李璐璐 明 博 高 尚 謝瑞芝 王克如 侯 鵬 薛 軍 李少昆
不同熟期玉米品種籽粒田間脫水特征差異性分析
李璐璐1,2,3明 博1,*高 尚1謝瑞芝1王克如1侯 鵬1薛 軍1李少昆1,*
1中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所 / 農(nóng)業(yè)部作物生理生態(tài)重點實驗室, 北京 100081;2海南省農(nóng)業(yè)科學(xué)院三亞研究院, 海南三亞 572025;3海南省崖州灣種子實驗室, 海南三亞 572025
玉米收獲期籽粒含水率是影響機械粒收質(zhì)量和籽粒品質(zhì)的重要因素, 不同熟期品種收獲期籽粒含水率有差異, 同時品種間熟期的差異也使其田間脫水的環(huán)境不同, 造成其脫水特征難以精準比較。本研究于2018—2019年, 以不同熟期玉米品種為研究對象, 設(shè)置間隔約10 d的8個播期處理, 播期覆蓋自早春播至晚夏播, 創(chuàng)制籽粒田間脫水的環(huán)境差異, 觀測籽粒含水率動態(tài)過程, 分析品種之間籽粒田間脫水特征差異。結(jié)果表明, 收獲期籽粒含水率與品種生育期長短呈顯著正相關(guān)(= 0.810*, 2018;= 0.912**, 2019), 早熟品種收獲時含水率低、晚熟品種高; 生理成熟期籽粒含水率與灌漿期長短呈顯著負相關(guān)(= –0.484**), 早熟品種生理成熟期籽粒含水率高、晚熟品種低; 籽粒生理成熟前脫水速率(= –0.655**)和生理成熟后脫水速率(= –0.492**)均與生育期長短呈顯著負相關(guān), 表現(xiàn)出早熟品種籽粒脫水速率快、晚熟品種脫水速率慢的特征; 籽粒生理成熟前脫水速率與生理成熟后脫水速率之間呈顯著正相關(guān)(= 0.466**), 一般而言生理成熟前籽粒脫水速率較快的品種, 生理成熟后脫水速率也較快, 但是存在生理成熟前脫水速率快、生理成熟后脫水速率慢的特例品種。本研究認為生育期影響籽粒脫水速率, 通常早熟品種生理成熟前、后籽粒脫水速率均較快, 收獲期含水率較低; 晚熟品種生理成熟前、后籽粒脫水速率均較慢, 收獲期含水率較高; 但是存在特例品種, 在進行籽??焖倜撍贩N的選育和篩選時應(yīng)引起關(guān)注。
玉米; 生育期; 籽粒; 含水率; 脫水速率
玉米收獲期籽粒含水率與生理成熟前脫水速率和生理成熟后脫水速率有關(guān), 這兩個階段脫水速率大小決定了收獲期籽粒含水率高低, 以往有不少研究將關(guān)注點放在生理成熟至收獲這一段時間籽粒脫水快慢與否, 即生理成熟后脫水速率[19,30-34], 弱化了生理成熟前脫水速率對收獲期籽粒含水率的影響,以及生理成熟前脫水速率與生理成熟后脫水速率的關(guān)系, 同一品種生理成熟前、后脫水速率大小是否一致尚未定論。本研究選用生育期和籽粒脫水速率有較大差異的不同玉米品種, 剖析籽粒脫水速率的品種差異, 為快速脫水品種的選育和篩選提供理論指導(dǎo)。
于2018年和2019年在中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所新鄉(xiāng)綜合試驗站(河南省新鄉(xiāng)市, 35°18'N, 113°54'E)進行, 設(shè)置品種和播期處理。選用生育進程和脫水速率差異較大的8個品種, 包括早熟品種: 禾田1號(Hetian 1, HT1)和豐墾139 (Fengken 139, FK139); 中熟品種: 澤玉8911 (Zeyu 8911, ZY8911)、京農(nóng)科728 (Jingnongke 728, JNK728)和迪卡517 (Dika 517, DK517); 晚熟品種: 先玉335 (Xianyu 335, XY335)、鄭單958 (Zhengdan 958, ZD958)和迪卡653 (Dika 653, DK653)。采用早春播至晚夏播的大跨度分期播種處理, 每年8個播期(表1), 各播期之間的間隔大約為10 d。除了ZY8911在2018年的第1播期未種植外, 其他品種2年均種植8個播期。試驗采用大區(qū)種植, 各處理種植面積約為158.4 m2(寬約7.2 m, 長約22 m), 等行距種植, 行距為0.6 m, 種植密度為75,000株 hm–2。播前撒施底肥, 選用控釋肥(N-P2O5-K2O: 30-5-5), 每公頃約750 kg, 旋耕整地。各小區(qū)機械開溝, 人工點播, 每點位放置2粒種子, 點位之間的距離約為22 cm, 人工覆土。播種后澆蒙頭水, 保證出苗, 四葉期間苗。玉米生育期內(nèi)的灌水和病蟲草害管理措施同當(dāng)?shù)厣a(chǎn), 未發(fā)生逆境脅迫。試驗田安裝了小型氣象站(WatchDog 2900 Weather Station), 試驗期間的氣溫、降水、風(fēng)速和相對濕度情況見圖1。
記錄各處理的播種、出苗和吐絲日期。在吐絲期, 每個處理選擇至少200株吐絲一致、無病蟲害的代表性植株, 作為樣株, 掛牌標記。取樣日期從吐絲后7 d起, 持續(xù)至生理成熟后, 在12月底截止, 取樣間隔大約為7 d, 如果遇到降水天氣, 取樣日期順延1 d, 試驗期間各處理的取樣次數(shù)在17~34次之間。取樣時每個處理從標記好的樣株中選擇5個果穗, 連帶苞葉取下, 帶回實驗室。5個果穗分別手工脫粒, 取果穗中部的100粒測試, 分別稱取鮮重, 然后在恒溫鼓風(fēng)干燥箱中以85℃、48 h烘干, 稱量干重。根據(jù)籽粒鮮重和干重計算含水率, 5個果穗的籽粒含水率均值作為本次測試的含水率:
籽粒含水率(%)=(鮮重–干重)/鮮重×100(1)
玉米粒重隨著吐絲后天數(shù)的增加, 呈現(xiàn)先增長后穩(wěn)定的趨勢。參考GAMBíN等[35]的方法, 用雙線性模型擬合粒重的動態(tài)過程(圖2-A), 擬合方程為:
圖A和圖B上的實線表示平均氣溫, 陰影表示最低氣溫和最高氣溫。
The solid lines represent the mean air temperature and the shading represents the lowest and highest air temperature on panels A and B.
表1 試驗的播種日期
圖2 粒重動態(tài)過程的雙線性模型(A)和籽粒含水率動態(tài)過程的分階段線性擬合(B)
式中, KW為百粒干重(g),為吐絲后天數(shù)(d),為方程在縱坐標軸上的截距,代表灌漿速率(g d–1),代表灌漿期(d),代表最大百粒干重(g)。本試驗共測試127組粒重積累動態(tài)數(shù)據(jù), 粒重與吐絲后天數(shù)雙線性模型的Adjusted2在0.957~0.997之間。
生理成熟日期: 灌漿的截止日期為生理成熟期, 本文用式(2)中的值判定。
生理成熟期籽粒含水率: 由于存在取樣間隔, 當(dāng)取樣日期與生理成熟日期在同一天時, 以取樣當(dāng)天的實測籽粒含水率為生理成熟期籽粒含水率; 當(dāng)取樣日期與生理成熟日期不在同一天時, 將生理成熟期前一次和后一次取樣時的實測含水率數(shù)據(jù)線性插值, 以此獲取生理成熟期籽粒含水率。
玉米籽粒含水率隨著吐絲后天數(shù)的增加, 呈現(xiàn)出單調(diào)遞減的趨勢, 直到降至穩(wěn)定。籽粒含水率的動態(tài)過程可以劃分為3個階段: 吐絲至生理成熟(生理成熟前)、生理成熟至含水率最低(生理成熟后)和含水率穩(wěn)定在最低水平。對籽粒含水率生理成熟前、后的下降過程分別進行線性擬合, 以線性方程斜率的絕對值作為生理成熟前、后的脫水速率(圖2-B)。此處, 各組觀測數(shù)據(jù)生理成熟前、后的分段點以式(2)中的值為參考; 生理成熟后的截止點以籽粒含水率降至最低值, 且此后維持穩(wěn)定的日期為參考, 該日期的判定以各組含水率動態(tài)數(shù)據(jù)多重比較結(jié)果為準。本試驗共測試127組籽粒含水率動態(tài)數(shù)據(jù), 含水率與吐絲后天數(shù)分段線性擬合的Adjusted2生理成熟前在0.931~0.998之間, 生理成熟后在0.838~ 0.996之間。
粒重動態(tài)變化的雙線性模型擬合、多重比較、簡單相關(guān)分析、偏相關(guān)分析等通過IBM SPSS Statistics 26.0完成; 籽粒含水率動態(tài)數(shù)據(jù)的分段線性擬合和線性插值在Microsoft Excel 2013中進行; 圖形繪制在IBM SPSS Statistics 26.0和Microsoft Excel 2013中完成。多重比較采用Duncan的SSR檢驗法; 相關(guān)分析采用Pearson相關(guān)系數(shù), 雙尾檢驗。
響應(yīng)政府規(guī)劃,緊隨行業(yè)發(fā)展趨勢,投入智慧商圈建設(shè),通過大數(shù)據(jù)處理分析,根據(jù)智慧停車、停車誘導(dǎo)的項目經(jīng)驗,得到集商圈管理、分析決策和用戶服務(wù)于一體的綜合產(chǎn)品、一站式解決方案,推動傳統(tǒng)商業(yè)模式向基于大數(shù)據(jù)的精準化營銷轉(zhuǎn)型。
參試的玉米品種生育進程存在較大差異。以第5播期(大田生產(chǎn)常規(guī)播期)為例, 出苗至成熟的天數(shù), 2018年(圖3-A)早熟品種(HT1和FK139)為76~ 77 d, 中熟品種(JNK728、ZY8911和DK517)為79~ 84 d, 晚熟品種(XY335、ZD958和DK653)為87~89 d;2019年(圖3-D)早熟、中熟和晚熟品種分別為81~ 82 d、87~89 d和97~104 d。
不同熟期玉米品種在收獲期的籽粒含水率存在較大差別, 熟期短的品種收獲期籽粒含水率相對較低, 熟期長的品種相對較高。在10月1日當(dāng)天, 第5播期的8個品種籽粒含水率2018年在12.34%~ 23.41%之間(圖3-B), 2019年在11.55%~29.00%之間(圖3-E), 含水率與生育期長短顯著正相關(guān)(圖3-C, F)。
圖3 不同玉米品種在第5播期的生育進程(左)、10月1日籽粒含水率(中)以及含水率與生育期的相關(guān)性(右)
*和**分別表示在0.05和0.01概率水平差異顯著。禾田1號(Hetian 1, HT1)、豐墾139 (Fengken 139, FK139)、澤玉8911 (Zeyu 8911, ZY8911)、京農(nóng)科728 (Jingnongke 728, JNK728)、迪卡517 (Dika 517, DK517)、先玉335 (Xianyu 335, XY335)、鄭單958 (Zhengdan 958, ZD958)、迪卡653 (Dika 653, DK653)。
*and**indicate significant differences at the 0.05 and 0.01 probability levels, respectively. HT1: Hetian 1; FK139: Fengken 139; ZY8911: Zeyu 8911; JNK728: Jingnongke 728; DK517: Dika 517; XY335: Xianyu 335; ZD958: Zhengdan 958; DK653: Dika 653.
生理成熟期籽粒含水率在不同熟期品種之間具有顯著差異(圖4-A, C), 表現(xiàn)出越早熟品種生理成熟期含水率越高的特征; 生理成熟期籽粒含水率與灌漿期長短呈極顯著負相關(guān)(圖4-B, D)。
不同玉米品種之間生理成熟前、后的籽粒脫水速率均具有顯著差異。8個品種生理成熟前籽粒平均脫水速率, 2018年在1.60%~1.87% d–1之間(圖5-A), 2019年在1.25%~1.74% d–1之間(圖5-C), 隨著品種生育期延長, 生理成熟前籽粒脫水速率降低, 二者呈極顯著負相關(guān)關(guān)系(= –0.655**, 表2)。8個品種生理成熟后籽粒平均脫水速率, 2018年在0.39%~ 0.88% d–1之間(圖5-B), 2019年在0.31%~0.78% d–1之間(圖5-D), 隨著生育期延長, 生理成熟后籽粒脫水速率也呈降低趨勢, 二者極顯著負相關(guān)(= –0.492**, 表2)。
在早春播至晚夏播的環(huán)境影響下, 同一品種籽粒脫水速率在不同播期之間具有較大變動, 但是所有播期下HT1的生理成熟前籽粒脫水速率基本上均大于ZD958和DK653, 所有播期下HT1的生理成熟后籽粒脫水速率基本上均大于ZD958、DK653和ZY8911。
生理成熟前脫水速率與生理成熟后脫水速率之間表現(xiàn)為極顯著正相關(guān)關(guān)系, 簡單相關(guān)系數(shù)= 0.466**, 偏相關(guān)系數(shù)= 0.218*(生理成熟前、后脫水速率均與生育期顯著相關(guān), 剔除生育期影響), 即生理成熟前籽粒脫水速率較快的品種, 生理成熟后脫水速率也較快, 但是品種ZY8911為特例, 屬于生理成熟前籽粒脫水速率較快, 而生理成熟后籽粒脫水速率較慢的品種(圖6)。
圖4 生理成熟期籽粒含水率及其與灌漿期的關(guān)系
圖中小寫字母表示在0.05概率水平差異顯著,**表示在0.01概率水平差異顯著, × 為樣本均值, 縮略詞同圖3。
Different lowercase letters indicate significant differences at the 0.05 probability level.**indicate significant differences at the 0.01 probability level. × represents the sample mean. Abbreviations are the same as those given in Fig. 3.
圖5 不同玉米品種生理成熟前、后籽粒脫水速率
圖中小寫字母表示在0.05概率水平差異顯著, ×為樣本均值, 虛線為HT1樣本值的下端線, 縮略詞同圖3。
Different lowercase letters indicate significant differences at the 0.05 probability level. × represents the sample mean, and the dotted lines indicate the lower sample borders of cultivar HT1. Abbreviations are the same as those given in Fig. 3.
表2 脫水速率與生育期的相關(guān)分析
*和**分別表示在0.05和0.01概率水平差異顯著。
*and**represent significance at the 0.05 and 0.01 probability levels, respectively.
圖6 生理成熟前、后籽粒平均脫水速率的關(guān)系
實線為線性擬合方程及95%置信區(qū)間, 垂直虛線為生理成熟前脫水速率的平均值, 水平虛線為生理成熟后脫水速率的平均值, 縮略詞同圖3。
The solid lines are the linear fitting equation and the 95% confidence interval, the vertical dotted line is the average of the moisture loss rate before physiological maturity, and the horizontal dotted line is the average of the moisture loss after physiological maturity. Abbreviations are the same as those given in Fig. 3.
當(dāng)前, 中國玉米產(chǎn)業(yè)正在以機械籽粒收獲為突破, 建立適應(yīng)規(guī)?;a(chǎn)的栽培技術(shù)體系, 實現(xiàn)由傳統(tǒng)生產(chǎn)向現(xiàn)代化方式的轉(zhuǎn)變。玉米收獲期籽粒含水率影響著機械粒收質(zhì)量、籽粒品質(zhì)、收獲后的管理技術(shù)以及烘干成本等, 篩選和選育籽粒脫水快的品種成為當(dāng)前玉米產(chǎn)業(yè)發(fā)展和遺傳育種研究的熱點問題。
在相同的生產(chǎn)條件下, 早熟品種收獲期籽粒含水率低而晚熟品種含水率高, 這可能與早熟品種生育進程相對較短、籽粒田間干燥過程處于相對更高的溫度條件有關(guān)。品種間生長發(fā)育進程的差異使籽粒處于不同的氣象環(huán)境條件之下, 難以準確評價品種的脫水特征。本研究利用播期處理, 自早春播至晚夏播, 創(chuàng)造了籽粒干燥脫水的不同氣象環(huán)境。研究發(fā)現(xiàn), 所有播期下早熟品種HT1的籽粒脫水速率基本上均大于晚熟品種ZD958和DK653, 即使HT1籽粒在晚夏播的相對低溫條件下, 脫水速率依然快于在早春播高溫條件的ZD958和DK653。分析表明, 生育期與籽粒脫水速率呈顯著負相關(guān), 生育期短的品種生理成熟前、后籽粒脫水速率均較快, 收獲期籽粒含水率較低?;蛐吞貏e是熟期性狀的差異是決定品種籽粒脫水速率的重要因素。以往在以產(chǎn)量為首要目標的生產(chǎn)管理下, 延長品種生育期成為增產(chǎn)的有效途徑, 忽視了籽粒脫水過程, 造成我國玉米收獲期籽粒含水率較高的現(xiàn)狀[36]。然而, 在機械粒收技術(shù)模式下, 收獲期籽粒含水率過高不僅影響收獲質(zhì)量, 還會造成收獲后籽粒存儲困難、增加烘干成本, 處理不當(dāng)還會引起籽粒霉變率升高、籽粒品質(zhì)下降。因此, 機械粒收技術(shù)條件下的栽培模式構(gòu)建, 應(yīng)選擇適宜熟期的品種, 依據(jù)種植區(qū)氣候條件分配籽粒成熟和脫水的時間, 使其能夠在合理的收獲期內(nèi)達到適宜機械粒收的籽粒含水率水平。
收獲期籽粒含水率與生理成熟前脫水速率和生理成熟后脫水速率有關(guān), 不同基因型之間生理成熟前、后籽粒脫水速率均有顯著差異[15-21], 本文的研究結(jié)果與此一致。以往研究更關(guān)注不同品種在生理成熟至收獲這一時期內(nèi)籽粒脫水速率的快慢[19,30-34], 忽視了生理成熟前與生理成熟后兩個階段內(nèi)籽粒脫水速率的聯(lián)系。本研究發(fā)現(xiàn), 籽粒生理成熟前脫水速率與生理成熟后脫水速率之間具有正相關(guān)關(guān)系, 即生理成熟前脫水快的品種生理成熟后脫水也快。但中熟品種ZY8911的表現(xiàn)與其他品種差異明顯, 其生理成熟前脫水速率相對較快而生理成熟后脫水速率較其他品種慢。ZY8911的苞葉包裹緊實、果穗較粗; 前人研究認為, 苞葉長短和層數(shù)[37]、果穗粗細和長度[38-39]、粒型和組分[31,33-34]等穗部性狀[30,40-49]對籽粒脫水都會產(chǎn)生影響, 這可能與ZY8911生理成熟后脫水速率慢有關(guān)。因此, 在機械粒收品種篩選和選育過程中, 應(yīng)關(guān)注品種的熟期和脫水特征, 依據(jù)不同生態(tài)區(qū)的熱量資源, 選擇熟期適宜的品種, 并兼顧生理成熟前和生理成熟后籽粒脫水速率, 在保障產(chǎn)量的前提下降低玉米收獲期籽粒含水率。
不同熟期玉米品種之間, 收獲期籽粒含水率、生理成熟期籽粒含水率、籽粒生理成熟前脫水速率和生理成熟后脫水速率均具有顯著差異。生育期與籽粒脫水速率呈顯著負相關(guān), 早熟品種生理成熟前、后籽粒脫水速率均較快, 收獲期含水率較低; 晚熟品種生理成熟前、后籽粒脫水速率均較慢, 收獲期含水率較高。籽粒生理成熟前脫水速率與生理成熟后脫水速率之間顯著正相關(guān), 即生理成熟前籽粒脫水速率較快的品種, 生理成熟后脫水速率也較快, 但是存在特例品種, 在進行籽??焖倜撍贩N的選育和篩選時應(yīng)引起關(guān)注。
[1] Borrás L, Gambín B L. Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach., 2010, 118: 1–12.
[2] Brooking I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying., 1990, 23: 55–68.
[3] Gambín B L, Borrás L, Otegui M E. Kernel water relations and duration of grain filling in maize temperate hybrids., 2007, 101: 1–9.
[4] Sala R G, Andrade F H, Westgate M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling., 2007, 47: 711–716.
[5] Sala R G, Westgate M E, Andrade F H. Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize kernels., 2007, 101: 19–25.
[6] 李璐璐, 明博, 高尚, 謝瑞芝, 侯鵬, 王克如, 李少昆. 夏玉米籽粒脫水特性及與灌漿特性的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2018, 51: 1878–1889. Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling., 2018, 51: 1878–1889 (in Chinese with English abstract).
[7] 萬澤花, 任佰朝, 趙斌, 劉鵬, 張吉旺. 不同熟期夏玉米品種籽粒灌漿脫水特性和激素含量變化. 作物學(xué)報, 2019, 45: 1446–1453. Wan Z H, Ren B Z, Zhao B, Liu P, Zhang J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities., 2019, 45: 1446–1453 (in Chinese with English abstract).
[8] 荊彥平. 小麥和玉米穎果的生長及胚乳細胞的發(fā)育. 揚州大學(xué)碩士學(xué)位論文, 江蘇揚州, 2014. Jing Y P. The Caryopsis Growth and the Endosperm Cell Deve-lopment in Wheat and Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[9] Henderson S M, Perry R L. Agricultural Process Engineering. New York: John Wiley & Sons, Inc. 1955. pp 277–287.
[10] Van Ee G R, Kline G L. CORNSIM: a corn production model for central Iowa., 1990, 33: 757–763.
[11] Piggott S D. Simulation of Corn in-Field Dry Down. MS Thesis of Michigan State University, Michigan, America, 2010.
[12] Maiorano A, Fanchini D, Donatelli M.MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels., 2014, 59: 86–95.
[13] 王金濤, 董心亮, 肖宇, 劉青松, 張冬梅, 韓金玲, 劉毅, 高廣瑞, 劉占卯, 孫宏勇. 基于擴散理論的華北春玉米生理成熟后籽粒脫水過程分析. 中國農(nóng)業(yè)生態(tài)學(xué)報, 2020, 28: 545–557. Wang J T, Dong X L, Xiao Y, Liu Q S, Zhang D M, Han J L, Liu Y, Gao G D, Liu Z M, Sun H Y. Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China., 2020, 28: 545–557 (in Chinese with English abstract).
[14] Gao S, Ming B, Li L L, Yin X B, Xue J, Wang K R, Xie R Z, Li S K. Relationship and distribution of in-field dry-down and equilibrium in maize grain moisture content., 2021, 304/305: 108409.
[15] Baron V S, Daynard T B. Factors affecting grain dry-down in early-maturing European and Canadian corn hybrids., 1984, 64: 465–474.
[16] Mi?evi? D, Alexander D E, Dumanovi? J, Kere?ki B, Ratkovi? S. Grain moisture loss rate of high-oil and standard-oil maize hybrids., 1988, 80: 841–845.
[17] Newton S D, Eagles H A. Development traits affecting time to low ear moisture in maize., 1991, 106: 58–67.
[18] Yang J, Carena M J, Uphaus J. Area under the dry down curve (AUDDC): a method to evaluate rate of dry down in maize., 2010, 50: 2347–2354.
[19] 張亞軍, 張林, 周艷春, 王振華. 玉米雜交種生理成熟后子粒田間自然脫水速率差異分析. 作物雜志, 2010, (2): 58–61. Zhang Y J, Zhang L, Zhou Y C, Wang Z H. Analysis of dehydration rate after physiological maturity in maize hybrids., 2010, (2): 58–61 (in Chinese with English abstract).
[20] 李德新, 宮秀杰, 錢春榮. 玉米籽粒灌漿及脫水速率品種差異與相關(guān)分析. 中國農(nóng)學(xué)通報, 2011, 27(27): 92–97. Li D X, Gong X J, Qian C R. Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize., 2011, 27(27): 92–97 (in Chinese with English abstract).
[21] 王克如, 李少昆. 玉米籽粒脫水速率影響因素分析. 中國農(nóng)業(yè)科學(xué), 2017, 50: 2027–2035. Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids., 2017, 50: 2027–2035 (in Chinese with English abstract).
[22] Hillson M T, Penny L H. Dry matter accumulation and moisture loss during maturation of corn grain., 1965, 57: 150–153.
[23] Hunter R B, Mortimore G, Gerrish E E, Kannenberg L W. Field drying of flint and dent endosperm maize., 1979, 19: 401–402.
[24] 李璐璐, 謝瑞芝, 范盼盼, 雷曉鵬, 王克如, 侯鵬, 李少昆. 鄭單958與先玉335子粒脫水特征研究. 玉米科學(xué), 2016, 24(2): 57–61. Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335., 2016, 24(2): 57–61 (in Chinese with English abstract).
[25] Hallauer A R, Russell W A. Estimates of maturity and its inheritance in maize., 1962, 2: 289–294.
[26] Borrás L, Zinselmeier C, Senior M L, Westgate M E, Muszynski M G. Characterization of grain-filling patterns in diverse maize germplasm., 2009, 49: 999–1009.
[27] Prado S A, López C G, Gambín B L, Abertondo V J, Borrás L. Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73×Mo17) Syn4 population., 2013, 145: 33–43.
[28] Prado S A, López C G, Senior M L, Borrás L. The genetic architecture of maize (L.) kernel weight determination., 2014, 4: 1611–1621.
[29] 李璐璐, 謝瑞芝, 王克如, 明博, 侯鵬, 李少昆. 黃淮海夏玉米生理成熟期子粒含水率研究. 作物雜志, 2017, (2): 88–92. Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai Region., 2017, (2): 88–92 (in Chinese with English abstract).
[30] 張立國, 范騏驥, 陳喜昌, 李波, 張宇, 修麗麗. 玉米生理成熟后籽粒脫水速率與主要農(nóng)藝性狀的相關(guān)分析. 黑龍江農(nóng)業(yè)科學(xué), 2012, (3): 1–5. Zhang L G, Fan Q J, Chen X C, Li B, Zhang Z, Xiu L L. Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity., 2012, (3): 1–5 (in Chinese with English abstract).
[31] 張立國, 張林, 管春云, 金益, 王振華, 任曉亮, 宮紀娟. 玉米生理成熟后籽粒脫水速率與品質(zhì)性狀的相關(guān)分析. 東北農(nóng)業(yè)大學(xué)學(xué)報, 2007, 38: 582–585. Zhang L G, Zhang L, Guan C Y, Jin Y, Wang Z H, Ren X L, Gong J J. Correlation analysis on dry-down rate and quality traits in corn after physiological maturity., 2007, 38: 582–585 (in Chinese with English abstract).
[32] 李淑芳, 張春宵, 路明, 劉文國, 李曉輝. 玉米籽粒自然脫水速率研究進展. 分子植物育種, 2014, 12: 825–829. Li S F, Zhang C X, Lu M, Liu W G, Li X H. Research development of kernel dehydration rate in maize., 2014, 12: 825–829 (in Chinese with English abstract).
[33] 雷蕾, 王威振, 方偉, 張子學(xué), 劉正, 李文陽. 影響夏玉米生理成熟后子粒脫水的相關(guān)因素分析. 玉米科學(xué), 2016, 24(3): 103–109. Lei L, Wang W Z, Fang W, Zhang Z X, Liu Z, Li W Y. Analysis of factors affecting the kernel dehydrating after physiological mature in summer maize., 2016, 24(3): 103–109 (in Chinese with English abstract).
[34] 代力強, 吳律, 董青松, 吳楠, 張卓, 王丕武. 玉米生理成熟后子粒自然脫水速率的遺傳變異與相關(guān)分析. 吉林農(nóng)業(yè)大學(xué)學(xué)報, 2016, 38: 261–265. Dai L Q, Wu L, Dong Q S, Wu N, Zhang Z, Wang P W. Analysis of genetic variation and correlation of dehydration rate of maize after physiological maturity., 2016, 38: 261–265 (in Chinese with English abstract).
[35] Gambín B L, Borrás L, Otegui M E. Source-sink relations and kernel weight differences in maize temperate hybrids., 2006, 95: 316–326.
[36] 任佰朝, 高飛, 魏玉君, 董樹亭, 趙斌, 劉鵬, 張吉旺. 冬小麥-夏玉米周年生產(chǎn)條件下夏玉米的適宜熟期與積溫需求特性. 作物學(xué)報, 2018, 44: 137–143. Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat–maize double cropping system., 2018, 44: 137–143 (in Chinese with English abstract).
[37] Troyer A F, Ambrose W B. Plant characteristics affecting field drying rate of ear corn., 1971, 11: 529–531.
[38] 呂香玲, 蘭進好, 張寶石. 玉米果穗脫水速率的研究. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2006, 34(2): 48–52. Lyu X L, Lan J H, Zhang B S. Study on ear moisture loss rate in maize.(Nat Sci Edn), 2006, 34(2): 48–52 (in Chinese with English abstract).
[39] 譚福忠, 韓翠波, 鄒雙利, 劉振江, 籍依安. 極早熟玉米品種籽粒脫水特性的初步研究. 中國農(nóng)學(xué)通報, 2008, 24(7): 161–168. Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A. Elementary study on kernel dry-down traits in earliest-maturity maize hybrid., 2008, 24(7): 161–168 (in Chinese with English abstract).
[40] Crane P L, Miles S R, Newman J E. Factors associated with varietal differences in rate of field drying in corn., 1959, 51: 318–320.
[41] Cross H Z. A selection procedure for ear drying-rates in maize., 1985, 34: 409–418.
[42] Cavalieri A J, Smith O S. Grain filling and field drying of a set of maize hybrids released from 1930 to 1982., 1985, 25: 856–860.
[43] Cross H Z, Kabir K M. Evaluation of field dry-down rates in early maize., 1989, 29: 54–58.
[44] 孫生林, 張樹光, 薛繼生, 張?zhí)煊? 高樹仁, 向春陽. 玉米粒含水量與果穗性狀相關(guān)性的研究. 黑龍江八一農(nóng)墾大學(xué)學(xué)報, 1993, 7(1): 12–17. Sun S L, Zhang S G, Xue J S, Zhang T Y, Gao S R, Xiang C Y. Study on correlation between kernel dehydration and ear characters of maize., 1993, 7(1): 12–17 (in Chinese with English abstract).
[45] 張樹光, 馮學(xué)民, 高樹仁, 孫生林. 玉米成熟期籽粒含水量與果穗性狀的關(guān)系. 中國農(nóng)學(xué)通報, 1994, 10(2): 15–17. Zhang S G, Feng X M, Gao S R, Sun S L. Study on kernel moisture content and ear characters of maize hybrids with different maturity time., 1994, 10(2): 15–17 (in Chinese with English abstract).
[46] 張春榮, 岳競之, 張莉, 郜永強, 孫迷平. 玉米子粒含水量與穗部性狀的相關(guān)分析. 玉米科學(xué), 2007, 15(1): 59–61. Zhang C R, Yue J Z, Zhang L, Gao Y Q, Sun J P. Correlation analysis of kernel water content and ear characteristics of maize., 2007, 15(1): 59–61 (in Chinese with English abstract).
[47] 閆淑琴, 蘇俊, 李春霞, 龔士琛, 宋錫章, 李國良, 扈光輝, 王明泉, 賁利. 玉米籽粒灌漿, 脫水速率的相關(guān)與通徑分析. 黑龍江農(nóng)業(yè)科學(xué), 2007, (4): 1–4. Yan S Q, Su J, Li C X, Gong S C, Song X Z, Li G L, Hu G H, Wang M Q, Ben L. Correlation analysis of dry-down and grain filling rate in maize., 2007, (4): 1–4 (in Chinese with English abstract).
[48] 張林, 張寶石, 王霞, 王振華. 玉米收獲期籽粒含水量與主要農(nóng)藝性狀相關(guān)分析. 東北農(nóng)業(yè)大學(xué)學(xué)報, 2009, 40(10): 9–12. Zhang L, Zhang B S, Wang X, Wang Z H. Correlation analysis of agronomic characters and grain moisture in maize harvest time., 2009, 40(10): 9–12 (in Chinese with English abstract).
[49] 李璐璐, 明博, 謝瑞芝, 王克如, 侯鵬, 李少昆. 玉米品種穗部性狀差異及其對籽粒脫水的影響. 中國農(nóng)業(yè)科學(xué), 2018, 51: 1855–1867. Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Differences of ear characters in maize and their effects on grain dehydration., 2018, 51: 1855–1867 (in Chinese with English abstract).
Characteristic difference in grain in-field drydown between maize cultivars with various maturation
LI Lu-Lu1,2,3, MING Bo1,*, GAO Shang1, XIE Rui-Zhi1, WANG Ke-Ru1, HOU Peng1, XUE Jun1, and LI Shao-Kun1,*
1Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;2Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, Hainan, China;3Hainan Yazhou Bay Seed Laboratory, Sanya 572025, Hainan, China
The grain moisture concentration at harvest stage varies vastly among maize cultivars with various maturities, which is an important factor affecting mechanical grain harvesting and grain quality. Differences in maturation result in various environmental conditions for grain drying in the field, thus increasing the difficulty of comparing the characteristics of grain dehydration between cultivars. Maize cultivars with different maturities were seeded eight times at 10-day intervals from early spring to late summer in 2018 and 2019, supplying the different environmental conditions for grain in-field drying. The dynamics of grain moisture concentration were measured for all cultivars to analyze varietal differences in characterization of grain in-field drydown. Grain moisture concentration at harvest was positively correlated to growth period (= 0.810*, 2018;= 0.912**, 2019). Usually, the early-maturing cultivars had lower moisture concentration at harvest stage than the late-maturing cultivars. Grain moisture concentration at physiological maturity was negatively correlated to grain filling period (= –0.484**). It was higher for early-maturing cultivars than late-maturing cultivars. Grain moisture loss rates of pre- (= –0.655**) and post-maturity (= –0.492**) were both inversely associated with the growth period, and were faster for early- than late-maturing cultivars. Furthermore, there was a significantly positive correlation between the grain moisture loss rate of pre-maturity and post-maturity (= 0.466**). Overall, the cultivars with high moisture loss rate before maturity declined moisture quickly after maturity, while there was the particular cultivar with high moisture loss rate before maturity but low moisture loss rate after maturity. Duration of growth period affected grain dehydration rate. Generally, compared to late-maturing cultivar, grain of early-maturing cultivar had faster drying rates of pre- and post-maturity and lower moisture concentration at harvest stage. However, there was the noticeable case of particular cultivar when breeding and screening maize with rapid grain dehydration.
maize; growth period; grain; moisture concentration; moisture loss rate
10.3724/SP.J.1006.2023.23043
本研究由國家自然科學(xué)基金項目(31971849), 財政部和農(nóng)業(yè)農(nóng)村部國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-02-25)和中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新工程項目(CAAS-ZDRW202004)資助。
This study was supported by the National Natural Science Foundation of China (31971849), the China Agriculture Research System of MOF and MARA (CARS-02-25), and the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202004).
李少昆, E-mail: lishaokun@caas.cn; 明博, E-mail: mingbo@caas.cn,Tel: 010-82108891
E-mail: lilulu19910818@163.com
2022-05-19;
2022-10-10;
2022-10-18.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20221017.1606.012.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).