国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

糖蜜發(fā)酵工業(yè)廢液農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)

2023-03-07 02:31王小彬閆湘李秀英涂成孫兆凱
中國農(nóng)業(yè)科學(xué) 2023年3期
關(guān)鍵詞:糖蜜酒糟廢液

王小彬,閆湘,李秀英,涂成,孫兆凱

糖蜜發(fā)酵工業(yè)廢液農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)

王小彬,閆湘,李秀英,涂成,孫兆凱

中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081

糖蜜是甘蔗或甜菜制糖工業(yè)的一種副產(chǎn)物。糖蜜發(fā)酵工業(yè)主要指制糖工業(yè)的下游工業(yè)中以糖蜜為發(fā)酵原料的酒精和酵母等發(fā)酵工業(yè)。在糖蜜發(fā)酵酒精和酵母過程中可產(chǎn)生大量廢液(即糖蜜發(fā)酵工業(yè)廢液)。出于對這類糖蜜發(fā)酵工業(yè)廢液的資源化利用考慮,很多產(chǎn)糖國(如巴西、印度和中國等)都有將這類廢液以直接土地處置方式用于農(nóng)作物灌溉施肥或土壤改良。由于糖蜜發(fā)酵工業(yè)廢液屬于處理難度大的高濃度有機(jī)廢水,還屬于多種重金屬污染廢水,隨著一些產(chǎn)糖國對糖蜜發(fā)酵工業(yè)廢液的長期農(nóng)田處置,所引發(fā)出土壤-作物-水系生態(tài)環(huán)境問題也日益暴露。目前,我國部分企業(yè)以這類廢液為原料生產(chǎn)有機(jī)水溶肥料,其產(chǎn)品在水溶肥市場上占一定比重(約占32%),但對這類廢液長期農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)研究及其監(jiān)測數(shù)據(jù)尚不充足。本文收集了1980年以來國內(nèi)外公開發(fā)表的關(guān)于糖蜜發(fā)酵工業(yè)廢液水質(zhì)污染特征及其農(nóng)用的環(huán)境影響等相關(guān)科研文獻(xiàn),通過對相關(guān)研究數(shù)據(jù)調(diào)研和綜述分析,評估糖蜜發(fā)酵工業(yè)廢液農(nóng)用的環(huán)境安全風(fēng)險(xiǎn):(1)糖蜜發(fā)酵工業(yè)廢液水質(zhì)嚴(yán)重超標(biāo),且具有生態(tài)毒性特征。這類廢液含高負(fù)荷有機(jī)污染物、強(qiáng)酸性、高鹽度,并含多種重金屬等污染物,除As、Hg、Cd、Pb和Cr等5種重金屬外,還含有Mn、Cu、Zn、Ni和Se等,且污染物濃度大多超出《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)。(2)糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在農(nóng)田污染風(fēng)險(xiǎn)。從該類廢液農(nóng)灌的土壤樣品中檢出Cu、Cd、Cr、Zn、Ni、Mn、Pb和Cl等污染物,其濃度是對照土壤的10—641倍。(3)糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在農(nóng)產(chǎn)品安全風(fēng)險(xiǎn)。用該類廢液灌溉的作物,如小麥和芥菜籽粒中也檢出Cu、Cd、Cr、Zn、Ni、Mn和Pb等污染物,其濃度是對照作物的3—12倍,均已超出FAO/WHO規(guī)定的允許限值,且大多超出我國《食品中污染物限量》(GB 2762—2017)標(biāo)準(zhǔn)。鑒于糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在的環(huán)境安全風(fēng)險(xiǎn),長期使用可能對人類健康產(chǎn)生危害。因此,有必要對以該類廢液為原料的有機(jī)水溶肥料產(chǎn)品加強(qiáng)質(zhì)量檢測及風(fēng)險(xiǎn)管控,進(jìn)而為糖蜜發(fā)酵工業(yè)廢液農(nóng)用提供安全保障。

糖蜜;制糖工業(yè);酵母工業(yè);酒精工業(yè);發(fā)酵工業(yè);發(fā)酵工業(yè)廢液

0 引言

糖蜜(俗稱桔水,sugar molasses)是甘蔗或甜菜制糖工業(yè)的一種副產(chǎn)物[1],主要來源于制糖過程中煮糖工藝環(huán)節(jié),即蔗糖結(jié)晶后產(chǎn)生的最終母液[2]。糖蜜中因含有糖分、蛋白質(zhì)、氨基酸和無機(jī)鹽(鈉、鉀、鈣、鎂等)等,可為微生物生長和繁殖提供豐富的碳源及氮、磷和其他無機(jī)鹽類,多被作為生產(chǎn)酒精或酵母等發(fā)酵工業(yè)的原料[3]。由于在利用糖蜜發(fā)酵酒精或酵母過程中還可產(chǎn)生大量廢液(即糖蜜發(fā)酵工業(yè)廢液),如每生產(chǎn)1 t酒精可排出約12—16 t廢液(也被稱為酒精廢糟液、酒糟廢液或酒精廢醪液)[4];每生產(chǎn)1 t干酵母可產(chǎn)生60—130 t廢液[5]。這類糖蜜發(fā)酵工業(yè)廢液含有高濃度難降解有機(jī)污染物(如具有高BOD、COD和多酚類等)以及重金屬(如Cu、Cd、Cr、Zn、Ni、Pb和Mn等)毒性物質(zhì),屬于處理難度很大的高濃度有機(jī)廢水[5-6]。這類廢液經(jīng)生化處理后,其出水各項(xiàng)水質(zhì)指標(biāo)也難以達(dá)到國家環(huán)保部制定的相關(guān)廢液排放標(biāo)準(zhǔn)[2]。出于對糖蜜發(fā)酵工業(yè)廢液的資源化利用考慮,很多國家(如巴西、印度和中國)都采取將這類廢液以直接土地處置方式用于農(nóng)作物灌溉施肥或土壤改良[7-10]。然而,隨著一些產(chǎn)糖國(如巴西和印度等)對糖蜜發(fā)酵工業(yè)廢液的長期農(nóng)田處置,引發(fā)出土壤-作物-水系生態(tài)環(huán)境問題也日益暴露[11-15]。根據(jù)FUESS等[14]綜述研究,在巴西大部分酒糟廢液通過施肥直接回收利用(其平均施用量為140 m3·hm-2)。然而,酒糟廢液過量直接土地處置和/或排入水體可能對土壤和水環(huán)境造成污染,如酒糟廢液用于農(nóng)田灌溉施肥可導(dǎo)致養(yǎng)分淋溶,造成水體硝酸鹽污染和水體富營養(yǎng)化。其中含高濃度K和Na離子可導(dǎo)致土壤結(jié)構(gòu)破壞;其中含高濃度鹽分含量(如Na和Cl離子)可能增加土壤鹽漬化風(fēng)險(xiǎn),導(dǎo)致鹽分淋溶到地下水和造成水體污染;酒糟廢液的低pH(~4.5)可能導(dǎo)致土壤和地表水酸化;其中高負(fù)荷有機(jī)物會導(dǎo)致微生物增殖,可造成水體中溶解氧(DO)濃度顯著降低;酒糟廢液中含有多種污染物包括特定離子(如硝酸鹽和氯化物)和有毒重金屬(如Cd、Pb、Cu、Cr和Ni等濃度高于酒糟廢液排放的建議限值)可導(dǎo)致土壤和水體污染,可能產(chǎn)生生態(tài)毒性,抑制種子萌發(fā),還可能對土壤微生物和水體生物產(chǎn)生毒害。因此,酒糟廢液長期土地處置可能增加對人類健康(如致癌潛力)和作物(如生產(chǎn)力損失)以及生態(tài)環(huán)境安全的風(fēng)險(xiǎn)[14]。目前,我國有部分企業(yè)以這類廢液為原料生產(chǎn)的有機(jī)水溶肥料產(chǎn)品也占一定比重,但對于這類廢液長期農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)研究及其監(jiān)測數(shù)據(jù)尚不充足。

本研究通過對國內(nèi)外科學(xué)文獻(xiàn)數(shù)據(jù)庫(包括Science Direct、SpringerLink、Wiley Online Library和中國知網(wǎng)(CNKI)等)中公開發(fā)表的與糖蜜發(fā)酵工業(yè)廢液水質(zhì)污染特征及其農(nóng)用的環(huán)境影響相關(guān)研究文獻(xiàn)進(jìn)行檢索,收集引用了1980年以來國內(nèi)外相關(guān)科研文獻(xiàn)111篇,其中國外研究文獻(xiàn)52篇,大多涉及該類廢液農(nóng)用的環(huán)境問題;國內(nèi)研究文獻(xiàn)59篇,主要以該類廢液污染特征及其廢液處理技術(shù)相關(guān)研究為主,其中涉及該類廢液農(nóng)用的相關(guān)研究文獻(xiàn)15篇,但一般只強(qiáng)調(diào)該類廢液中的養(yǎng)分利用,而大多忽略了該類廢液農(nóng)用的環(huán)境影響。查閱參考了相關(guān)國家環(huán)境質(zhì)量標(biāo)準(zhǔn)11篇。通過對該類廢液中污染物狀況等相關(guān)研究數(shù)據(jù)調(diào)研;根據(jù)相關(guān)國家環(huán)境標(biāo)準(zhǔn)(包括水質(zhì)、土壤質(zhì)量和農(nóng)產(chǎn)品安全等)對污染物限量要求與相關(guān)調(diào)研數(shù)據(jù)中污染物濃度進(jìn)行比對評價(jià);綜述分析糖蜜發(fā)酵工業(yè)廢液污染物狀況及其農(nóng)用對農(nóng)田土壤質(zhì)量和農(nóng)產(chǎn)品安全的影響,以期對糖蜜發(fā)酵工業(yè)廢液農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)進(jìn)行科學(xué)評估。

1 制糖工業(yè)副產(chǎn)物——糖蜜及其利用

糖蜜是甘蔗(或甜菜)制糖工業(yè)的一種副產(chǎn)物,為深棕色、黏稠狀半流動液態(tài)物質(zhì)[1]。甘蔗糖蜜產(chǎn)出率一般為原料蔗的3%—4%[16];甜菜糖蜜產(chǎn)出率約為原料甜菜的5%[17]。一般來說,蔗糖與糖蜜的產(chǎn)量比例約為3﹕1[3],即每生產(chǎn)3 t糖可產(chǎn)生約1 t糖蜜。據(jù)文獻(xiàn)報(bào)道,2020/2021榨季,全國食糖產(chǎn)量為1 066.66萬t,其中,甘蔗糖產(chǎn)量913.4萬t(占比約85.6%);甜菜糖產(chǎn)量153.26萬t(占比約14.4%)[18]。2020/2021年榨季,全國甘蔗總?cè)胝チ繛? 236.14萬t,甜菜總?cè)胝チ繛? 040.57萬t[19]。根據(jù)制糖副產(chǎn)品生產(chǎn)比例估算,全國甘蔗糖糖蜜產(chǎn)量約為238.79萬t(主要集中在廣西、廣東、云南和海南等?。?;甜菜糖糖蜜產(chǎn)量約為52萬t(產(chǎn)區(qū)主要是內(nèi)蒙古和新疆)[19]。2021年全國糖蜜供給約為290.79萬t。據(jù)統(tǒng)計(jì),2019/2020年榨季初(10月至次年3月)廣西甘蔗糖蜜價(jià)格在700—900元/t,與往年價(jià)格基本保持一致。由于2020年初突發(fā)新冠疫情,酒精價(jià)格飛漲,作為制酒精的重要原料的糖蜜價(jià)格同步上漲。截至2021年5月末,廣西產(chǎn)區(qū)2020/2021年榨季的糖蜜基本銷售完畢,糖企貨源極少,至榨季末整體價(jià)格預(yù)計(jì)會保持在1 500元/t以上[19]。

糖蜜主要來源于蔗糖生產(chǎn)過程中煮糖工藝環(huán)節(jié),即蔗糖結(jié)晶后產(chǎn)生的最終母液[2],主要是指制糖工業(yè)上不能再用于煮制糖品的糖蜜[20]。糖蜜中含有糖分、蛋白質(zhì)、氨基酸和無機(jī)鹽(Na、K、Ca、Mg等),常被用于發(fā)酵領(lǐng)域[3]。如在制糖工業(yè)的下游工業(yè)(如酒精工業(yè)或酵母工業(yè)等發(fā)酵工業(yè))中糖蜜可被用作生產(chǎn)酒精或酵母的發(fā)酵原料[2,21]。制糖工業(yè)及其糖蜜發(fā)酵酒精或酵母工業(yè)生產(chǎn)工藝流程如圖1所示。

國內(nèi)外現(xiàn)行的甘蔗制糖工藝主要包括甘蔗汁提取、蔗汁清凈、糖汁蒸發(fā)濃縮、結(jié)晶、分離和干燥等工序[22]。其中,蔗汁清凈工序所使用的澄清劑分為亞硫酸法和碳酸法工藝。目前我國甜菜制糖企業(yè)全部使用碳酸法工藝,而甘蔗制糖企業(yè)95%采用亞硫酸法,5%采用碳酸法[23]。由于在清凈工序中引入了高濃度的無機(jī)鹽,導(dǎo)致大量蔗糖殘留在結(jié)晶母液中無法直接利用,從而生成糖蜜[3]。據(jù)文獻(xiàn)報(bào)道,甘蔗糖蜜中硫酸鹽、磷酸鹽和氯化物的濃度較高[24];糖蜜中還含有多種揮發(fā)性有機(jī)物質(zhì),如采用GC/MS分析,共鑒定出11個(gè)揮發(fā)性物質(zhì)組分,其中以呋喃、糠醛、吡喃酮等衍生物居多[25]。

世界上各產(chǎn)糖國的大多數(shù)糖廠多以糖蜜為原料生產(chǎn)乙醇的方式處理糖蜜。糖蜜發(fā)酵生產(chǎn)酒精成本較低,用糖蜜原料生產(chǎn)酒精可以省去蒸煮、制曲、糖化等工序[16]。在我國中型以上的糖廠有90%設(shè)有乙醇車間,主要用甘蔗糖蜜發(fā)酵生產(chǎn)酒精[1]。從目前的需求端來看,我國糖蜜的主要用途除制造酒精外,還有部分用于生產(chǎn)酵母,還可用作飼料等產(chǎn)品的原料[26]。糖蜜是發(fā)酵生產(chǎn)酵母菌的最核心原材料[26],因其含有大量蔗糖和轉(zhuǎn)化糖,可作為酵母的生長碳源[16]。據(jù)有關(guān)報(bào)道,在我國,2015年酒精行業(yè)對糖蜜的需求占主導(dǎo)(占比約60%),酵母需求占比30%,剩下的10%用在醬色、飼料和水泥等領(lǐng)域。而2015年之后,在糖蜜的下游需求結(jié)構(gòu)中,酒精用糖蜜需求的占比從之前的60%下降至20%。其原因在于,一方面,隨著政府對環(huán)保問題的關(guān)注度越來越高,高污染的糖蜜發(fā)酵酒精工廠的產(chǎn)能受到限制;另一方面,作為替代品的玉米酒精和木薯酒精價(jià)格持續(xù)下滑,因而壓縮了糖蜜酒精的需求量,而使得酵母用糖蜜的供應(yīng)量大幅增加[26]。據(jù)2017年資料,目前糖蜜下游需求中用于生產(chǎn)酵母和酒精分別約為65%和20%[26]。

圖1 制糖工業(yè)及其糖蜜發(fā)酵工業(yè)生產(chǎn)工藝流程簡圖[2,21]

2 糖蜜發(fā)酵工業(yè)廢液水質(zhì)特征及其廢液處理

一般來講,每生產(chǎn)1 t酒精需耗糖蜜約4.8 t[6],可排出12—16 t廢液[4];每生產(chǎn)1 t酵母需耗糖蜜約5 t[26],每生產(chǎn)1 t干酵母可產(chǎn)生60—130 t廢液[5]。以糖蜜為原料生產(chǎn)酵母產(chǎn)生的廢液同糖蜜發(fā)酵酒精產(chǎn)生的廢液具有相似特點(diǎn),這類糖蜜發(fā)酵工業(yè)廢液屬于處理難度很大的高濃度有機(jī)廢水[6]。

2.1 糖蜜發(fā)酵工業(yè)廢液水質(zhì)特征

糖蜜發(fā)酵酵母的工業(yè)廢液是酵母發(fā)酵過程中產(chǎn)生的高濃度有機(jī)廢水,主要來自糖蜜預(yù)處理和酵母發(fā)酵液的分離廢水過程中產(chǎn)生的廢液[27]。酵母生產(chǎn)主要是利用制糖工藝中產(chǎn)生的副產(chǎn)物-糖蜜(甜菜或甘蔗糖蜜)作為酵母的生長碳源,同時(shí)添加硫酸鹽(NH4)2SO4、NaCl等無機(jī)鹽作為營養(yǎng)元素,采用微生物發(fā)酵的方法進(jìn)行工業(yè)生產(chǎn),但由于酵母生長過程中不能完全利用糖蜜中的有機(jī)物,殘留的部分有機(jī)物質(zhì)及酵母新陳代謝產(chǎn)生的物質(zhì)會進(jìn)入廢液中[28-30]。糖蜜發(fā)酵的酵母廢液中有機(jī)物種類多且濃度高,其中大分子長鏈烴、含苯環(huán)化合物和部分雜環(huán)類化合物等主要難降解物質(zhì)造成這類廢液的可生化性差[31]。據(jù)文獻(xiàn)報(bào)道,這類廢液中有機(jī)污染物主要為酚類、醇類、酮烴和脂類等,其中相對含量>5%的有機(jī)物有3,4-二甲氧基苯酚、苯乙醇、3,4,5-三甲氧基苯酚、苯酚、2,5二甲氧基-1,4對苯二酚和鄰苯二甲酸二戊酯,其總和占到有機(jī)物含量的69.8%,含量最高的酚類化合物占58.4%。這些酚類物質(zhì)來源于糖蜜原料甘蔗,甘蔗經(jīng)制糖后殘留在糖蜜內(nèi)的纖維素、色素和木質(zhì)素等物質(zhì),進(jìn)入發(fā)酵生產(chǎn)過程中,經(jīng)過一系列的加熱化學(xué)反應(yīng),其中的酚類物質(zhì)經(jīng)轉(zhuǎn)化或降解后溶解于廢液中,導(dǎo)致這類廢液呈棕褐色,同時(shí)部分有機(jī)物(如苯酚等酚類物質(zhì))在廢液生物處理過程中抑制或毒害微生物生長代謝是酵母廢液難以達(dá)標(biāo)處理的重要原因[32]。

糖蜜發(fā)酵酒精的工業(yè)廢液是以制糖工業(yè)中殘留物如甘蔗糖蜜為原料經(jīng)發(fā)酵在粗餾塔蒸餾提取酒精后從塔底排出的高濃度有機(jī)廢水[33]。這種酒精蒸餾廢液在巴西和世界許多地區(qū)稱之為stillage或vinasse(or distillery wastewater)[14];我國稱之為酒精廢糟液(酒糟廢液)或酒精廢醪液[4]。據(jù)文獻(xiàn)報(bào)道,糖蜜發(fā)酵酒精的廢液中含有高濃度難降解有機(jī)污染物,如多酚類化合物(包括酚酸、類黃酮和單寧)[34],還含有黑色素等難降解色素化合物[35]。這些有機(jī)污染物在制糖工業(yè)甘蔗汁加工及其糖蜜發(fā)酵酒精生產(chǎn)過程中產(chǎn)生[12,36-37]。這類廢液中還含有大量小分子有機(jī)物,如乙酸和乙醇、3-甲基-2-戊醇等各類醇類,以及甲醛和酚類化合物等,此外,這類廢液中還含有大量多糖、蛋白質(zhì)、脂肪和纖維素等大分子有機(jī)物[38]。有研究表明,糖蜜發(fā)酵酒精的廢液經(jīng)過厭氧處理之后,仍存在大量難生物降解有機(jī)物,包括大量未降解的長鏈有機(jī)物以及酚類和苯類物質(zhì)(這些物質(zhì)是酚類色素和美拉德色素的主要成分),且導(dǎo)致這類廢液生物毒性較大[38]。

表1匯總了文獻(xiàn)中關(guān)于糖蜜發(fā)酵工業(yè)廢液的污染特征[32,39-61]及其排放標(biāo)準(zhǔn)(《發(fā)酵酒精和白酒工業(yè)水污染物排放標(biāo)準(zhǔn)》:GB 27631—2011[62]和《酵母工業(yè)水污染物排放標(biāo)準(zhǔn)》:GB 25462—2010[63])。糖蜜發(fā)酵工業(yè)廢液的主要特點(diǎn)(表1):(1)具有高濃度有機(jī)物(酒精和酵母廢液的BOD5分別高達(dá)80 000和13 780 mg·L-1;CODCr分別高達(dá)180 000和140 000 mg·L-1),可生化性差,難以被生物降解。(2)含高濃度硫酸鹽(酒精和酵母廢液的SO42-濃度分別高達(dá)8 000和8 800 mg·L-1),呈強(qiáng)酸性(酒精和酵母廢液的pH范圍分別為3.0—5.7和3.5—6.0)。

表1 我國糖蜜發(fā)酵工業(yè)廢液污染特征及其排放標(biāo)準(zhǔn)

a)BOD5(mg·L-1):5日生化需氧量Biochemical oxygen demand after 5 days;b)CODCr(mg·L-1):重鉻酸鉀(K2Cr2O7)作為氧化劑測定的化學(xué)需氧量Chemical oxygen demand(by K2Cr2O7method);c)SS (mg·L-1):懸浮物Suspended substance

2.2 糖蜜發(fā)酵工業(yè)廢液處理及其資源化利用

糖蜜發(fā)酵酒精和酵母工業(yè)作為制糖工業(yè)中的下游產(chǎn)業(yè)鏈,利用糖蜜發(fā)酵酒精和酵母已成為國內(nèi)外解決糖廠污染的途徑之一。然而,在利用糖蜜發(fā)酵酒精和酵母過程中還會產(chǎn)生大量廢液(即糖蜜發(fā)酵工業(yè)廢液)。表2歸納了糖蜜發(fā)酵酒精或酵母工藝及其廢液排放相關(guān)參數(shù)等信息[2-6,17,21,26, 39,62-66]。

這類廢液的處理及其再利用成為世界各產(chǎn)糖國家所面臨的棘手問題。目前糖蜜發(fā)酵酵母的廢液處理方法[2,64]與糖蜜發(fā)酵酒精的廢液處理方法[16,39]基本類似,主要有生化處理法(包括厭氧、好氧或厭氧-好氧生化法)、濃縮法(包括濃縮燃燒法、濃縮固化法制成干粉用作肥料或飼料等)以及農(nóng)灌法等方法。

對于糖蜜發(fā)酵酒精的廢液處理而言,生化處理法是通過微生物對糖蜜發(fā)酵酒精的廢液進(jìn)入?yún)捬?、好氧或厭?好氧結(jié)合處理,使廢液中的各種復(fù)雜有機(jī)物轉(zhuǎn)化為CH4和CO2等物質(zhì),但生化處理法占地面積較大,運(yùn)行成本高,廢液達(dá)標(biāo)排放難度大,目前很多糖蜜發(fā)酵酒精廠的厭氧產(chǎn)生沼氣的治理工程都難于維持而停產(chǎn)[16,39]。如有研究報(bào)道[4],糖蜜酒精廢液經(jīng)厭氧處理后,出水CODCr可降至2 000—7 000 mg·L-1,CODCr去除率可達(dá)80%—90%,但仍未達(dá)到酒精廢液排放標(biāo)準(zhǔn)(表1)。濃縮燃燒法是將制酒精廢液蒸發(fā)濃縮后送至焚燒爐進(jìn)行焚燒,以回收熱量,但蒸發(fā)酒精的廢液耗能高,蒸發(fā)系統(tǒng)和鍋爐發(fā)電設(shè)備投資較大,運(yùn)行費(fèi)用高[16,39]。濃縮干燥制粉用作肥料或飼料的設(shè)備投資較大,能源消耗也較高[4,39]。農(nóng)灌法是將制酒精的廢液直接灌溉排到農(nóng)田,使植物吸收廢液中的養(yǎng)分和水分,這在我國廣西、廣東和云南等一些糖廠使用普遍[47-48]。如云南景真糖廠酒精車間排出的廢醪液,除部分外排,有部分被農(nóng)場職工用作甘蔗田肥料(施用量60 t·hm-2),施用方法是甘蔗收獲后用槽車運(yùn)出廢液灌溉蔗田[48]。在巴西甘蔗-釀酒廠產(chǎn)生的酒糟廢液幾乎全部用于甘蔗田灌溉[14]。該方法成本低,操作簡單,但長期使用易引起農(nóng)田土壤酸化板結(jié)[16,67]。如YIN等[67]通過對廣西上思縣糖廠甘蔗酒糟廢液長期(2、7、13和18年)灌溉的甘蔗田進(jìn)行監(jiān)測,發(fā)現(xiàn)經(jīng)長期酒糟廢液灌溉,土壤的pH從5.88—6.45下降到4.69—5.03,且土壤微生物群落多樣性略有降低。因其中含有大量硫酸根,還可能導(dǎo)致地下水污染。

表2 糖蜜發(fā)酵酒精、酵母工藝及其廢液排放相關(guān)參數(shù)

對于糖蜜發(fā)酵酵母的廢液生化處理來說,目前國內(nèi)生產(chǎn)酵母的廠家并不少,但糖蜜發(fā)酵酵母的廢液處理真正達(dá)標(biāo)的范例卻幾乎沒有[5]。這類廢液經(jīng)生化處理后,廢液出水各項(xiàng)水質(zhì)指標(biāo)也難以達(dá)標(biāo)[2]。如有研究報(bào)道[28],酵母廢液經(jīng)厭氧-好氧生物處理后,出水CODCr可降至1 000—1 800 mg·L-1,但仍未達(dá)到酵母廢液排放標(biāo)準(zhǔn)(表1)。這是由于在制糖和酵母發(fā)酵過程中,糖分子因加熱的作用,發(fā)生焦糖反應(yīng)或美拉德反應(yīng)等一系列化學(xué)反應(yīng),形成的發(fā)色物質(zhì)難以生物降解[68];加之發(fā)酵生產(chǎn)酵母過程形成的初次級代謝產(chǎn)物都進(jìn)入到了最終的排放廢液中[2]。糖蜜發(fā)酵酵母的廢液中除含有焦糖色素、美拉德反應(yīng)產(chǎn)物、多酚類物質(zhì)等生化處理中難以被降解的物質(zhì),還含有一定濃度的氯化物、硫化物、重金屬等抑制性因子,對廢液生化處理系統(tǒng)中微生物均可以產(chǎn)生一定的抑制作用[69]。

由于糖蜜發(fā)酵酵母后,仍有不少營養(yǎng)物質(zhì)如酵母、蛋白質(zhì)、高分子有機(jī)物類、糖和多糖類、色素、膠體和氨基酸仍殘留在廢液中,此外,廢液中還含有N、P、K、Ca和Fe等微量元素[64]。因此,采用農(nóng)灌法將這類高濃度廢液稀釋后用于農(nóng)田灌溉,可為農(nóng)作物提供養(yǎng)分[2]。目前廣西幾家生產(chǎn)酵母的糖廠都是采用直接濃縮制肥法處理糖蜜發(fā)酵酵母的廢液,但這類廢液的總固體成分通常要濃縮到40%—45%,該法的設(shè)備投資大、運(yùn)行費(fèi)用高和能耗大;廢液蒸發(fā)過程中存在設(shè)備腐蝕和積垢問題;濃縮過程中廢液黏度處理和制得的肥料儲藏困難;而將這類廢液濃縮液制成肥料浪費(fèi)了其中的氨基酸、色素、膠體和蛋白質(zhì)等有機(jī)物質(zhì);高濃度廢液濃縮肥還易造成土壤板結(jié)等問題,如在近幾年施用這類廢液型肥料的甘蔗田出現(xiàn)了不可逆的土壤板結(jié)問題[64]。

歌詞是歌曲傳播的載體,現(xiàn)下有許多流行歌曲的歌詞內(nèi)容豐富,文筆優(yōu)美,有的博古通今,有的貼近生活,富有較多的文學(xué)素養(yǎng)等著我們?nèi)ネ诰颉.?dāng)然也存在較為惡俗的歌詞,這時(shí)就需要老師嚴(yán)格把關(guān),慎重選擇,再推薦給學(xué)生。那么,如何將歌詞運(yùn)用到作文教學(xué)中去呢?怎么教會學(xué)生在流行歌詞中找素材,煉字句,將歌詞中的好與美化為己用呢?

3 糖蜜發(fā)酵工業(yè)廢液農(nóng)用的環(huán)境安全風(fēng)險(xiǎn)

3.1 糖蜜發(fā)酵工業(yè)廢液中污染物濃度及其對灌溉水質(zhì)的影響

表3匯總了收集到的國內(nèi)外文獻(xiàn)中糖蜜發(fā)酵工業(yè)廢液中污染元素濃度數(shù)據(jù)(包括巴西[70-73]、哥倫比亞[74]、西班牙[75-77]、印度[78-84]、埃塞俄比亞[85-86]、中國[39,44,51,87-88]和葡萄牙[89]等)。參照WHO關(guān)于廢水安全利用指南[90],以及我國相關(guān)國家水質(zhì)標(biāo)準(zhǔn)如《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)[91]和《地下水質(zhì)量標(biāo)準(zhǔn)》(GB/T 14848—2017)[92]等對污染元素限量要求,糖蜜發(fā)酵工業(yè)廢液中污染物存在不同程度超標(biāo)(表3)。

表3 糖蜜發(fā)酵工業(yè)廢液中污染物濃度及農(nóng)田灌溉水質(zhì)/地下水質(zhì)量標(biāo)準(zhǔn)

數(shù)據(jù)顯示,糖蜜發(fā)酵酒精工業(yè)廢液中污染物最大濃度(如Hg:1、Cd:2.37、As:0.5、Pb:8.8、Cr:50.6、Ni:5、Cu:940、Zn:20、Mn:6410、Se:0.5、Cl:42096、Na:28 000、揮發(fā)酚:10 000 mg·L-1及EC值:96 000 μS·cm-1)和糖蜜發(fā)酵酵母工業(yè)廢液中污染物最大濃度(如Cu:7.8、Zn:340、Mn:66.7、Se: 0.2、Cl:67 300、Na:55 090 mg·L-1和EC值:27 600 μS·cm-1)均嚴(yán)重超出我國《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)[91]和《地下水質(zhì)量標(biāo)準(zhǔn)》(GB/T 14848—2017)[92]限量,且超出WHO關(guān)于廢水安全利用指南[90]建議的限值。

糖蜜發(fā)酵工業(yè)廢液不僅是高濃度有機(jī)廢水(表1),還屬于多種重金屬污染廢水(表3)。研究發(fā)現(xiàn)這類廢液樣品中含有的優(yōu)先控制污染物(包括Hg、Cd、As、Pb、Cr、Ni和Cu等重金屬)[93]濃度較高,其對農(nóng)作物和人類健康存在危害[94-95]。研究表明,甘蔗糖蜜中的重金屬是糖蜜發(fā)酵酒精廢液中重金屬的主要來源,無論這些重金屬來源于何處,糖蜜蒸餾器中觀察到的高濃度重金屬都會因制糖生產(chǎn)中結(jié)晶濃縮過程而富集[83],且大多數(shù)超出我國《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)[91]最大允許限值。重金屬淋入水體可導(dǎo)致水生物產(chǎn)生毒性[95-96];有機(jī)污染物淋入水體可導(dǎo)致水體中溶解氧(DO)濃度降低[14],導(dǎo)致魚類窒息[97-98]。

3.2 糖蜜發(fā)酵酒精工業(yè)廢液農(nóng)用對土壤-作物中污染物積累的影響

糖蜜發(fā)酵酒精工業(yè)廢液中含有多種污染物(包括重金屬、Cl和Na等)(表3),印度學(xué)者的研究表明,該類廢液中的污染物通過污水灌溉或污泥農(nóng)用進(jìn)入農(nóng)田可在土壤-作物系統(tǒng)中積累[13,99](表4)。根據(jù)CHANDRA等[13]對糖蜜發(fā)酵酒精工業(yè)污水灌溉作物(小麥和芥菜)的試驗(yàn)研究,觀察到重金屬等污染物在土壤-作物中有明顯積累,從該污水灌溉農(nóng)田采集的土壤樣品中檢出Cu、Cd、Cr、Zn、Ni、Mn、Pb和Cl等污染物,其濃度是對照土壤(CK)的10—641倍,其中Cd、Cr和Cl濃度分別高達(dá)9.9、313和1 014 mg·kg-1,遠(yuǎn)超出我國《土壤環(huán)境質(zhì)量農(nóng)用地土壤污染風(fēng)險(xiǎn)管控標(biāo)準(zhǔn)》(GB 15618—2018)[100]中農(nóng)用地土壤污染風(fēng)險(xiǎn)篩選值(Cd和Cr分別為0.3和150 mg·kg-1)及Cl元素參考臨界值(200 mg·kg-1)[101]。另外,用該污水灌溉的小麥和芥菜籽粒中也檢出Cu、Cd、Cr、Zn、Ni、Mn和Pb等污染物(濃度分別為5.1—5.3、1.1—1.2、6.3—8.2、28.2—28.3、4.1、18.4—157.3和7.1—8.1 mg·kg-1),其濃度是對照作物(CK)的3—12倍,均超出FAO/WHO(1984)[102]規(guī)定的允許限值(分別為3.0、0.21、0.02、27.4、1.63、2.0和0.43 mg·kg-1),且大多超出我國《食品中污染物限量》(GB 2762— 2017)[103]標(biāo)準(zhǔn)及《食品中銅限量衛(wèi)生標(biāo)準(zhǔn)》(GB 15199—94)[104]和《食品中鋅限量衛(wèi)生標(biāo)準(zhǔn)》(GB 13106—91)[105](表4);并測得這兩種作物不同部位(包括根、莖和葉部等)累積的重金屬濃度也均超過FAO/WHO[102]允許限值。CHANDRA等[99]對甘蔗糖蜜酒糟污泥施用于綠豆種植土壤,在綠豆籽粒中同樣檢出Cu、Cd、Cr、Zn、Ni和Mn 等濃度嚴(yán)重超標(biāo)(表4),其濃度是CK的2—16倍;觀察到當(dāng)酒糟污泥濃度20%時(shí)綠豆種子發(fā)芽受到抑制,當(dāng)酒糟污泥濃度>40%時(shí)所有生長參數(shù)均有下降,這可能與重金屬在作物體積累以及酚和氯化物等污染物對作物的毒性影響有關(guān)。

表4 糖蜜發(fā)酵酒精工業(yè)污水/污泥中污染物在土壤-作物中積累

BDL:低于檢測限Below detection limit

TRIPATHI等[106]對在糖廠酒糟污泥傾倒場生長的印度本地的藥用植物(如牛膝、野莧菜、落葵、刺田菁、大蒺藜和苦瓜等6種傳統(tǒng)上用于藥用和食用目的的植物)中重金屬積累情況進(jìn)行評估,如用重金屬的生物累積系數(shù)(BCF= Croot/Csludge,即植物根系與酒糟廢液中的重金屬濃度之比)評價(jià)分析得知,在這6種植物中存在多種重金屬累積,其生物累積水平遠(yuǎn)高于周圍的酒糟污泥,如BCF值依次為:Cu:22.1—94.3、Mn:13.8—81.3、Pb:10.9—49.0、Cr:15.1—24.1、Zn:5.2—17.7、Se:7.37—17.2、As:1.53—9.12和Ni:1.70—8.99。此外,重金屬的轉(zhuǎn)移系數(shù)(TF=Cshoot/Croot,即植物地上部與植物根系重金屬濃度之比)也較高,在這6種植物中地上部重金屬累積水平遠(yuǎn)高于植物根系中重金屬濃度,如TF值依次為:Cu:13.4—42.6、Mn:3.9—11.6、Pb:3.4—9.1、Cr:3.8—9.9、Zn:5.1—10、Se:3.3—14.7、As:3.3—12.5和Ni:0.009—2.2。表明這些被酒糟廢液污染的植物具有很強(qiáng)的重金屬蓄積能力,尤其在可食用部位累積,如作為藥用或食用,存在極大的環(huán)境安全風(fēng)險(xiǎn)和健康危害。因此,建議這類酒糟污泥未經(jīng)充分處理(去除重金屬等污染物)不適合農(nóng)灌,用該污水灌溉生產(chǎn)的農(nóng)產(chǎn)品不宜供于人畜食物鏈[99]。

3.3 糖蜜發(fā)酵工業(yè)廢液農(nóng)用對作物的毒性影響

巴西是世界上最大的甘蔗生產(chǎn)國,其次是印度、中國等。直到20世紀(jì)70年代,大量酒糟廢液被排放到水體中,導(dǎo)致位于甘蔗種植和乙醇廠附近的河流污染[71])。酒糟廢液被認(rèn)為對淡水動物、植物和微生物具有高度毒性[14]。隨著酒糟廢液產(chǎn)量不斷增加,加之廢液排放至水污染問題的暴露,人們提出各種替代用途,如發(fā)酵過程中的酒糟廢液回收、蒸發(fā)濃縮、農(nóng)灌施肥以及用于生產(chǎn)畜禽飼料的原料[7]。由于酒糟廢液農(nóng)灌法成本較低且操作簡單,很多產(chǎn)糖國都有將這類糖蜜發(fā)酵工業(yè)廢液通過農(nóng)灌方式直接土地處置,用于農(nóng)作物灌溉施肥或土壤改良[7-10,14,71]。目前,我國有部分企業(yè)對這類廢液采用直接濃縮法制成有機(jī)水溶肥料利用也占一定比重,據(jù)現(xiàn)有數(shù)據(jù)統(tǒng)計(jì),目前有機(jī)水溶肥料有效登記產(chǎn)品605個(gè),其中以糖蜜發(fā)酵廢液為原料的共194個(gè),占比32%。盡管甘蔗糖蜜酒糟廢液施肥可作為植物的水源和營養(yǎng)源,然而,由于酒糟廢液中存在大量污染物(如重金屬、高鹽、酚類等物質(zhì)),長期施用也會造成土壤中重金屬等污染物積累[11,13,99,106],從而對土壤-作物生態(tài)環(huán)境產(chǎn)生危害,可引起土壤生物和作物中毒[15,72,80,99,107-122]。

研究指出,種子萌發(fā)除受高鹽度影響外,其生物毒性還與酒糟廢液的強(qiáng)酸性、高負(fù)荷有機(jī)污染物和多種有毒重金屬對作物的抑制等因素有關(guān)。如PANDEY等[115]采用不同濃度(10%、20%、40%、60%、80%和100%)酒糟廢液對熱帶亞熱帶氣候條件下的兒茶樹、印度黃檀和桑樹等3種樹種萌發(fā)的影響進(jìn)行觀測,發(fā)現(xiàn)廢液濃度>10%時(shí)樹種發(fā)芽均受到抑制。KANNAN等[80]研究發(fā)現(xiàn)未處理的酒糟廢液對綠豆種子發(fā)芽隨廢液濃度增加呈明顯下降,即使廢液濃度5%仍對綠豆種子萌發(fā)和植株生長產(chǎn)生毒害。GARCIA等[15]采用甘蔗糖蜜酒糟廢液稀釋液(2.5%和5%)進(jìn)行生物(以洋蔥為對象)毒性測定,發(fā)現(xiàn)酒糟廢液能引起分生細(xì)胞染色體畸變,具有潛在遺傳毒性和致突變性。研究認(rèn)為,酒糟廢液中有毒重金屬和低pH是引起生物毒性的主要因素。PEDRO-ESCHER等[112]采用生物毒性試驗(yàn),將洋蔥種子暴露于施用不同濃度(12.5%、25%、50%和100%)酒糟廢液的土壤,觀察到廢液濃度100%和50%具有潛在細(xì)胞毒性,可誘發(fā)染色體改變。

JOSHI等[116]研究了不同離子對作物的毒性,其毒性影響順序?yàn)椋篠O42->Na+>Cl->Mg2+。研究表明,糖蜜酒糟廢液中還含有高濃度硫酸鹽(如表1所示,SO42-濃度可高達(dá)8 000 mg·L-1),高濃度硫酸鹽對甘蔗生長和葉綠素合成有抑制作用,同時(shí)也降低了K和Ca的攝取。此外,糖蜜酒糟廢液中還含有高濃度難降解有機(jī)污染物,如多酚類化合物[34](如表3所示,酚類物可高達(dá)10 000 mg·L-1,遠(yuǎn)超出我國《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)[91]限量(1 mg·L-1))及黑色素等難降解色素化合物[35]。這些有機(jī)污染物在制糖工業(yè)甘蔗汁加工和糖蜜發(fā)酵酒精生產(chǎn)過程中產(chǎn)生[12,36-37]。研究指出,這類廢液中高濃度類黑色素、多酚類等有機(jī)污染物對細(xì)胞具有誘變、致癌和遺傳毒性及內(nèi)分泌干擾性[117-118],可抑制土壤和水生環(huán)境中的微生物活性[14,67,119-121]。如JUWARKAR等[122]評估了酒糟廢液農(nóng)用對土壤微生物區(qū)系的影響,發(fā)現(xiàn)未經(jīng)處理的酒糟廢液灌溉土壤中細(xì)菌、放線菌和固氮菌數(shù)均有減少,因土壤微生物區(qū)系的變化也會對作物生長環(huán)境產(chǎn)生不利影響。YIN等[67]通過對甘蔗糖蜜酒糟廢液長期(2、7、13和18年)農(nóng)灌的甘蔗田進(jìn)行監(jiān)測,觀察到長期酒糟廢液灌溉的土壤微生物群落多樣性有所降低。ALVES等[72]在熱帶土壤上對甘蔗糖蜜酒糟廢液的生態(tài)毒性特征進(jìn)行評估,觀察到高濃度酒糟廢液可引起土壤無脊椎動物如蚯蚓等對酒糟廢液的回避行為,可導(dǎo)致這些土壤動物繁殖數(shù)量減少。表明糖蜜酒糟廢液具有生態(tài)毒性,這可能歸因于酒糟廢液的高鹽量,尤其高鉀的影響。因此,長期連續(xù)用酒糟廢液可能對土壤生物存在潛在風(fēng)險(xiǎn)。

上述研究結(jié)果表明,糖蜜發(fā)酵工業(yè)廢液具有生態(tài)毒性,其生態(tài)毒性特征與廢液的物理化學(xué)特性,包括這類廢液含高負(fù)荷有機(jī)污染物(高BOD、COD、多酚類等)、強(qiáng)酸性(低pH、硫酸鹽等)、高鹽度(高EC值、Cl和Na等)以及有毒重金屬(Cu、Cd、Cr、Zn、Ni、Pb和Mn等)及其毒性影響有關(guān)[12,14-15,71,80]。因此,糖蜜發(fā)酵工業(yè)廢液農(nóng)用可能存在環(huán)境安全風(fēng)險(xiǎn),長期農(nóng)用可能對土壤-作物-水環(huán)境及其人類健康產(chǎn)生毒性危害。因此,建議對這類廢液謹(jǐn)慎使用。

4 問題與建議

糖蜜是制糖工業(yè)的一種副產(chǎn)物,糖蜜因含有大量蔗糖和轉(zhuǎn)化糖,可作為微生物發(fā)酵所需的碳源,在制糖工業(yè)的下游工業(yè)(如酒精工業(yè)和酵母工業(yè)等發(fā)酵工業(yè))中用作生產(chǎn)酒精和酵母的發(fā)酵原料。但是在糖蜜發(fā)酵酒精和酵母過程中可產(chǎn)生大量廢液(即糖蜜發(fā)酵工業(yè)廢液),如每生產(chǎn)1 t酒精可排出約12—16 t廢液;或每生產(chǎn)1 t干酵母可產(chǎn)生60—130 t廢液。由于糖蜜發(fā)酵工業(yè)廢液排放量大、處理難度高且投資大,但其中還殘留不少植物所需營養(yǎng)物質(zhì),因而,為減少該類廢液向水環(huán)境中排放,同時(shí)出于對該類廢液的資源化利用考慮,很多產(chǎn)糖國(如巴西、印度和中國等)都有將糖蜜發(fā)酵工業(yè)廢液以直接土地處置方式用于農(nóng)作物灌溉施肥或土壤改良。然而,隨著一些產(chǎn)糖國對糖蜜發(fā)酵工業(yè)廢液的長期農(nóng)用,所引發(fā)出土壤-作物-水系生態(tài)環(huán)境問題日益暴露。根據(jù)國內(nèi)外相關(guān)研究綜述分析,糖蜜發(fā)酵工業(yè)廢液中還含有多種污染物,長期農(nóng)用可能存在以下環(huán)境安全風(fēng)險(xiǎn)。

(1)糖蜜發(fā)酵工業(yè)廢液水質(zhì)嚴(yán)重超標(biāo)。糖蜜發(fā)酵工業(yè)廢液屬于高濃度有機(jī)廢水,而且,還屬于多種重金屬污染廢水。文獻(xiàn)調(diào)研數(shù)據(jù)顯示,這類廢液含高負(fù)荷有機(jī)污染物(如BOD5、CODCr和多酚類等分別可高達(dá)80 000、180 000和10 000 mg·L-1)、呈強(qiáng)酸性(如SO42-可高達(dá)8 800 mg·L-1)、且高鹽度(如Cl和Na及EC值分別可高達(dá)67 300和55 090 mg·L-1及96 000 μS·cm-1(根據(jù)WHO廢水安全利用指南建議,當(dāng)EC值>3 000 μS·cm-1出現(xiàn)作物鹽害)),以及有毒重金屬等污染物(其中As、Hg、Cd、Pb和Cr等重金屬最大濃度分別可達(dá)0.5、1、2.37、8.8和50.6 mg·L-1;此外,Se、Ni、Zn、Cu和Mn等污染物最大濃度分別可達(dá)0.5、5、15、940和6 410 mg·L-1),這些污染物濃度大多超出《農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)》(GB 5084—2021)。許多研究證實(shí),這類高濃度廢液具有生態(tài)毒性特征,其中高負(fù)荷有機(jī)和無機(jī)污染物、強(qiáng)酸性和高鹽度等特性都可能引起土壤生物和植物中毒,對某些植物種子(如番茄、葫蘆和綠豆種子等)而言,即使該廢液稀釋濃度5%仍可能對種子萌發(fā)和植株生長產(chǎn)生毒害。

(2)糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在農(nóng)田污染風(fēng)險(xiǎn)。已有試驗(yàn)研究顯示,該類廢液中污染物可通過農(nóng)灌或農(nóng)用在土壤-作物系統(tǒng)中明顯積累,如從該類廢液農(nóng)灌的土壤樣品中檢出Cu、Cd、Cr、Zn、Ni、Mn、Pb和Cl等污染物,其濃度是對照土壤的10—641倍,其中Cd和Cr濃度分別高達(dá)9.9和313 mg·kg-1,遠(yuǎn)超出我國《土壤環(huán)境質(zhì)量農(nóng)用地土壤污染風(fēng)險(xiǎn)管控標(biāo)準(zhǔn)》(GB 15618—2018)中農(nóng)用地土壤污染風(fēng)險(xiǎn)篩選值(分別為0.3和150 mg·kg-1)。同樣,在該類廢液農(nóng)灌的作物樣品中也檢出這些污染物。

(3)糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在農(nóng)產(chǎn)品安全風(fēng)險(xiǎn)。用該類廢液農(nóng)灌的作物(小麥和芥菜)籽粒中也檢出Cu、Cd、Cr、Zn、Ni、Mn和Pb等污染物,其濃度是對照作物的3—12倍,分別高達(dá)5.3、1.2、8.2、28.3、4.1、157和8.1 mg·kg-1,均已超出FAO/WHO(1984)規(guī)定的允許限值(分別為3.0、0.21、0.02、27.4、1.63、2.0和0.43 mg·kg-1),且大多超出我國《食品中污染物限量》(GB 2762—2017)標(biāo)準(zhǔn)。還有研究發(fā)現(xiàn),被酒糟廢液污染的藥用植物具有很強(qiáng)的重金屬蓄積能力,如對幾種重金屬(如Cu、Mn、Pb、Cr、Zn、Se、As和Ni等)而言,其生物累積系數(shù)(即植物根系與酒糟廢液中污染物濃度之比值)可高達(dá)9—94;并且,重金屬等污染物還可從根系向地上部轉(zhuǎn)移,其轉(zhuǎn)移系數(shù)(即植物地上部與植物根系污染物濃度之比)可高達(dá)2—43。說明該類廢液農(nóng)用可能對食品安全具有潛在威脅。

綜上研究分析,糖蜜發(fā)酵工業(yè)廢液水質(zhì)嚴(yán)重超標(biāo),將該類廢液以直接土地處置方式農(nóng)用存在農(nóng)田污染以及農(nóng)產(chǎn)品安全風(fēng)險(xiǎn)。目前,我國有部分企業(yè)以糖蜜發(fā)酵工業(yè)廢液為原料生產(chǎn)的有機(jī)水溶肥料產(chǎn)品也占一定比重。鑒于糖蜜發(fā)酵工業(yè)廢液農(nóng)用存在的環(huán)境安全風(fēng)險(xiǎn),長期使用可能對人類健康產(chǎn)生危害,對此,有必要對以該類廢液為原料的有機(jī)水溶肥產(chǎn)品加強(qiáng)質(zhì)量檢測及其風(fēng)險(xiǎn)管控,為糖蜜發(fā)酵工業(yè)廢液農(nóng)用提供安全保障。

[1] 李麗, 游向榮, 孫健, 李志春, 何雪梅. 甘蔗田間廢棄物及制糖副產(chǎn)物綜合利用研究進(jìn)展. 食品工業(yè), 2013, 34(7): 170-173.

LI L, YOU X R, SUN J, LI Z C, HE X M. Review on utilization of sugarcane field wastes and sugar refining byproducts. The Food Industry, 2013, 34(7): 170-173. (in Chinese)

[2] 方學(xué)興. 糖蜜酵母廢水中焦糖色素的回收及厭氧生物處理廢水的試驗(yàn)研究[D]. 廣州: 華南理工大學(xué), 2016.

FANG X X. Rcycling caramel from the molasses yeast wastewater and anaerobic treatment for the wastewater[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)

[3] 楊強(qiáng)劍. 膜分離技術(shù)在糖蜜澄清和脫色中的應(yīng)用基礎(chǔ)研究[D]. 北京: 中國科學(xué)院大學(xué)(中國科學(xué)院過程工程研究所), 2019.

YANG Q J. Applied basic research in clarification and decolorization of cane molasses by membrane technology[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019. (in Chinese)

[4] 楊鳳林, 周集體, 高桂英. 酒糟廢液的處理與綜合利用技術(shù). 環(huán)境保護(hù)科學(xué), 1987, 13(1): 8-12, 26. doi:10.16803/j.cnki.issn.1004-6216. 1987.01.003.

YANG F L, ZHOU J T, GAO G Y. Treatment and comprehensive utilization of distillery wastewater. Environmental Protection Science, 1987, 13(1): 8-12, 26. doi:10.16803/j.cnki.issn.1004-6216.1987.01. 003. (in Chinese)

[5] 李可欣. 活性干酵母生產(chǎn)廢液處理技術(shù)研究. 黑龍江環(huán)境通報(bào), 2016, 40(4): 66-68. doi:10.3969/j.issn.1674-263X.2016.04.021.

LI K X. Study on treatment technology of wastewater of active dry yeast production. Heilongjiang Environmental Journal, 2016, 40(4): 66-68. doi:10.3969/j.issn.1674-263X.2016.04.021. (in Chinese)

[6] 林榮忠, 楊宇格, 林榮珍. 基于酒精廢液高值化利用的甘蔗糖蜜全年生產(chǎn)酒精模式探討. 企業(yè)科技與發(fā)展, 2017(5): 151-153.

LIN R Z, YANG Y G, LIN R Z. Study on the sugarcane molasses- based alcohol production mode based on a high value utilization of alcohol wastewater. Enterprise Science and Technology & Development, 2017(5): 151-153. (in Chinese)

[7] SHEEHAN G J, GREENFIELD P F. Utilisation, treatment and disposal of distillery wastewater. Water Research, 1980, 14(3): 257-277. doi:10.1016/0043-1354(80)90097-4.

[8] PATHAK H, JOSHI H, CHAUDHARY A, CHAUDHARY R, KALRA N, DWIWEDI M K. Soil amendment with distillery effluent for wheat and rice cultivation. Water, Air, and Soil Pollution, 1999, 113: 133-140. doi:10.1023/A%3A1005058321924.

[9] 江永. 利用酒精廢液生產(chǎn)商品型高效甘蔗專用有機(jī)復(fù)混肥的若干問題. 甘蔗糖業(yè), 1999(4): 14-17.

JIANG Y. Some problems in using alcohol waste liquid to produce the concentrated organic fertilizer special for sugurcane. Sugarcane and Canesugar, 1999(4): 14-17. (in Chinese)

[10] 唐其展, 田忠孝, 朱樹標(biāo), 鄧亞德. 利用糖廠酒精廢液配制的液體肥在甘蔗上的肥效研究. 廣西農(nóng)業(yè)科學(xué), 2004, 35(3): 205-207. doi:10.3969/j.issn.2095-1191.2004.03.018.

TANG Q Z, TIAN Z X, ZHU S B, DENG Y D. Study on effect of liquid fertilizer made from alcohol waste of sugarcane mill on sugarcane production. Guangxi Agricultural Sciences, 2004, 35(3): 205-207. doi:10.3969/j.issn.2095-1191.2004.03.018. (in Chinese)

[11] KAUSHIK A, NISHA R, JAGJEETA K, KAUSHIK C P. Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Bioresource Technology, 2005, 96(17): 1860-1866. doi:10.1016/j.biortech.2005.01.031.

[12] BUSTAMANTE M A, PAREDES C, MORAL R, MORENO- CASELLES J, PéREZ-ESPINOSA A, PéREZ-MURCIA M D. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 51(1): 145-151.

[13] CHANDRA R, BHARAGAVA R N, YADAV S, MOHAN D. Accumulation and distribution of toxic metals in wheat (L.) and Indian mustard (L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 2009, 162(2/3): 1514-1521. doi:10.1016/j.jhazmat.2008.06.040.

[14] FUESS L T, GARCIA M L. Implications of stillage land disposal: a critical review on the impacts of fertigation. Journal of Environmental Management, 2014, 145: 210-229. doi:10.1016/j.jenvman.2014.07. 003.

[15] GARCIA C F H, DE SOUZA R B, DE SOUZA C P, CHRISTOFOLETTI C A, FONTANETTI C S. Toxicity of two effluents from agricultural activity: Comparing the genotoxicity of sugar cane and orange vinasse. Ecotoxicology and Environmental Safety, 2017, 142: 216-221. doi:10.1016/j.ecoenv.2017.03.053.

[16] 沈大春, 敖俊華, 吳啟華, 黃瑩, 盧穎林, 江永. 甘蔗糖廠糖蜜及酒精廢液應(yīng)用現(xiàn)狀與展望. 甘蔗糖業(yè), 2019(3): 46-51. doi:10.3969/ j.issn.1005-9695.2019.03.008.

SHEN D C, AO J H, WU Q H, HUANG Y, LU Y L, JIANG Y. Application status and prospect of molasses and vinasse in sugarcane mills. Sugarcane and Canesugar, 2019(3): 46-51. doi:10.3969/j.issn. 1005-9695.2019.03.008. (in Chinese)

[17] 李曉威, 周艷麗. 2018/2019榨季內(nèi)蒙甜菜糖業(yè)調(diào)研報(bào)告: 內(nèi)蒙將成為我國最大的甜菜糖主產(chǎn)區(qū). 中國糖料, 2018, 40(6): 58-61. doi:10.13570/j.cnki.scc.2018.06.018.

LI X W, ZHOU Y L. Investigation report on sugarbeet & beet sugar industry in Inner Mongolia during 2018-2019. Inner Mongolia will become the largest beet sugar production area in China. Sugar Crops of China, 2018, 40(6): 58-61. doi:10.13570/j.cnki.scc.2018.06.018. (in Chinese)

[18] 劉曉雪, 鄔志軍. 2020/2021榨季國內(nèi)外食糖市場回顧與2021/2022榨季展望. 中國糖料, 2021, 43(4): 81-88. doi:10.13570/j.cnki.scc. 2021.04.014.

LIU X X, WU Z J. Domestic and foreign sugar markets in 2020/2021 crushing season and their prospect for 2021/2022 crushing season. Sugar Crops of China, 2021, 43(4): 81-88. doi:10.13570/j.cnki.scc. 2021.04.014. (in Chinese)

[19] 劉芷妍, 李佳娜, 唐燕鳳. 制糖副產(chǎn)品價(jià)格及銷售模式的趨勢分析. 廣西糖業(yè), 2021(4): 45-50. doi:10.3969/j.issn.1007-4732.2021.04.011.

LIU Z Y, LI J N, TANG Y F. Sugar by-product price and sales model trend analysis. Guangxi Sugar Industry, 2021(4): 45-50. doi:10.3969/j. issn.1007-4732.2021.04.011. (in Chinese)

[20] 王斌, 劉翠, 黃燕玉, 胡潔蘭. 糖蜜分類及綜合處理工藝研究. 甘蔗糖業(yè), 2013(5): 26-30. doi:10.3969/j.issn.1005-9695.2013.05.005.

WANG B, LIU C, HUANG Y Y, HU J L. Classification and comprehensive treatment technology of molasses. Sugarcane and Canesugar, 2013(5): 26-30. doi:10.3969/j.issn.1005-9695.2013.05.005. (in Chinese)

[21] 浦媛媛, 陳山. 甘蔗糖廠副產(chǎn)物及廢棄物的資源化利用. 甘蔗糖業(yè), 2012(3): 69-75. doi:10.3969/j.issn.1005-9695.2012.03.016.

PU Y Y, CHEN S. The comprehensive utilization of byproducts and wastes in cane sugar industry. Sugarcane and Canesugar, 2012(3): 69-75. doi:10.3969/j.issn.1005-9695.2012.03.016. (in Chinese)

[22] 羅建泉, 杭曉風(fēng), 劉威, 王兆帥, 陳向榮, 黃日波, 萬印華. 膜法綠色制糖技術(shù)研究進(jìn)展. 過程工程學(xué)報(bào), 2018, 18(5): 908-917. doi:10.12034/j.issn.1009-606X.218209.

LUO J Q, HANG X F, LIU W, WANG Z S, CHEN X R, HUANG R B, WAN Y H. Research progress on green production of sugar from sugarcane by membrane technology. The Chinese Journal of Process Engineering, 2018, 18(5): 908-917. doi:10.12034/j.issn.1009-606X. 218209. (in Chinese)

[23] 許文, 董黎明, 董莉, 孫曉明, 畢瑩瑩, 劉景洋. 我國制糖工業(yè)水污染物減排潛力分析及建議. 現(xiàn)代化工, 2020, 40(12): 19-22. doi:10.16606/j.cnki.issn0253-4320.2020.12.004.

XU W, DONG L M, DONG L, SUN X M, BI Y Y, LIU J Y. Potential analysis and suggestions on water pollutants discharge reduction in China’s sugar industry. Modern Chemical Industry, 2020, 40(12): 19-22. doi:10.16606/j.cnki.issn0253-4320.2020.12.004. (in Chinese)

[24] 徐運(yùn)杰, 季豐泉, 陳學(xué)華, 蘇雙良, 毛遠(yuǎn)廷. 甜菜和甘蔗糖蜜的理化特征及其在生豬養(yǎng)殖中的應(yīng)用. 山東畜牧獸醫(yī), 2021, 42(4): 56-60.

XU Y J, JI F Q, CHEN X H, SU S L, MAO Y T. Physical and chemical characteristics of sugarbeet/and sugarcane molasses and their application in pig breeding. Shandong Journal of Animal Science and Veterinary Medicine, 2021, 42(4): 56-60. doi:10.3969/j.issn. 1007-1733.2021.04.030. (in Chinese)

[25] 齊曉慶. 甘蔗糖蜜蔗香風(fēng)味物質(zhì)的制備及性質(zhì)研究[D]. 廣州: 華南理工大學(xué), 2012.

QI X Q. The preparation and characteristic of sweet flavour in the sugarcane molasses[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)

[26] 田闖. 安琪酵母: 糖蜜成本預(yù)期繼續(xù)下降. 股市動態(tài)分析, 2017(44): 30-31. doi:10.3969/j.issn.1671-0401.2017.44.018.

TIAN C. Angel yeast: Expected to continue to decline the cost of molasses. Stock Market Trend Analysis Weekly, 2017(44): 30-31. doi:10.3969/j.issn.1671-0401.2017.44.018. (in Chinese)

[27] 李知洪, 肖冬光, 梁音. 以糖蜜為原料的酵母廢水處理技術(shù). 釀酒科技, 2010(7): 86-88, 92. doi:10.13746/j.njkj.2010.07.040.

LI Z H, XIAO D G, LIANG Y. Treatment techniques of molasses- based yeast wastewater. Liquor-Making Science & Technology, 2010(7): 86-88, 92. doi:10.13746/j.njkj.2010.07.040. (in Chinese)

[28] 周旋, 劉慧, 王焰新, 史郁, 程睿韜. 酵母廢水處理技術(shù)進(jìn)展. 工業(yè)水處理, 2007, 27(7): 8-11. doi:10.3969/j.issn.1005-829X.2007.07.003.

ZHOU X, LIU H, WANG Y X, SHI Y, CHENG R T. Advance in the treatment techniques of yeast wastewater. Industrial Water Treatment, 2007, 27(7): 8-11. doi:10.3969/j.issn.1005-829X.2007.07.003. (in Chinese)

[29] 史郁, 劉慧, 周旋, 謝安, 胡超涌. 內(nèi)電解預(yù)處理提高酵母廢水可生化性機(jī)理研究. 科學(xué)通報(bào), 2009, 54(5): 655-661. doi:10.1007/ s11434-009-0177-4.

SHI Y, LIU H, ZHOU X, XIE A, HU C Y. Mechanism on impact of internal-electrolysis pretreatment on biodegradability of yeast wastewater. Chinese Science Bulletin, 2009, 54(5): 655-661. doi:10. 1007/s11434-009-0177-4. (in Chinese)

[30] 李永會. 二級厭氧-好氧與物化結(jié)合工藝處理糖蜜酵母廢水的研究[D]. 廣州: 華南理工大學(xué), 2014.

LI Y H. Study on a secondary anaerobic-aerobic combined with physico-chemical process in the treatment of molasses yeast wastewater[D]. Guangzhou: South China University of Technology, 2014. (in Chinese)

[31] 劉秀英, 周旋, 周春芳. 酵母廢水中可溶性有機(jī)物的GC-MS分析. 武漢科技學(xué)院學(xué)報(bào), 2008, 21(5): 17-21.

LIU X Y, ZHOU X, ZHOU C F. Analysis of dissolved organic contaminants in yeast wastewater by GC-MS. Journal of Wuhan Textile University, 2008, 21(5): 17-21. (in Chinese)

[32] 葛廣德. 高濃酵母工業(yè)廢水處理工藝的研究[D]. 廣州: 華南理工大學(xué), 2018.

GE G D. Study on high-concentration yeast industrial wastewater treatment process[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)

[33] 周瑞芳. 利用甘蔗糖蜜酒精廢液及甘蔗尾葉發(fā)酵生產(chǎn)腐殖酸有機(jī)肥[D]. 南寧: 廣西大學(xué), 2014.

ZHOU R F. Using sugarcane molasses alcohol waste liquid and sugarcane caudate lobe to produce humic acid organic fertilizer by fermentation[D]. Nanning: Guangxi University, 2014. (in Chinese)

[34] PAYET B, SHUM CHEONG SING A, SMADJA J. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. Journal of Agricultural and Food Chemistry, 2006, 54(19): 7270-7276. doi:10.1021/jf060808o.

[35] ARIMI M M, ZHANG Y J, G?TZ G, KIRIAMITI K, GEI?EN S U. Antimicrobial colorants in molasses distillery wastewater and their removal technologies. International Biodeterioration & Biodegradation, 2014, 87: 34-43. doi:10.1016/j.ibiod.2013.11.002.

[36] MARTíN SANTOS M A, FERNáNDEZ BOCANEGRA J L, MARTíN MARTíN A, GARCíA GARCíA I. Ozonation of vinasse in acid and alkaline media. Journal of Chemical Technology & Biotechnology, 2003, 78(11): 1121-1127. doi:10.1002/jctb.908.

[37] JIMéNEZ A M, BORJA R, MARTíN A. A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented within batch reactors. Biochemical Engineering Journal, 2004, 18(2): 121-132. doi:10.1016/S1369-703X(03)00198-0.

[38] 肖紅霞. 糖蜜酒精厭氧出水強(qiáng)化預(yù)處理技術(shù)研究[D]. 上海: 華東理工大學(xué), 2012.

XIAO H X. Study on enhanced treatment of molasses alcohol anaerobic effluent[D]. Shanghai: East China University of Science and Technology, 2012. (in Chinese)

[39] 奉靈波. 利用甘蔗糖蜜酒精廢液生產(chǎn)腐植酸的研究[D]. 南寧: 廣西大學(xué), 2013.

FENG L B. Study on the production of humic acid with vinasse from sugarcane molasses alcohol[D]. Nanning: Guangxi University, 2013. (in Chinese)

[40] 王進(jìn). 糖蜜酒精廢液回用與發(fā)酵酵母菌種選育的研究[D]. 南寧: 廣西大學(xué), 2004.

WANG J. Breeding and application of yeast strain suitable for molasses stillage recycling[D]. Nanning: Guangxi University, 2004. (in Chinese)

[41] 郝科慧. 糖蜜酒精廢水水解酸化—蒸餾—好氧工藝的實(shí)驗(yàn)研究[D]. 天津: 天津大學(xué), 2014.

HAO K H. Study on molasses alcohol wastewater by hydrolytic acidification-distillation-aerobic process[D]. Tianjin: Tianjin University, 2014. (in Chinese)

[42] 韋紹龍, 黃素梅, 韋莉萍, 韋弟, 李朝生, 覃柳燕, 田丹丹, 張進(jìn)忠, 周維, 龍盛風(fēng), 楊柳. 糖蜜酒精發(fā)酵液對香蕉產(chǎn)量、品質(zhì)及土壤理化性質(zhì)的影響. 南方農(nóng)業(yè)學(xué)報(bào), 2016, 47(6): 895-900. doi:10.3969/j: issn.2095-1191.2016.06.895.

WEI S L, HUANG S M, WEI L P, WEI D, LI C S, QIN L Y, TIAN D D, ZHANG J Z, ZHOU W, LONG S F, YANG L. Effects of molasses alcohol fermentation liquor on yield, quality of banana, physical and chemical properties of soil. Journal of Southern Agriculture, 2016, 47(6): 895-900. doi:10.3969/j: issn.2095-1191.2016.06.895. (in Chinese)

[43] 周桂, 鄧光輝, 何子平. 糖蜜酒精廢液綜合利用進(jìn)展. 廣西民族學(xué)院學(xué)報(bào)(自然科學(xué)版), 2000, 6(2): 111-114. doi:10.16177/j.cnki. gxmzzk.2000.02.010.

ZHOU G, DENG G H, HE Z P. Progress in the comprehensive ultilization of molasses alcohol waste liquor. Journal of Guangxi University for Nationalities (Natural Science Edition), 2000, 6(2): 111-114. doi:10.16177/j.cnki.gxmzzk.2000.02.010. (in Chinese)

[44] 黃偉添, 陳樂軍. 甘蔗糖蜜酒精廢液綜合利用的探索與實(shí)踐. 甘蔗糖業(yè), 1997(5): 41-45.

HUANG W T, CHEN L J. Research and experiment of the comprehensive utilization of alcohol waste from cane molasses. Sugarcane and Canesugar, 1997(5): 41-45. (in Chinese)

[45] 陸浩湉, 朱滌荃, 謝文化, 張遠(yuǎn)平, 尚紅巖, 黃廷冠, 陳秀萍. 高濃度糖蜜發(fā)酵酒精廢液濃縮焚燒技術(shù). 甘蔗糖業(yè), 2007(4): 47-51. doi:10.3969/j.issn.1005-9695.2007.04.011.

LU H T, ZHU D Q, XIE W H, ZHANG Y P, SHANG H Y, HUANG T G, CHEN X P. Concentrated combustion technology of molasses alcohol wastewater. Sugarcane and Canesugar, 2007(4): 47-51. doi:10.3969/j.issn.1005-9695.2007.04.011. (in Chinese)

[46] 陳立平, 陳開正, 吳鴻祥, 陳央. 甘蔗糖廠酒精廢液堆肥實(shí)現(xiàn)零排放的工程實(shí)踐. 廣西輕工業(yè), 2000, 16(1): 13-16.

CHEN L P, CHEN K Z, WU H X, CHEN Y. The brief introduction on the zero effluent of waste liquid of alcohol by composting in cane sugar factory. Light Industry Science and Technology, 2000, 16(1): 13-16. (in Chinese)

[47] 陳秀萍. 糖蜜酒精廢液資源化治理的回顧與展望. 甘蔗糖業(yè), 2009(2): 43-46. doi:10.3969/j.issn.1005-9695.2009.02.011.

CHEN X P. Review and prospect of resource treatment for molasses alcohol wastewater. Sugarcane and Canesugar, 2009(2): 43-46. doi:10.3969/j.issn.1005-9695.2009.02.011. (in Chinese)

[48] 張躍彬, 高正卿. 蔗糖副產(chǎn)物濾泥、糖蜜酒精廢醪液的開發(fā)利用. 中國糖料, 2009, 31(1): 63-64, 67. doi:10.3969/j.issn.1007-2624.2009. 01.022.

ZHANG Y B, GAO Z Q. Development and utilization on filter mud of cane sugar by-product and wastewater from alcoholic fermentation of molasses. Sugar Crops of China, 2009, 31(1): 63-64, 67. doi:10.3969/ j.issn.1007-2624.2009.01.022. (in Chinese)

[49] 林一雄, 蔡偉興, 莊惠. 甘蔗糖廠酒精廢液的處理. 工業(yè)水處理, 1987, 7(4): 44-45.

LIN Y X, CAI W X, ZHUANG H. Treatment of alcohol wastewater from sugarcane mill. Industrial Water Treatment, 1987, 7(4): 44-45. (in Chinese)

[50] 歐陽志云, 趙同謙, 苗鴻, 王如松, 王效科. 海南制糖-酒精-能源-農(nóng)業(yè)生態(tài)產(chǎn)業(yè)模式設(shè)計(jì). 環(huán)境科學(xué)學(xué)報(bào), 2004, 24(5): 915-921. doi:10.13671/j.hjkxxb.2004.05.027.

OUYANG Z Y, ZHAO T Q, MIAO H, WANG R S, WANG X K. Design for ecological industrial chain for sugar refining, alcohol distillation, energy provision and agriculture in Hainan. Acta Scientiae Circumstantiae, 2004, 24(5): 915-921. doi:10.13671/j.hjkxxb.2004.05. 027. (in Chinese)

[51] 周志萍, 秦文信. 甜菜制糖廢水治理的探索. 中國甜菜糖業(yè), 2008(4): 17-23. doi:10.3969/j.issn.1002-0551.2008.04.006.

ZHOU Z P, QIN W X. Study on beetsugar wastewater treatment. China Beet & Sugar, 2008(4): 17-23. doi:10.3969/j.issn.1002-0551. 2008.04.006. (in Chinese)

[52] 黃明靜. 甜菜糖蜜酒精廢液的處理研究[D]. 北京: 北京化工大學(xué), 2011.

HUANG M J. Treatment of beet molasses alcohol wastewater[D]. Beijing: Beijing University of Chemical Technology, 2011. (in Chinese)

[53] 傅其軍, 蘇毅. 法國酒精發(fā)酵工業(yè)的廢液處理. 廣西輕工業(yè), 2003, 19(1): 33-38.

FU Q J, SU Y. Waste liquid treatment of French alcohol fermentation industry. Light Industry Science and Technology, 2003, 19(1): 33-38. (in Chinese)

[54] 曹臣, 吳海珍, 吳超飛, 韋朝海, 盧彬. 酵母廢水處理技術(shù)分析及生物流化床耦合工藝的應(yīng)用實(shí)踐. 化工進(jìn)展, 2011, 30(2): 449-455, 462. doi:10.16085/j.issn.1000-6613.2011.02.032.

CAO C, WU H Z, WU C F, WEI C H, LU B. Analysis of treatment processes of yeast wastewater and application of biological fluidized bed combined process. Chemical Industry and Engineering Progress, 2011, 30(2): 449-455, 462. doi:10.16085/j.issn.1000-6613.2011.02. 032. (in Chinese)

[55] 楊立新, 陳澤鵬, 王祖宣, 周美蓮, 梁俊生. 兩段厭氧消化法處理甘蔗糖蜜酵母廢水實(shí)驗(yàn)室研究. 中國沼氣, 1988, 6(2): 11-15.

YANG L X, CHEN Z P, WANG Z X, ZHOU M L, LIANG J S. Study of treating sugarcane molasses waste water with two phase anearobic digestion. China Biogas, 1988, 6(2): 11-15. (in Chinese)

[56] 方學(xué)興, 胡松青, 李琳, 侯軼. 高濃酵母廢水的性質(zhì)及不同預(yù)處理方法的探討. 食品與發(fā)酵科技, 2015, 51(6): 1-6, 46. doi:10.3969/ j.issn.1674-506X.2015.06-001.

FANG X X, HU S Q, LI L, HOU Y. Reaserch of different pretreatment methods of high concentration yeast wastewater. Sichuan Food and Fermentation, 2015, 51(6): 1-6, 46. doi:10.3969/j.issn.1674-506X. 2015.06-001. (in Chinese)

[57] 李友明, 葛廣德, 胡松青, 侯軼. 超濾膜處理高濃酵母廢水特性的研究. 現(xiàn)代食品科技, 2018, 34(3): 108-112, 136. doi:10.13982/j.mfst. 1673-9078.2018.03.016.

LI Y M, GE G D, HU S Q, HOU Y. Study on the characteristics of high-concentration yeast wastewater treated by ultrafiltration membrane. Modern Food Science and Technology, 2018, 34(3): 108-112, 136. doi:10.13982/j.mfst.1673-9078.2018.03.016. (in Chinese)

[58] 張會貞, 陳嬌敏, 魏東. 活性炭脫色糖蜜酵母廢水混合營養(yǎng)培養(yǎng)蛋白核小球藻凈化水質(zhì). 現(xiàn)代食品科技, 2017, 33(8): 221-227, 154. doi:10.13982/j.mfst.1673-9078.2017.8.032.

ZHANG H Z, CHEN J M, WEI D. Purification of molasses wastewater from the yeast industry by active charcoal-based decolorization and mixotrophic cultivation of. Modern Food Science and Technology, 2017, 33(8): 221-227, 154. doi:10.13982/ j.mfst.1673-9078.2017.8.032. (in Chinese)

[59] 馬興周. 酵母廢水處理的可行性研究. 輕工科技, 2012, 28(6): 94-95, 102.

MA X Z. Feasibility study on yeast wastewater treatment. Light Industry Science and Technology, 2012, 28(6): 94-95, 102. (in Chinese)

[60] 龔美珍, 殷紹平. 甘蔗糖蜜酵母廢液焦糖色素提取工藝研究. 食品科技, 2006, 31(4): 122-123, 127. doi:10.3969/j.issn.1005-9989.2006. 04.040.

GONG M Z, YIN S P. Study on extracting process of caramel pigment from the molasses wastewater utilized by yeast. Food Science and Technology, 2006, 31(4): 122-123, 127. doi:10.3969/j.issn.1005-9989. 2006.04.040. (in Chinese)

[61] 姜錦玉. MF-CSTR工藝預(yù)處理酵母生產(chǎn)廢水同時(shí)發(fā)酵產(chǎn)氫研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2016.

JIANG J Y. Pretreatment of yeast production wastewater and hydrogen production based on MF-CSTR process[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

[62] 中華人民共和國環(huán)境保護(hù)部和國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 發(fā)酵酒精和白酒工業(yè)水污染物排放標(biāo)準(zhǔn): GB 27631—2011. 北京: 中國環(huán)境科學(xué)出版社, 2011.

The Ministry of Environmental Protection of the People’s Republic of China, and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Discharge Standard of Water Pollutants for Fermentation Alcohol and Distilled Spirits Industry: GB 27631—2011. Beijing: China Environmental Science Press, 2011. (in Chinese)

[63] 中華人民共和國環(huán)境保護(hù)部和國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 酵母工業(yè)水污染物排放標(biāo)準(zhǔn): GB 25462—2010. 北京: 中國環(huán)境科學(xué)出版社, 2010.

The Ministry of Environmental Protection of the People’s Republic of China, and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.Discharge Standard of Water Pollutants for Yeast Industry: GB 25462—2010. Beijing: China Environmental Science Press, 2010. (in Chinese)

[64] 許偉. 蔗渣吸附糖蜜酵母濃縮廢液制發(fā)酵飼料的研究[D]. 南寧: 廣西大學(xué), 2013.

XU W. The research of bagasse mixed with the molasses yeast wastewater by solid fermentation[D]. Nanning: Guangxi University, 2013. (in Chinese)

[65] 董愛軍, 張捷. 糖蜜的資源化利用(下). 中國甜菜糖業(yè), 2007(3): 17-20.

DONG A J, ZHANG J. Methods of resource regeneration of molasses(Ⅱ). China Beet & Sugar, 2007(3): 17-20. (in Chinese)

[66] 中華人民共和國環(huán)境保護(hù)部和國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 制糖工業(yè)水污染物排放標(biāo)準(zhǔn): GB 21909—2008. 北京: 中國環(huán)境科學(xué)出版社, 2008.

The Ministry of Environmental Protection of the People’s Republic of China, and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.Discharge Standard of Water Pollutants for Sugar Industry: GB 21909—2008. Beijing: China Environmental Science Press, 2008. (in Chinese)

[67] YIN J, DENG C B, WANG X F, CHEN G L, MIHUCZ V G, XU G P, DENG Q C. Effects of long-term application of vinasse on physicochemical properties, heavy metals content and microbial diversity in sugarcane field soil. Sugar Tech, 2019, 21(1): 62-70. doi:10.1007/s12355-018-0630-2.

[68] 冉艷紅, 于淑娟, 高大維. 甘蔗制糖過程中顏色的形成、去除與防止研究進(jìn)展. 甘蔗糖業(yè), 2001(1): 39-44. doi:10.3969/j.issn.1005- 9695.2001.01.008.

RAN Y H, YU S J, GAO D W. Progress in research of color formation, removal and prevention during cane sugar processing. Sugarcane and Canesugar, 2001(1): 39-44. doi:10.3969/j.issn.1005-9695.2001.01.008. (in Chinese)

[69] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 2008, 99(10): 4044-4064. doi:10.1016/j.biortech.2007.01.057.

[70] MARIANO A P, CRIVELARO S H R, DE FRANCESCHI DE ANGELIS D, BONOTTO D M. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil. Brazilian Archives of Biology and Technology, 2009, 52(4): 1043-1055. doi:10.1590/s1516-89132009000400030.

[71] CHRISTOFOLETTI C A, ESCHER J P, CORREIA J E, MARINHO J F U, FONTANETTI C S. Sugarcane vinasse: environmental implications of its use. Waste Management, 2013, 33(12): 2752-2761. doi:10.1016/ j.wasman.2013.09.005.

[72] ALVES P R L, NATAL-DA-LUZ T, SOUSA J P, CARDOSO E J B N. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils. Science of the Total Environment, 2015, 526: 222-232. doi:10.1016/j.scitotenv.2015.03.150.

[73] GODOI L A G, CAMILOTI P R, BERNARDES A N, SANCHEZ B L S, TORRES A P R, CONCEI??O GOMES A, BOTTA L S. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: Main implications for its environmental uses. Environmental Science and Pollution Research, 2019, 26(28): 29267-29282. doi:10.1007/s11356-019-06019-8.

[74] ORTEGóN G P, ARBOLEDA F M, CANDELA L, TAMOH K, VALDES-ABELLAN J. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del(Colombia). Science of the Total Environment, 2016, 539: 410-419. doi:10.1016/j.scitotenv.2015.08.153.

[75] MADEJóN E, LóPEZ R, MURILLO J M, CABRERA F. Agricultural use of three (sugar-beet) vinasse composts: Effect on crops and chemical properties of a Cambisol soil in the Guadalquivir River valley (SW Spain). Agriculture, Ecosystems & Environment, 2001, 84(1): 55-65. doi:10.1016/S0167-8809(00)00191-2.

[76] JIMéNEZ A M, BORJA R, MARTíN A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochemistry, 2003, 38(9): 1275-1284. doi:10.1016/S0032- 9592(02)00325-4.

[77] TEJADA M, MORENO J L, HERNANDEZ M T, GARCIA C. Application of two beet vinasse forms in soil restoration: effects on soil properties in an arid environment in southern Spain. Agriculture, Ecosystems & Environment, 2007, 119(3/4): 289-298. doi:10.1016/ j.agee.2006.07.019.

[78] KUMAR P, CHANDRA R. Detoxification of distillery effluent through(MTCC 4714) enhanced phytoremediationpotential of(L.) Schliden. Bulletin of Environmental Contamination and Toxicology, 2004, 73(5): 903-910. doi:10.1007/ s00128-004-0512-z.

[79] ACHARYA B K, MOHANA S, MADAMWAR D. Anaerobic treatment of distillery spent wash-A study on upflow anaerobic fixed film bioreactor. Bioresource Technology, 2008, 99(11): 4621-4626. doi:10.1016/j.biortech.2007.06.060.

[80] KANNAN A, UPRETI R K. Influence of distillery effluent on germination and growth of mung bean () seeds. Journal of Hazardous Materials, 2008, 153(1/2): 609-615. doi:10.1016/j. jhazmat.2007.09.004.

[81] MAHIMAIRAJA S, BOLAN N S. Problems and prospects of agricultural use of distillery spentwash in India. Journal of Ecotoxicology & Environmental Monitoring, 2009, 19(4): 375-382.

[82] SANKARAN K, PREMALATHA M, VIJAYASEKARAN M, SOMASUNDARAM V. DEPHY project: Distillery wastewater treatment through anaerobic digestion and phycoremediation-A green industrial approach. Renewable and Sustainable Energy Reviews, 2014, 37: 634-643. doi:10.1016/j.rser.2014.05.062.

[83] CHANDRA R, YADAV S, BHARAGAVA R N, MURTHY R C. Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent byangustata L. Journal of Environmental Management, 2008, 88(4): 1016-1024. doi:10.1016/j.jenvman.2007.05.001.

[84] NANDAN R, TONDWALKAR V, RAY P K. Biomethanation of spent wash: Heavy metal inhibition of methanogenesis in synthetic medium. Journal of Fermentation and Bioengineering, 1990, 69(5): 276-281. doi:10.1016/0922-338X(90)90105-6.

[85] AMARE E, KEBEDE F, MULAT W. Analysis of heavy metals, physicochemical parameters and effect of blending on treatability of wastewaters in Northern Ethiopia. International Journal of Environmental Science and Technology, 2017, 14(8): 1679-1688. doi:10.1007/s13762- 017-1270-x.

[86] FITO J, TEFERA N, KLOOS H, VAN HULLE S W H. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Tech, 2019, 21(2): 265-277. doi:10.1007/s12355-018-0633-z.

[87] 杜嵩岷. 酵母糖蜜在奶牛飼養(yǎng)中的應(yīng)用研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2011.

DU S M. Studies of the application of feeding yeast molasses in lactating dairy cows[D]. Harbin: Northeast Agricultural University, 2011. (in Chinese)

[88] LI S, ZHAO X H, YE X S, ZHANG L M, SHI L, XU F S, DING G D. The effects of condensed molasses soluble on the growth and development of rapeseed through seed germination, hydroponics and field trials. Agriculture, 2020, 10(7): 260. doi:10.3390/agriculture10070260.

[89] MATA R, RATINHO S, FANGUEIRO D. Assessment of the environmental impact of yeast waste application to soil: An integrated approach. Waste and Biomass Valorization, 2019, 10(6): 1767-1777. doi:10.1007/s12649-017-0168-7.

[90] WHO. Guidelines for the safe use of wastewater, excreta and greywater. World Health Organization, Geneva. 2006.

[91] 中華人民共和國生態(tài)環(huán)境部和國家市場監(jiān)督管理總局. 農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn): GB 5084—2021. 北京: 中國環(huán)境科學(xué)出版社, 2021.

The Ministry of Ecology and Environment of the People’s Republic of China, and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China. Standards for Irrigation Water Quality: GB 5084—2021. Beijing: China Environmental Science Press, 2021. (in Chinese)

[92] 中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局和中國國家標(biāo)準(zhǔn)化管理委員會. 地下水質(zhì)量標(biāo)準(zhǔn): GB/T 14848—2017. 北京: 中國標(biāo)準(zhǔn)出版社, 2017.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China. Standards for Groundwater Quality: GB/T 14848—2017. Beijing: China Standard Press, 2017. (in Chinese)

[93] 周文敏, 傅德黔, 孫宗光. 中國水中優(yōu)先控制污染物黑名單的確定.環(huán)境科學(xué)研究, 1991, 4(6): 9-12. doi:10.13198/j.res.1991.06. 11. zhouwm. 002.

ZHOU W M, FU D Q, SUN Z G. Determination of black list of China's priority pollutants in water. Research of Environmental Sciences, 1991, 4(6): 9-12. doi:10.13198/j.res.1991.06.11. zhouwm.002. (in Chinese)

[94] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407-418. doi:10.1016/j.jenvman.2010.11.011.

[95] CAROLIN C F, KUMAR P S, SARAVANAN A, JOSHIBA G J, NAUSHAD M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 2017, 5(3): 2782-2799. doi:10.1016/j.jece. 2017.05.029.

[96] BARAKAT M A. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011, 4(4): 361-377. doi:10. 1016/j.arabjc.2010.07.019.

[97] KUMAR S, SAHAY S S, SINHA M K. Bioassay of distillery effluent on common guppy,(Peter). Bulletin of Environmental Contamination and Toxicology, 1995, 54(2): 309-316. doi:10.1007/ BF00197446.

[98] KUMAR S, GOPAL K. Impact of distillery effluent on physiological consequences in the freshwater teleostpunctatus. Bulletin of Environmental Contamination and Toxicology, 2001, 66(5): 617-622. doi:10.1007/s001280053.

[99] CHANDRA R, YADAV S, MOHAN D. Effect of distillery sludge on seed germination and growth parameters of green gram (L). Journal of Hazardous Materials, 2008, 152(1): 431-439. doi:10.1016/j.jhazmat.2007.06.124.

[100] 中華人民共和國生態(tài)環(huán)境部和國家市場監(jiān)督管理總局. 土壤環(huán)境質(zhì)量農(nóng)用地土壤污染風(fēng)險(xiǎn)管控標(biāo)準(zhǔn)(試行): GB 15618—2018. 北京: 中國環(huán)境科學(xué)出版社, 2018.

The Ministry of Ecology and Environment of the People’s Republic of China, and State Administration for Market Regulation. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018. Beijing: China Environmental Science Press, 2018. (in Chinese)

[101] 王德清, 郭鵬程, 董翔云. 氯對作物毒害作用的研究. 土壤通報(bào), 1990, 21(6): 258-261. doi:10.19336/j.cnki.trtb.1990.06.008.

WANG D Q, GUO P C, DONG X Y. Study on the toxicity of chlorine to crops. Chinese Journal of Soil Science, 1990, 21(6): 258-261. doi:10.19336/j.cnki.trtb.1990.06.008. (in Chinese)

[102] FAO/WHO. Contaminants. In Codex Alimentarius, vol. XVII, Edition 1, FAO/WHO, Codex Alimentarius Commission, Rome, 1984.

[103] 中華人民共和國衛(wèi)生部. 食品中污染物限量: GB 2762—2017. 北京: 中國標(biāo)準(zhǔn)出版社, 2017.

The Ministry of Health of the People’s Republic of China. Maximum Levels of Contaminants in Food: GB 2762—2017. Beijing: China Standard Press, 2017. (in Chinese)

[104] 中華人民共和國衛(wèi)生部. 食品中銅限量衛(wèi)生標(biāo)準(zhǔn): GB 15199—94. 北京: 中國標(biāo)準(zhǔn)出版社, 1994.

The Ministry of Health of the People’s Republic of China. Tolerance Limit of Copper in Food: GB 15199—94. Beijing: China Standard Press, 1994. (in Chinese)

[105] 中華人民共和國衛(wèi)生部. 食品中鋅限量衛(wèi)生標(biāo)準(zhǔn): GB 13106—91. 北京: 中國標(biāo)準(zhǔn)出版社, 1991.

The Ministry of Health of the People’s Republic of China. Tolerance Limit of Zinc in Food: GB 13106—91. Beijing: China Standard Press, 1991. (in Chinese)

[106] TRIPATHI S, SHARMA P, SINGH K, PURCHASE D, CHANDRA R. Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses- based distillery waste. Environmental Technology & Innovation, 2021, 22: 101434. doi:10.1016/j.eti.2021.101434.

[107] SAHAI R, SHUKLA N, JABEEN S, SAXENA P K. Pollution effect of distillery waste on the growth behaviour ofradiatus L. Environmental Pollution Series A, Ecological and Biological, 1985, 37(3): 245-253. doi:10.1016/0143-1471(85)90044-3.

[108] SRIVASTAVA N, SAHAI R. Effects of distillery waste on the performance ofL. Environmental Pollution, 1987, 43(2): 91-102. doi:10.1016/0269-7491(87)90068-6.

[109] ALGUR ? F, KADIO?LU A. The effects of vinasse on the growth, biomass and primary productivity in pea () and sunflower (). Agriculture, Ecosystems & Environment, 1992, 39(3/4): 139-144. doi:10.1016/0167-8809(92)90049-H.

[110] ALE R T, JHA P K, BELBASE N. Effect of distillery effluent on some agricultural crops, A case of environmental injustice to local farmers in khajura VDC, banke. Scientific World, 1970, 6(6): 68-75. doi:10.3126/sw.v6i6.2637.

[111] SINGH S V, SWAMI V K. Utilization of distillery industry wastewater as liquid biofertilizer: Seed bioassay test for feasibility and toxicity assessment. International Journal of Innovative Research in Science, Engineering and Technology, 2014, 3(10): 17020-17027. doi:10.15680/ijirset.2014.0310085.

[112] PEDRO-ESCHER J, CHRISTOFOLETTI C A, ANSOAR-RODRíGUEZ Y, FONTANETTI C S. Sugarcane vinasse, a residue of ethanol industry: toxic, cytotoxic and genotoxic potential using thetest. Journal of Environmental Protection, 2016, 7(5): 602-612. doi:10. 4236/jep.2016.75054.

[113] 邢旭明, 宿彥良, 張銀波, 史樹德, 劉偉, 魏磊, 劉軍成. 膜下滴灌追施酵母濃縮液液體肥對甜菜產(chǎn)質(zhì)量的影響. 中國糖料, 2020, 42(4): 45-50. doi:10.13570/j.cnki.scc.2020.04.008.

XING X M, SU Y L, ZHANG Y B, SHI S D, LIU W, WEI L, LIU J C. Effects of yeast concentrate liquid fertilizer by drip irrigation under mulching on yield and quality of sugar beet. Sugar Crops of China, 2020, 42(4): 45-50. doi:10.13570/j.cnki.scc.2020.04.008. (in Chinese)

[114] RAMANA S, BISWAS A K, KUNDU S, SAHA J K, YADAVA R B R. Effect of distillery effluent on seed germination in some vegetable crops. Bioresource Technology, 2002, 82(3): 273-275. doi:10.1016/ S0960-8524(01)00184-5.

[115] PANDEY D, EDUCATION D. Distillery effluent-A potential resource for irrigating forest seed beds. AMBIO, 1994, 23(4/5): 267-268.

[116] JOSHI G V, NAIK G R. Response of sugarcane to different types of salt stress. Plant and Soil, 1980, 56(2): 255-263. doi:10.1007/ BF02205854.

[117] TAYLOR J L S, DEMYTTENAERE J C R, ABBASPOUR TEHRANI K, OLAVE C A, REGNIERS L, VERSCHAEVE L, MAES A, ELGORASHI E E, VAN STADEN J, DE KIMPE N. Genotoxicity of melanoidin fractions derived from a standard glucose/glycine model. Journal of Agricultural and Food Chemistry, 2004, 52(2): 318-323. doi:10.1021/jf030125y.

[118] YADAV S, CHANDRA R. Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation, 2012, 23(4): 609-620. doi:10.1007/ s10532-012-9537-x.

[119] FITZGIBBON F, SINGH D, MCMULLAN G, MARCHANT R. The effect of phenolic acids and molasses spent wash concentration on distillery wastewater remediation by fungi. Process Biochemistry, 1998, 33(8): 799-803. doi:10.1016/S0032-9592(98)00050-8.

[120] PANT D, ADHOLEYA A. Biological approaches for treatment of distillery wastewater: A review. Bioresource Technology, 2007, 98(12): 2321-2334. doi:10.1016/j.biortech.2006.09.027.

[121] MOHANA S, ACHARYA B K, MADAMWAR D. Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 2009, 163(1): 12-25. doi:10.1016/j.jhazmat. 2008.06.079.

[122] JUWARKAR A, DUTTA S A. Impact of distillery effluent application to land on soil microflora. Environmental Monitoring and Assessment, 1990, 15(2): 201-210. doi:10.1007/BF00398914.

Environmental Safety Risks in Agricultural Application of Effluents from Sugar Molasses-Based Fermentation Industries

WANG XiaoBin, YAN Xiang, LI XiuYing, TU Cheng, SUN ZhaoKai

Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081

Sugar molasses is a by-product from sugar industries. The sugar molasses-based fermentation industries mainly refer to the fermentation industries using molasses from sugar mills as raw materials for alcohol or yeast fermentation. A large volume of effluents can be produced in the process of sugar molasses-based alcohol or yeast fermentation. Considering the possibility of resource utilization with such effluents, many sugar-producing countries (such as Brazil, India, and China) use the effluents for crop irrigation and fertilization or soil remediation directly into the farmlands by waste disposal methods. Because the effluents from sugar molasses-based fermentation industries are both high concentration organic wastewater, and heavy metal-polluted wastewater, which are difficult to be treated. With the long-term disposal of such effluents into the farmlands in some sugar-producing countries, the problems about ecological environment pollution in soil-crop-water systems are increasingly exposed. At present, some fertilizer production enterprises in China use such effluents as raw materials to produce organic water-soluble fertilizers (accounting for 32%), but the long-term research and monitoring data about environmental safety risks for agricultural application of the effluents from sugar molasses-based fermentation industries are still lack. This paper collected the relevant scientific research literatures since 1980 on the pollution characteristics of the effluents from sugar molasses-based fermentation industries, and their environmental impacts on agricultural application. Through the investigation and review on the relevant research data, this paper evaluated the environmental safety risks for agricultural application of the effluents from sugar molasses-based fermentation industries: (1) Such effluents were at a risk of seriously exceeding the limits for water quality standards, and a risk of ecotoxicity to plants. For example, such effluents had strong acidity, and high salinity, and contained not only high load organic pollutants, but also several heavy metals including 5 heavy metals (As, Hg, Cd, Pb and Cr), as well as other pollutants (such as Mn, Cu, Zn, Ni and Se, etc.). The concentrations of these pollutants mostly exceeded the limits of the Standards for Irrigation Water Quality (GB 5084—2021). (2) Such effluents for agricultural application were at a risk of farmland pollution. The concentrations of pollutants (such as Cu, Cd, Cr, Zn, Ni, Mn, Pb and Cl) detected from the soil samples irrigated with such effluents were about 10-641 times higher than those in the control soil. (3) Such effluents for agricultural application were at a safety risk of agricultural products. The concentrations of pollutants (such as Cu, Cd, Cr, Zn, Ni, Mn and Pb) detected in the grains of crops (wheat and mustard) irrigated with such effluents were about 3-12 times higher than those in the control crops, in which all the pollutants detected in the crops irrigated with such effluents exceeded both the allowable limits specified by FAO/WHO, but also the Maximum Levels of Contaminants in Food (GB 2762—2017) specified by China. In view of the issue of environmental safety risks for agricultural application of such effluents, therefore, it is necessary to strengthen the quality detection and risk control on the organic water-soluble fertilizer products with such effluents as raw material, to enable the safety of effluent utilization in agriculture.

sugar molasses; sugar industry; molasses-based yeast industry; molasses-based alcohol industry; sugar molasses-based fermentation industry; effluents from fermentation industry

10.3864/j.issn.0578-1752.2023.03.008

2022-01-04;

2022-05-09

農(nóng)業(yè)農(nóng)村部肥料登記專項(xiàng)(2130109)

王小彬,E-mail:wangxiaobin01@caas.cn。通信作者李秀英,E-mail:lixiuying@caas.cn

(責(zé)任編輯 李云霞)

猜你喜歡
糖蜜酒糟廢液
日糧中添加不同水平的糖蜜對犢牛生長性能及增重成本的影響
豬酒糟中毒發(fā)生的原因、臨床表現(xiàn)、診斷及防治
白酒糟在毛驢養(yǎng)殖中的運(yùn)用
甜菜和甘蔗糖蜜的理化特征及其在生豬養(yǎng)殖中的應(yīng)用
含堿廢液焚燒爐耐火材料研究進(jìn)展
結(jié)晶法脫硫廢液提鹽技術(shù)的應(yīng)用與實(shí)踐
糖蜜的飼用價(jià)值及應(yīng)用研究
兩級UASB處理糖蜜酒精廢水的效果研究
酒糟綜合利用技術(shù)研究進(jìn)展
MVR技術(shù)在化機(jī)漿廢液處理中的應(yīng)用