描熔化指定區(qū)域的金屬增材制造技術(shù),不僅可以直接制備出任意形狀的復(fù)雜零件,還可得到獨(dú)特的分級微觀結(jié)構(gòu),包括熔池邊界、柱狀晶、胞狀亞晶及納米孿晶等,這些微觀結(jié)構(gòu)相互耦合對材料的腐蝕性能產(chǎn)生影響[13-14]。
CoCrFeMnNi高熵合金具有優(yōu)異的力學(xué)性能[3],良好的抗輻照性能[15]和耐腐蝕性能[14],成為航空航天、核工業(yè)、極地科研等極端環(huán)境下極具應(yīng)用潛力的新型結(jié)構(gòu)材料之一。在工程應(yīng)用中,腐蝕是結(jié)構(gòu)材料的主要失效形式之一,因此高熵合金的設(shè)計(jì)及推廣應(yīng)用必須考慮其耐蝕性能。例如,在核反應(yīng)堆中的結(jié)構(gòu)材料,由于長期暴露于冷卻劑中,對材料的耐蝕性能提出了更高的要求[16]。Pathak等[17]對鑄態(tài)CoCrFeMnNi高熵合金在3.5% NaCl溶液的腐蝕行為進(jìn)行了研究,結(jié)果表明,由于Ni、Mn元素在枝晶間的偏聚,點(diǎn)蝕更易發(fā)生于鑄態(tài)高熵合金的枝晶間區(qū)域。筆者研究團(tuán)隊(duì)在之前的研究中發(fā)現(xiàn),與鑄態(tài)高熵合金相比,SLM成形CoCrFeMnNi高熵合金具有更均勻的成分和更細(xì)小的晶粒,有利于形成保護(hù)性更強(qiáng)的鈍化膜,因此具有更優(yōu)異的耐點(diǎn)蝕性能[18]。Wang等[19]對SLM成形CoCrFeMnNi高熵合金的腐蝕各向異性進(jìn)行了研究,發(fā)現(xiàn)在3.5% NaCl溶液中,平面的耐點(diǎn)蝕性能優(yōu)于平面,和平面之間的耐點(diǎn)蝕性能差異是由測試平面暴露的微觀結(jié)構(gòu)特征引起的。有研究表明,應(yīng)變退火增加了CoCrFeMnNi高熵合金低ΣCSL晶界的比例,提高了高熵合金的抗點(diǎn)蝕能力[20]。Zhu等[21]對CoCrFeMnNi高熵合金于不同溫度退火后在堿性土壤模擬溶液中的腐蝕行為進(jìn)行了研究,結(jié)果表明,750 ℃退火樣品的耐腐蝕性能最高,650 ℃退火試樣的耐腐蝕性略高于850 ℃處理試樣,而550 ℃制備的試樣的耐腐蝕性能最差。
增材制造過程中,極高的冷卻速度導(dǎo)致了非平衡組織的形成,常通過后續(xù)熱處理調(diào)控組織,以獲得滿足不同力學(xué)性能要求的結(jié)構(gòu)件。微觀組織的演變同樣會(huì)對材料的耐點(diǎn)蝕性能產(chǎn)生影響,但退火溫度對CoCrFeMnNi高熵合金耐點(diǎn)蝕性能的影響仍缺少系統(tǒng)性研究。因此,本文研究了經(jīng)不同溫度退火后,SLM成形CoCrFeMnNi高熵合金微觀組織的演變規(guī)律及其對高熵合金在NaCl溶液中耐點(diǎn)蝕性能的影響規(guī)律。
激光選區(qū)熔化成形采用由氣霧法制備的等原子比CoCrFeMnNi高熵合金粉末,粉末呈球形,粉末尺寸為15~53 μm,平均粒徑為34.5 μm。CoCrFeMnNi粉末的表面形貌及成分分析如圖1所示,粉末未出現(xiàn)明顯的成分偏析,這有利于提高SLM成形試樣成分的均勻性。激光選區(qū)熔化設(shè)備與掃描策略如圖2所示。在本次試驗(yàn)中,采用棋盤狀激光掃描模式,每層與相鄰層旋轉(zhuǎn)67°,使用純度為99.99 %氬氣作為保護(hù)氣體,打印過程中成型倉的氧含量低于100 mg/L。工藝參數(shù):激光功率為180 W,掃描速度為670 mm/s,鋪粉層厚為50 μm,掃描間距為70 μm。在此工藝下,激光能量密度為76.76 J/mm3。
2)本試驗(yàn)采用SA2-16-14TP真空熱處理爐進(jìn)行退火,為避免退火過程中試樣表面的氧化,退火前通過真空泵將爐內(nèi)氣壓降至3×10–3Pa。退火過程中試樣隨爐升溫,到溫后保溫4 h,隨爐冷卻至室溫。退火溫度分別為700、900、1 100 ℃,打印態(tài)試樣與各溫度退火試樣以下簡稱為SLMed、SLM-700、SLM-900和SLM-1100。
3)通過CHI760型電化學(xué)工作站對高熵合金試樣進(jìn)行動(dòng)電位極化和電化學(xué)阻抗譜測試,測試中工作電極、參比電極和輔助電極分別為高熵合金試樣、甘汞電極和鉑電極。所有試驗(yàn)均在室溫(25±1) ℃環(huán)境下進(jìn)行。測試前,對試驗(yàn)體系測量1 h開路電位,確保試驗(yàn)體系穩(wěn)定。電化學(xué)阻抗譜的測試頻率為10 kHz~10 mHz,動(dòng)電位極化曲線測試初始電位為–1.5 V,最終電位為1.5 V。
圖1 CoCrFeMnNi高熵合金粉末形貌(a)與成分(b—f)
圖2 激光選區(qū)熔化設(shè)備與掃描策略
4)為研究鈍化膜對腐蝕性能的影響,將退火前后的高熵合金試樣浸泡在3.5% NaCl溶液中7 d,使其形成穩(wěn)定的鈍化膜。使用X射線光電子能譜儀(XPS)對鈍化膜成分進(jìn)行分析,XPS結(jié)果通過C(C1s, 284.8 eV)進(jìn)行校正。
退火前后CoCrFeMnNi高熵合金的XRD圖譜如圖3所示。由于CoCrFeMnNi高熵合金中的5種元素具有相近的原子半徑,化學(xué)相容性較好,有利于生成單相。通過XRD分析發(fā)現(xiàn),在經(jīng)過退火后,合金均為單一的面心立方(FCC)結(jié)構(gòu)固溶體。經(jīng)過不同溫度退火后,相較于SLMed試樣,衍射峰向左偏移。這說明經(jīng)過退火后,晶面間距和晶格參數(shù)略有增加,位錯(cuò)密度有所下降[22]。
退火前后CoCrFeMnNi高熵合金的微觀組織如圖4所示。退火前,微觀組織主要由熔池及跨越熔池生長的柱狀晶所組成;700 ℃退火后,消除了部分熔池邊界(MPB),柱狀晶有所長大;900、1 100 ℃退火后,熔池邊界全部消失,柱狀晶進(jìn)一步長大。熔池邊界分為“層–層”和“軌道–軌道”2種類型,有報(bào)道稱“軌道–軌道”熔池邊界所形成的尖銳區(qū)域不利于合金的力學(xué)性能[23],但不同熔池邊界類型對腐蝕行為的影響較小[24]。通過測量SLMed試樣中的熔池形態(tài),發(fā)現(xiàn)大部分熔池寬度為100~200 μm,深度為70~150 μm。為表示熔池間結(jié)合情況,采用幾何結(jié)合因子作為指標(biāo)[25],當(dāng)﹥1時(shí),才能得到致密的金屬試樣,其計(jì)算方法見式(1)。
圖3 退火前后高熵合金的XRD圖譜
圖4 退火前后高熵合金微觀組織的金相圖片
式中:為熔池寬度;為熔池下側(cè)交點(diǎn)的距離;為鋪粉層厚。本研究在最優(yōu)工藝下的幾何結(jié)合因子=1.02,說明在連續(xù)掃描過程中,較大比例的單個(gè)熔池被重熔,因此得到了高致密度的試樣(相對密度為99.4 %)。
退火前后CoCrFeMnNi高熵合金微觀組織的SEM形貌如圖5所示。由圖5a可以看出,SLMed試樣的柱狀晶內(nèi)包含著大量的胞狀亞晶結(jié)構(gòu),平均尺寸小于1 μm。由于打印時(shí)采用棋盤式掃描策略,晶粒生長時(shí),散熱方向不斷發(fā)生轉(zhuǎn)變,胞狀亞晶呈現(xiàn)出不同的生長方向。經(jīng)700 ℃退火后,大部分熔池邊界消失,但胞狀亞晶仍然存在(見圖5b)。經(jīng)900、1 100 ℃退火后,SLM-900試樣和SLM-1100試樣中的熔池邊界全部消失,轉(zhuǎn)變?yōu)榫Ы?,亞晶界也全部消失(見圖5c、d)。金屬材料冷卻凝固時(shí),微觀結(jié)構(gòu)取決于溫度梯度()和晶體生長速率()。SLM成形過程中,金屬熔池凝固前沿的冷卻速度高達(dá)103K/s以上,/值較高,會(huì)產(chǎn)生大量亞穩(wěn)態(tài)胞狀亞晶[26-27]。此外,Prashanth等[28]認(rèn)為經(jīng)典凝固理論不足以解釋胞狀亞晶的形成機(jī)制,除了熱力學(xué)和動(dòng)力學(xué),還要考慮物理學(xué)方面的因素,如表面張力導(dǎo)致的溶質(zhì)/雜質(zhì)擴(kuò)散。研究表明,SLM成形所產(chǎn)生的胞狀亞晶由位錯(cuò)環(huán)組成,在熱力學(xué)上處于亞穩(wěn)態(tài),高溫退火后,胞狀亞晶逐漸消失[18,29-30]。退火導(dǎo)致胞狀亞晶的消失,一方面,由于在退火過程中位錯(cuò)獲得足夠的能量產(chǎn)生運(yùn)動(dòng),運(yùn)動(dòng)過程中異號位錯(cuò)相互抵消,從而使位錯(cuò)環(huán)所組成的胞狀亞晶逐漸消失;另一方面,由于高溫退火促使合金產(chǎn)生再結(jié)晶,形成無畸變的晶粒,在此過程中,胞狀亞晶逐漸消失[29-31]。同時(shí)在本文研究工作中,經(jīng)過700 ℃下4 h退火后,SLM-700試樣部分胞狀亞晶消失,900、1 100 ℃退火后,胞狀亞晶完全消失。這是由于具有高畸變能的位錯(cuò)在高溫退火過程中容易轉(zhuǎn)變?yōu)榫哂械湍軕B(tài)的規(guī)則晶格結(jié)構(gòu),表明了胞狀亞晶為非平衡組織,具有熱力學(xué)亞穩(wěn)態(tài)性質(zhì)。
退火前后CoCrFeMnNi高熵合金在3.5% NaCl溶液中的動(dòng)電位極化曲線如圖6所示,從圖6中可知,SLMed試樣的腐蝕電流密度(corr)最大,腐蝕電位(corr)最低,耐點(diǎn)蝕性能最差,退火后試樣的耐點(diǎn)蝕性能整體要優(yōu)于SLMed試樣。通過Tafel外推法對動(dòng)電位極化曲線進(jìn)行分析,結(jié)果見表1。其中,corr為腐蝕電流密度;corr為腐蝕電位;p為極化電阻。結(jié)果表明,隨著退火溫度的提高,CoCrFeMnNi高熵合金的耐點(diǎn)蝕性能先增加、后減小。SLM-700試樣表現(xiàn)出最佳的耐點(diǎn)蝕性能,SLM-900與SLM-1100試樣的耐點(diǎn)蝕性能相似。SLM-700試樣相較于SLMed試樣,腐蝕電流密度下降了97.3%,腐蝕電位提高了31.5%,極化電阻提高了32.6倍。與他人[18-20,24,29]對CoCrFeMnNi高熵合金和316L不銹鋼耐蝕性的研究工作進(jìn)行對比,發(fā)現(xiàn)高熵合金與316L不銹鋼的耐點(diǎn)蝕性能相近,SLM成形CoCrFeMnNi高熵合金的耐點(diǎn)蝕性能略優(yōu)于鑄態(tài)CoCrFeMnNi高熵合金。
圖5 退火前后高熵合金微觀組織的SEM形貌
圖6 高熵合金的動(dòng)電位極化曲線及與他人工作對比
表1 高熵合金在3.5% NaCl中的動(dòng)電位極化測試結(jié)果
Tab.1 Results of dynamic potential polarization test of HEA in 3.5% NaCl
CoCrFeMnNi高熵合金在3.5% NaCl溶液中的Nyquist圖、Bode圖及等效電路如圖7所示。4組試樣的Nyquist圖均表現(xiàn)為不完整的半圓狀(見圖7a),表明在腐蝕過程中主要受電荷轉(zhuǎn)移控制,在Nyquist圖中的電容弧直徑越大,表面的鈍化膜越穩(wěn)定,樣品的耐腐蝕性就越高[32]。圖7c為等效電路模型(EEC),由溶液電阻(e)、極化電阻(1)和恒相位元件(CPE)組成。等效電路中1與CPE并聯(lián),e與1和CPE串聯(lián)。由于金屬/溶液界面的非理想電容行為,在EEC模型中使用CPE代替純電容[18],高熵合金在3.5% NaCl溶液中的EIS等效電路擬合參數(shù)見表2。與其他狀態(tài)試樣相比,SLM-700試樣具有更高的1值和更小的CPE值,表明在SLM-700試樣上形成的鈍化膜具有更穩(wěn)定和更強(qiáng)的保護(hù)性能,缺陷更少[19]。
表2 等效電路參數(shù)擬合結(jié)果
Tab.2 Fitting results of equivalent circuit parameters
經(jīng)動(dòng)電位極化后的腐蝕形貌如圖8所示。由圖8可以看出,點(diǎn)蝕是高熵合金在3.5% NaCl溶液中的主要腐蝕形式。原始試樣中存在較深的點(diǎn)蝕坑與密集的小點(diǎn)蝕坑,同樣在900、1 100 ℃退火試樣中也發(fā)現(xiàn)了較深的點(diǎn)蝕坑,但在700 ℃退火后,腐蝕形貌中僅觀察到小點(diǎn)蝕坑。導(dǎo)致SLM成形高熵合金產(chǎn)生點(diǎn)蝕與阻礙點(diǎn)蝕的主要因素是界面、熔池邊界和晶界[29],微觀結(jié)構(gòu)演變影響SLM成形高熵合金的耐點(diǎn)蝕性能。熔池邊界相較于晶界是更加容易被腐蝕的區(qū)域,在SLMed試樣中存在大量易被腐蝕的熔池邊界,因此SLMed試樣在鹽溶液中耐點(diǎn)蝕性能最差。在經(jīng)過700 ℃退火后,高熵合金中消除了大部分熔池邊界,減少了點(diǎn)蝕發(fā)生區(qū)域[24],保留了細(xì)小的胞狀亞晶。細(xì)小的晶??梢越档蛠喎€(wěn)態(tài)點(diǎn)蝕坑的形成速率,使點(diǎn)蝕坑由亞穩(wěn)態(tài)轉(zhuǎn)變?yōu)榉€(wěn)態(tài)阻礙點(diǎn)蝕坑的繼續(xù)長大,提高合金的耐腐蝕性能[33],因此在700 ℃退火后,高熵合金表現(xiàn)出最佳的耐點(diǎn)蝕性能。在經(jīng)過900、1 100 ℃退火后,胞狀亞晶消失,晶粒顯著長大,導(dǎo)致其耐點(diǎn)蝕性能有所下降[34]。
圖7 高熵合金在3.5% NaCl溶液中的電化學(xué)阻抗譜與等效電路
圖8 高熵合金在3.5% NaCl溶液中的腐蝕形貌
腐蝕過程中,鈍化膜可以起到阻礙腐蝕繼續(xù)進(jìn)行的作用,提高耐點(diǎn)蝕性能。因此,本節(jié)通過XPS對CoCrFeMnNi高熵合金在3.5% NaCl溶液中所形成的鈍化膜進(jìn)行分析。將SLMed和SLM-700試樣在3.5% NaCl溶液中浸泡7 d,選擇未發(fā)生點(diǎn)蝕的區(qū)域進(jìn)行XPS分析,結(jié)果如圖9所示。
結(jié)合XPS手冊及相關(guān)文獻(xiàn)[35-37],對試驗(yàn)結(jié)果進(jìn)行分峰擬合,鈍化膜的成分主要由氧化物與氫氧化物組成。Co 2p3/2出現(xiàn)3個(gè)峰,分別對應(yīng)金屬態(tài)Co(778.1 eV)、Coo2x+(780.9 eV)和Coh2y+(782.1 eV)。Cr 2p3/2發(fā)生電離均形成3個(gè)組成峰,分別對于金屬態(tài)Cr(574.1 eV)、Cro3x+(576.8 eV)和Crh3y+(578.4 eV)。Fe 2p3/2發(fā)生電離形成3個(gè)組成峰,分別對應(yīng)于金屬態(tài)Fe(707.1 eV)、Feo2x+(709.9 eV)、Feox3+(711.6 eV)。Ni 2p3/2的XPS光譜有3個(gè)組成峰,分別對應(yīng)于金屬Ni(852.8 eV)、Nio2x+(854.0 eV)、Nih2y+(856.0 eV)。O 1s對應(yīng)2個(gè)峰,一個(gè)為金屬氧化物所對應(yīng)的O2–(530.1 eV),另一個(gè)峰為金屬氫氧化物所對應(yīng)的OH–(531.8 eV)。
圖9 高熵合金在3.5% NaCl溶液中浸泡7 d后的XPS圖譜
基于XPS檢測,對氧化膜的成分進(jìn)行半定量分析,各元素離子比例(C)的計(jì)算見式(2)[18]。
式中:I為各元素的峰面積;S為原子的靈敏度因子。各元素離子比例計(jì)算結(jié)果如圖10所示,結(jié)果表明,SLMed與SLM-700的成分組成基本相同,但金屬離子比例有所不同。研究表明,對于CoCrFeMnNi高熵合金,Cr、Co和Ni可以形成具有保護(hù)能力的致密鈍化膜,這3種元素在鈍化膜中含量越高,合金的耐點(diǎn)蝕性能越強(qiáng),即Co+Cr+Ni與Mn+Fe陽離子含量的比值越高,耐點(diǎn)蝕性能越強(qiáng)[18,38]。通過計(jì)算,2組試樣中Co+Cr+Ni與Mn+Fe陽離子含量的比值分別為1.38和1.83,表明700 ℃退火后耐點(diǎn)蝕性能有所提升。
Cr元素所形成的氧化層是鈍化膜中重要的組成部分之一,因此通過計(jì)算Cr氧化層厚度可以推測試樣的耐點(diǎn)蝕性能。Cr元素的本征氧化層厚度的計(jì)算見式(3)[39-40]。
式中:dfilm為本征氧化層厚度;λ為Cr元素光電子的介質(zhì)自由程長度,λ=1.7 nm;為XPS分析中Cr氧化物的積分強(qiáng)度;為XPS分析中Cr金屬態(tài)的積分強(qiáng)度。經(jīng)過計(jì)算,2組試樣的dfilm分別為5.75 nm與5.43 nm。700 ℃退火后,鈍化膜中保護(hù)性成分增加,鈍化膜保護(hù)性增強(qiáng)。
1)SLM成形CoCrFeMnNi高熵合金在退火前后均為單一的FCC結(jié)構(gòu),隨著退火溫度的升高,熔池邊界與亞晶結(jié)構(gòu)逐漸消失。
2)在3.5% NaCl溶液中,高熵合金的耐點(diǎn)蝕性能隨退火溫度的升高先提升、后降低,經(jīng)過700 ℃退火后,高熵合金的抗點(diǎn)蝕能力最佳。相較于打印態(tài)試樣,700 ℃退火試樣的腐蝕電流密度下降了97.3%,腐蝕電位提高了31.5%,極化電阻提高了32.6倍。
3)在3.5% NaCl溶液中浸泡7 d后,高熵合金鈍化膜主要由金屬離子的氧化物與氫氧化物所組成,打印態(tài)試樣和700 ℃退火試樣鈍化膜中,Co+Cr+Ni與Mn+Fe陽離子含量的比值分別為1.38和1.61,本征氧化層厚度分別為5.43 nm與5.75 nm。700 ℃退火后,高熵合金在NaCl溶液中所形成鈍化膜的抗點(diǎn)蝕能力更強(qiáng)。
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advan-ced Engineering Materials, 2004, 6(5): 299-303.
[2] MIRACLE D B, SENKOV O N. A Critical Review of High Entropy Alloys and Related Concepts[J]. Acta Materialia, 2017, 122: 448-511.
[3] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A Fracture-Resistant High-Entropy Alloy for Cryo-genic Applications[J]. Science, 2014, 345(6201): 1153- 1158.
[4] 王洪偉, 何竹風(fēng), 賈楠. 非均勻組織FeMnCoCr高熵合金的微觀結(jié)構(gòu)和力學(xué)性能[J]. 金屬學(xué)報(bào), 2021, 57(5): 632-640.
WANG Hong-wei, HE Zhu-feng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. Acta Metallurgica Sinica, 2021, 57(5): 632-640.
[5] 劉一帆, 常濤, 劉秀波, 等. 高熵合金涂層的摩擦學(xué)性能研究進(jìn)展[J]. 表面技術(shù), 2021, 50(8): 156-169.
LIU Yi-fan, CHANG Tao, LIU Xiu-bo, et al. Research Pro-gress on Tribological Properties of High-Entropy Alloy Coatings[J]. Surface Technology, 2021, 50(8): 156-169.
[6] SHITTU J, SADEGHILARIDJANI M, POLE M, et al. Tribo-Corrosion Response of Additively Manufactured High-Entropy Alloy[J]. Npj Materials Degradation, 2021, 5: 31.
[7] XU, ZHANG H, LI W, et al. Microstructure and Nano-indentation Creep Behavior of CoCrFeMnNi High- Entropy Alloy Fabricated by Selective Laser Melting[J]. Additive Manufacturing, 2019, 28: 766-771.
[8] SHUANG S, DING Z Y, CHUNG D, et al. Corrosion Resistant Nanostructured Eutectic High Entropy Alloy[J]. Corrosion Science, 2020, 164: 108315.
[9] WU P, GAN K, YAN D, et al. A Non-Equiatomic FeNiCoCr High-Entropy Alloy with Excellent Anti- Corrosion Performance and Strength-Ductility Synergy [J]. Corrosion Science, 2021, 183: 109341.
[10] 郝文俊, 孫榮祿, 牛偉, 等. 激光熔覆CoCrFeNiSix高熵合金涂層組織及耐蝕性能研究[J]. 表面技術(shù), 2021, 50(8): 343-348.
HAO Wen-jun, SUN Rong-lu, NIU Wei, et al. Study on Microstructure and Corrosion Resistance of CoCrFeNiSixHigh-Entropy Alloy Coating by Laser Cladding[J]. Sur-face Technology, 2021, 50(8): 343-348.
[11] 張沖, 吳旭暉, 戴品強(qiáng). FeCoCr0.5NiBSi高熵合金涂層的高溫沖蝕磨損性能[J]. 表面技術(shù), 2019, 48(2): 166- 172.
ZHANG Chong, WU Xu-hui, DAI Pin-qiang. Erosive Wear Properties of FeCoCr0.5NiBSiHigh-Entropy Alloy Coating at High Temperature[J]. Surface Technology, 2019, 48(2): 166-172.
[12] LI Rui-di, NIU Peng-da, YUAN Tie-chui, et al. Selective Laser Melting of an Equiatomic CoCrFeMnNi High- Entropy Alloy: Processability, Non-Equilibrium Micros-tru-cture and Mechanical Property[J]. Journal of Alloys and Compounds, 2018, 746: 125-134.
[13] 賴?yán)? 徐震霖, 何宜柱. 熱處理對SLM 18Ni300馬氏體時(shí)效鋼組織及腐蝕性能的影響[J]. 表面技術(shù), 2019, 48(12): 328-335.
LAI Li, XU Zhen-lin, HE Yi-zhu. Effect of Heat Treatment on Microstructure and Corrosion Properties of SLM 18Ni300 Maraging Steel[J]. Surface Technology, 2019, 48(12): 328-335.
[14] ZHU Z G, NGUYEN Q B, NG F L, et al. Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufac-tured by Selective Laser Melting[J]. Scripta Materialia, 2018, 154: 20-24.
[15] HUANG S, GUAN H, ZHONG Z, et al. Effect of He on the Irradiation Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy[J]. Journal of Nuclear Materials, 2022, 561: 153525.
[16] JIANG G, XU D, FENG P, et al. Corrosion of FeCrAl Alloys Used as Fuel Cladding in Nuclear Reactors[J]. Journal of Alloys and Compounds, 2021, 869: 159235.
[17] PATHAK S, KUMAR N, MISHRA R S, et al. Aqueous Corrosion Behavior of Cast CoCrFeMnNi Alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 5970-5977.
[18] XU Z, ZHANG H, DU X, et al. Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy Fabri-cated by Additive Manufacturing[J]. Corrosion Science, 2020, 177: 108954.
[19] WANG Bo-wen, SUN Miao, LI Bo-bo, et al. Anisotropic Response of CoCrFeMnNi High-Entropy Alloy Fabri-cated by Selective Laser Melting[J]. Materials (Basel, Switzerland), 2020, 13(24): 5687.
[20] THOTA H, JEYARAAM R, BAIRI L R, et al. Grain Boundary Engineering and Its Implications on Corrosion Behavior of Equiatomic CoCrFeMnNi High Entropy Alloy[J]. Journal of Alloys and Compounds, 2021, 888: 161500.
[21] ZHU M, ZHAO B, YUAN Y, et al. Effect of Annealing Temperature on Microstructure and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy in Alkaline Soil Simulation Solution[J]. Materials Chemistry and Physics, 2022, 279: 125725.
[22] TONG Z P, REN X D, JIAO J F, et al. Laser Additive Manufacturing of FeCrCoMnNi High-Entropy Alloy: Effect of Heat Treatment on Microstructure, Residual Stress and Mechanical Property[J]. Journal of Alloys and Compounds, 2019, 785: 1144-1159.
[23] WEN S F, LI S, WEI Q S, et al. Effect of Molten Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts[J]. Journal of Materials Processing Technology, 2014, 214(11): 2660-2667.
[24] ZHAO C, BAI Y, ZHANG Y, et al. Influence of Scanning Strategy and Building Direction on Microstructure and Corrosion Behaviour of Selective Laser Melted 316L Stai-nless Steel[J]. Materials & Design, 2021, 209: 109999.
[25] LIU Z, ZHAO D, WANG P, et al Additive Manufacturing of Metals: Microstructure Evolution and Multistage Con-trol[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.
[26] KENEL C, GROLIMUND D, LI X, et al. In Situ Inve-stigation of Phase Transformations in Ti-6Al-4V under Additive Manufacturing Conditions Combining Laser Me-l-ting and High-Speed Micro-X-Ray Diffraction[J]. Scientific Reports, 2017, 7: 16358.
[27] CHEN Z W, PHAN M L, DARVISH K. Grain Growth during Selective Laser Melting of a Co-Cr-Mo Alloy[J]. Journal of Materials Science, 2017, 52(12): 7415-7427.
[28] PRASHANTH K G, ECKERT J. Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34.
[29] ZHOU Cheng-shuang, HU Shi-yin, SHI Qiao-ying, et al. Improvement of Corrosion Resistance of SS316L Manu-factured by Selective Laser Melting through Subcritical Annealing[J]. Corrosion Science, 2020, 164: 108353.
[30] KONG De-cheng, DONG Chao-fang, WEI Shao-lou, et al. About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels[J]. Additive Manufacturing, 2021, 38: 101804.
[31] FU Z, YANG B, GAN K, et al. Improving the Hydrogen Embrittlement Resistance of a Selective Laser Melted High-Entropy Alloy via Modifying the Cellular Struc-tures[J]. Corrosion Science, 2021, 190: 109695.
[32] KUMAR N, FUSCO M, KOMARASAMY M, et al. Understanding Effect of 3.5 wt.% NaCl on the Corrosion of Al0.1CoCrFeNi High-Entropy Alloy[J]. Journal of Nuclear Materials, 2017, 495: 154-163.
[33] MAN C, DUAN Z, CUI Z, et al. The Effect of Sub-Grain Structure on Intergranular Corrosion of 316L Stainless Steel Fabricated via Selective Laser Melting[J]. Materials Letters, 2019, 243: 157-160.
[34] ABBASI AGHUY A, ZAKERI M, MOAYED M H, et al. Effect of Grain Size on Pitting Corrosion of 304L Aus-tenitic Stainless Steel[J]. Corrosion Science, 2015, 94: 368-376.
[35] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730.
[36] LIU C, WU J. Influence of pH on the Passivation Be-havior of 254SMO Stainless Steel in 3.5% NaCl Solu-tion[J]. Corrosion Science, 2007, 49(5): 2198-2209.
[37] WATTS J F. The Use of X-ray Photoelectron Spectro-scopy for the Analysis of Organic Coating Systems[M]// Wilson AD, Nicholson JW, Prosser HJ. Surface Coatings— 1. Dordrecht: Springer, 1987: 137-187.
[38] LUO H, ZOU S, CHEN Y H, et al. Influence of Carbon on the Corrosion Behaviour of Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys in a Chlorinated Concrete Solution[J]. Corrosion Science, 2020, 163: 108287.
[39] REYNIER I, BENNY W, FRANCESCO A, et al. EIS Comparative Study and Critical Equivalent Electrical Circuit (EEC) Analysis of the Native Oxide Layer of Additive Manufactured and Wrought 316L Stainless Steel[J]. Corrosion Science, 2020, 167: 108480.
[40] WALLINDER D, PAN J, LEYGRAF C, et al. Eis and XPS Study of Surface Modification of 316LVM Stainless Steel after Passivation[J]. Corrosion Science, 1998, 41(2): 275-289.
Effect of Annealing Temperature on Pitting Resistance of CoCrFeMnNi High-entropy Alloy Fabricated by Laser Additive Manufacturing
,,
(School of Materials Science and Engineering, Anhui University of Technology, Anhui Maanshan 243002, China)
Equiatomic CoCrFeMnNi high-entropy alloy (HEA) has good corrosion resistance and radiation resistance, and possesses high strength and excellent toughness at cryogenic temperature, which makes it a potential application material for advanced nuclear reactors. As one of the most widely applied additive manufacturing (AM) technologies, selective laser melting (SLM) provides a new idea for the green preparation of HEA, reducing the production cycle and the manufacturing cost. However, the corrosion resistance of the CoCrFeMnNi HEA prepared by laser additive manufacturing still lacks systematic study. The work aims to investigate the effect laws of microstructure evolution on the pitting resistance of the SLMed CoCrFeMnNi high-entropy alloy in NaCl solution after annealing at various temperature.
Spherical CoCrFeMnNi HEA powder with an average diameter of 26.0 μm fabricated by gas-atomized was used in this study. The high-density CoCrFeMnNi HEA with a relative density of 99.4 % was fabricated by a SLM machine (Hanbang HBD-150D) under pure argon gas protection. The manufacturing process was set as: checkerboard scanning strategy, laser power of 180 W, scanning speed of 670 mm/s, hatching space of 70 μm and layer thickness of 50 μm. Then, the SLMed specimens were subject to annealing for 4 hours at 700 ℃, 900 ℃ and 1 100 ℃ respectively, followed by cooling in a furnace in an argon atmosphere. The phase of the HEA before and after annealing was analyzed by X-ray diffraction (XRD, Japanese Rigaku D/max2500pc). The microstructure was examined by optical microscopy (OM, Zeiss Axiovert 40MAT) and scanning electron microscopy (SEM, Tescan MIRA3 XMU). The pitting resistance of the SLMed HEA in 3.5 wt.% NaCl solution was analyzed by kinetic potential polarization and electrochemical impedance spectroscopy (EIS). The composition of the passivation film of the HEA formed in the NaCl solution was investigated by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha).
The phase of the CoCrFeMnNi HEA before and after annealing was single-phase face-centered cubic, which indicated that the HEA had good phase stability at elevated temperature. However, the microstructure of the HEAs had undergone a significant transformation after annealing. The microstructure of the SLMed HEA consisted of melt pools, columnar crystals, and cellular subgrains due to the rapid heating and cooling in the manufacturing process. As the annealing temperature increased, the melt pool boundary and subgrain structure gradually disappeared and the grains gradually grew. Annealing treatment significantly affected the pitting resistance of the HEAs. With the increase of annealing temperature from 700 ℃ to 1 100 ℃, the corrosion current density of the HEAs decreased firstly and then increased. The corrosion current density of the sample annealed at 700 ℃ decreased by 97 % compared with that of the as-built sample. The HEA passive film mainly consisted of metal oxides and hydroxides. The cation ratios of the Co+Cr+Ni to Mn+Fe in the passivation film of the samples prepared by SLM and annealed at 700 ℃were 1.38 and 1.61, respectively, and the thickness of the Cr intrinsic oxide layer in the passivation film was 5.43 nm and 5.75 nm, respectively. The sample annealed at 700 ℃ has the best pitting resistance. With the increase of annealing temperature, the pitting resistance of high-entropy alloy firstly increases and then decreases. Cellular subgrain is beneficial to hindering the expansion of pitting and promoting the formation of stable passivation film. The annealing at 700 °℃ provides the best pitting resistance by removing part of the melt pool boundary while maintaining the cellular subgrains, preventing further pitting pit expansion and improving the protection ability of passivation film.
selective laser melting; additive manufacturing; high-entropy alloy; microstructure; pitting corrosion; passivation film
TG156.2
A
1001-3660(2023)02-0272-10
10.16490/j.cnki.issn.1001-3660.2023.02.025
2022–01–22;
2022–04–11
2022-01-22;
2022-04-11
國家自然科學(xué)基金(51971001);山西省科技重大專項(xiàng)(20181101016)
The National Natural Science Foundation of China (51971001); The Science and Technology Major Special Project of Shanxi Province (20181101016)
賈璽泉(1997—),男,碩士研究生,主要研究方向?yàn)榻饘僭霾闹圃臁?/p>
JIA Xi-quan (1997-), Male, Postgraduate, Research focus: metal additive manufacturing.
何宜柱(1962—),男,碩士,教授,主要研究方向?yàn)楦咝阅芙饘俳Y(jié)構(gòu)材料及增材制造。
HE Yi-zhu (1962-), Male, Master, Professor, Research focus: advanced structural metallic materials and additive manufacturing.
賈璽泉, 徐震霖, 周生璇, 等. 退火溫度對激光增材制造CoCrFeMnNi高熵合金耐點(diǎn)蝕性能的影響[J]. 表面技術(shù), 2023, 52(2): 272-281.
JIA Xi-quan, XU Zhen-lin, ZHOU Sheng-xuan, et al. Effect of Annealing Temperature on Pitting Resistance of CoCrFeMnNi High-entropy Alloy Fabricated by Laser Additive Manufacturing[J]. Surface Technology, 2023, 52(2): 272-281.
責(zé)任編輯:劉世忠