遲聰聰 線佳榮 白飛飛 屈盼盼 許馨 張丹潔 徐星根 侯瀟雨 任蔣雪
摘要:SiO2因其優(yōu)異的光學(xué)性能常被用于組裝光子晶體,當(dāng)前單分散二氧化硅光子晶體結(jié)構(gòu)色的研究比較成熟,但寬粒徑分布的SiO2基光子晶體方面的報(bào)道較少.本研究采用改進(jìn)的Stber法制備出粒徑呈正態(tài)分布的SiO2(450~650 nm),通過(guò)共混澆注自組裝法,在SiO2微球間隙引入具有柔性大分子鏈的聚乙烯醇(PVA),在微球表面引入具有強(qiáng)極性基團(tuán)的聚乙烯吡咯烷酮(PVP),分別增強(qiáng)薄膜的柔韌性和微球組裝的有序性.研究發(fā)現(xiàn),0.3% SiO2水分散液與8% PVA水溶液以溶液質(zhì)量比為2∶1混合時(shí),薄膜完整性和微球自組裝有序性最佳.當(dāng)PVP用量為1.75%時(shí),薄膜的虹彩效果最佳.本研究所制備的光變薄膜表面平整、力學(xué)性能較好,大小微球非緊密交替排列,形成不同的光子禁帶,在點(diǎn)光源激發(fā)下呈高飽和度虹彩色,在自然光下無(wú)結(jié)構(gòu)色,透明度高,拓寬了其在光學(xué)防偽、光學(xué)加密和裝飾等領(lǐng)域的應(yīng)用潛力.
關(guān)鍵詞:結(jié)構(gòu)色; 納米二氧化硅; 虹彩膜
中圖分類號(hào):TB321文獻(xiàn)標(biāo)志碼: A
Design and characterization of nano-SiO2 based iridescent films
CHI Cong-cong XIAN Jia-rong BAI Fei-fei QU Pan-pan XU Xin
ZHANG Dan-jie XU Xing-gen HOU Xiao-yu REN Jiang-xue(1.College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Paper-based Functional Materials of China National Light Industry, Shaanxi University of Science &Technology, Xi′an 710021, China; 2.Wuhan China Star Optoelectronics Technology Co., Ltd., Wuhan 330006, China)
Abstract:SiO2has been widely used in the assembly of photonic crystals due to its excellent optical properties.Currently,many studies have been focused on the structural color of monodispersed silica photonic crystals,yet there are few reports on the poly-dispersed ones.In this study,SiO2particles (450~650 nm) with normal size distribution was prepared by the improved St?ber method.Pouring self-assembly method was used for the film fabrication.Polyvinyl alcohol (PVA) with flexible macromolecular chains was introduced into the gap of SiO2 microspheres,and polyvinylpyrrolidone (PVP) with strong polar groups was introduced into the surface of the microspheres to enhanced film flexibility and better orderliness respectively.It was found that integral film is shown while the mass ratio of 0.3% SiO2to 8% PVA is 2∶1.Best iridescent film is shown at the PVP dosage of 1.75%.The film fabricated in this paper has flat surface and good mechanical properties.The large and small silica microspheres are arranged alternately to form different photonic band gap,which results in iridescent color under point light,while colorless and transparent under natural light.The research results will provide potential application in optical anti-counterfeiting,optical encryption and decoration,et al.
Key words:structural color; nano silica; iridescent film
0引言
膠體光子晶體常通過(guò)納米微元以自組裝方式形成,這類材料的最主要優(yōu)勢(shì)是可以產(chǎn)生結(jié)構(gòu)色[1,2].當(dāng)光波在其中傳播時(shí),光子晶體在周期性介質(zhì)的調(diào)控下產(chǎn)生光子帶隙(導(dǎo)帶和禁帶)[3,4],處在禁帶頻率內(nèi)的光被禁止傳播,而其余頻率的光被反射或透射形成結(jié)構(gòu)色[5].與傳統(tǒng)色素色不同,結(jié)構(gòu)色可通過(guò)調(diào)節(jié)微觀結(jié)構(gòu)來(lái)改變顏色[6],并且具有色彩明亮、永不褪色、綠色環(huán)保等優(yōu)勢(shì)[7],因此在裝飾、防偽、傳感、顯示器、光開(kāi)關(guān)等方面具有潛在的應(yīng)用價(jià)值[8].
SiO2制備工藝簡(jiǎn)單,且具有優(yōu)異的光學(xué)特性,被廣泛用于光子晶體的有序自組裝[9],但因微球之間的不連續(xù)性導(dǎo)致力學(xué)性能較差[10].Li等[11]和Inci等[12]分別將聚氨酯丙烯酸酯(PUA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)通過(guò)毛細(xì)管作用力滲透到SiO2光子晶體的縫隙中,以提高薄膜的耐彎折性能.Liu等[13]制備了聚多巴胺包覆的SiO2納米顆粒(PDA@SiO2),通過(guò)堿蒸汽處理加速PDA殼層間的氧化自聚合,在一定程度上提高了材料的強(qiáng)度與耐久性.然而,上述方法均存在操作復(fù)雜的問(wèn)題.
SiO2光子晶體常采用垂直沉積法[14]、澆注沉積法[15]、Langmuir-Blodgett法[16]、旋涂法[17]、模板定向法[18]等進(jìn)行自組裝.其中澆注沉積法是將膠體溶液澆注在培養(yǎng)皿中,利用重力和蒸發(fā)誘導(dǎo)力作用使相互排斥的SiO2微球有序沉積在基材上,操作較簡(jiǎn)單,但對(duì)膠體粒子的分散性及尺寸要求較高[19].若尺寸過(guò)小(<300nm),粒子因布朗運(yùn)動(dòng)而難以沉降;尺寸過(guò)大(>550 nm)時(shí),因重力作用沉降速度過(guò)快,難以形成有序結(jié)構(gòu)[20].因此,有必要通過(guò)誘導(dǎo)力來(lái)提高自組裝效果.Chung等[21]利用膠體粒子表面的靜電力,通過(guò)外加電場(chǎng)力來(lái)調(diào)節(jié)過(guò)大或過(guò)小粒子的沉降速度.Liu等[22]在Fe3O4磁性納米顆粒(Fe3O4-MnP)表面包覆SiO2,形成Fe3O4@SiO2微球,在外加磁場(chǎng)作用下,微球因偶極-偶極引力形成納米鏈結(jié)構(gòu),并最終在垂直磁場(chǎng)線方向上沉積,然而該方法操作相對(duì)復(fù)雜.
本研究通過(guò)在多分散 SiO2微球間隙中引入具有柔性大分子鏈的聚乙烯醇(PVA),在微球表面引入具有強(qiáng)極性基團(tuán)的聚乙烯吡咯烷酮(PVP),分別增強(qiáng)薄膜的柔韌性和微球組裝的有序性,構(gòu)筑具有光激發(fā)高飽和度的柔性虹彩薄膜.不同尺寸的SiO2微球非緊密交替排列,在自然光下無(wú)結(jié)構(gòu)色,透明度高,在點(diǎn)光源下呈現(xiàn)高飽和度虹彩效果.本研究可為納米二氧化硅在光學(xué)防偽、加密和裝飾等領(lǐng)域的應(yīng)用提供指導(dǎo)與參考.
1實(shí)驗(yàn)部分
1.1實(shí)驗(yàn)原料
氨水(NH3·H2O),分析純,購(gòu)自天津市大茂化學(xué)試劑廠;正硅酸乙酯(TEOS)、聚乙烯醇1799型([-CH2CHOH-]n)、聚乙烯吡咯烷酮((C6H9NO)n),均為分析純,由阿拉丁試劑有限公司提供.
1.2實(shí)驗(yàn)方法
1.2.1粒徑正態(tài)分布型SiO2微球的制備
首先,將無(wú)水乙醇160 mL、去離子水33 mL和一定量氨水(28%)混合后,加入一定量正硅酸乙酯(TEOS),60 ℃下低轉(zhuǎn)速反應(yīng)10 h,反應(yīng)后生成種子溶液 A.其次,混合無(wú)水乙醇160 mL、去離子水30 mL和氨水(28%)30 mL后,滴加種子溶液 A,得到反應(yīng)溶液B.再次,在水中按一定比例加入無(wú)水乙醇和氨水,形成反應(yīng)溶液C,向反應(yīng)溶液B中雙向滴加TEOS 20 mL和溶液C 20 mL,28 ℃下低轉(zhuǎn)速持續(xù)反應(yīng)5 h,反應(yīng)后得到溶液D.最后,將溶液D離心后用無(wú)水乙醇清洗,重復(fù)3次后置于75 ℃烘箱中烘干,再用研缽充分研磨,即可獲得多分散納米SiO2粉末.
1.2.2SiO2光子晶體的制備
配制0.3%(w/w)的SiO2無(wú)水乙醇分散液,超聲30 min后倒入玻璃培養(yǎng)皿,然后垂直插入處理過(guò)的潔凈載玻片,45 ℃下蒸發(fā)誘導(dǎo)自組裝,干燥后得到SiO2光子晶體涂層.
1.2.3SiO2基虹彩膜的制備
取4 g PVA于46 g去離子水中,升溫至90 ℃使PVA完全溶解至溶液澄清透明,制備得8%(w/w)的PVA溶液;配制0.3%(w/w)的SiO2水分散液;配制5%(w/w)的PVP水溶液;SiO2分散液、PVA溶液、PVP溶液按不同質(zhì)量比共混,澆注在聚苯乙烯培養(yǎng)皿中,45 ℃下蒸發(fā)誘導(dǎo)自組裝,干燥后得到SiO2光子晶體薄膜.
1.3分析表征
微觀結(jié)構(gòu)分析用掃描電子顯微鏡(SEM,日立,Regulus 8100),對(duì)薄膜材料表面噴金90 s后觀察其形貌;采用激光粒度分析儀(英國(guó) Malvern ,ZS90)分析SiO2粒徑分布,待測(cè)試樣為SiO2在無(wú)水乙醇中(0.3%)的超聲分散液;試樣的透射光譜分析用紫外-可見(jiàn)-近紅外分光光度計(jì)(UV-Vis-NIR,安捷倫,Cary-5000),掃描波長(zhǎng)范圍為200~800 nm;采用超景深三維數(shù)字顯微鏡(浩視,KH8700),測(cè)試薄膜的表觀形貌與平整度,選擇100倍鏡頭觀察薄膜的二維表面圖,選擇800倍鏡頭觀察薄膜三維表面圖;采用愛(ài)色麗分光密度計(jì)(美國(guó)愛(ài)色麗,Exact)且自搭建簡(jiǎn)易裝置,在不同角度光源照射下,測(cè)量薄膜的反射光譜,掃描波長(zhǎng)范圍為400~700 nm;采用萬(wàn)能試驗(yàn)機(jī)(高鐵科技股份有限公司,AI-7000-NGD)對(duì)薄膜的力學(xué)性能進(jìn)行測(cè)試,試樣尺寸30 mm×10 mm,拉伸速率參數(shù)為10 mm/min.
2結(jié)果與討論
2.1SiO2光子晶體的微觀結(jié)構(gòu)
SiO2垂直自組裝形成光子晶體涂層,從其SEM圖(如圖1(a)所示)可以看出,SiO2微球呈規(guī)則球形,不同粒徑二氧化硅微球大小交替排列,形成不同的光子帶隙,在點(diǎn)光源下呈絢麗的虹彩色(如圖1(b)所示),具有可見(jiàn)光范圍內(nèi)的所有顏色,且隨觀察角度的變化而呈現(xiàn)顏色動(dòng)態(tài)變化的效果.SiO2的粒徑分布如圖1(c)所示,粒徑分布范圍450~650 nm,平均粒徑為600 nm.
2.2PVA用量對(duì)成膜性的影響
將1 g SiO2水分散液(0.3%)分別與不同質(zhì)量PVA溶液(8%)共混,澆注成膜效果如圖2和表1所示.可以看出,隨著SiO2/PVA質(zhì)量比的增加(如圖2(a)~(f)所示),薄膜完整度與表面平整度變差,成膜時(shí)間減少,薄膜厚度減小.當(dāng)質(zhì)量比由4∶1降為2∶1時(shí),薄膜完整度較好,綜合成膜性和成本因素,選取此數(shù)值為成膜最佳比例.
2.3SiO2用量對(duì)光變效果的影響
薄膜的虹彩效果主要由SiO2有序的微觀結(jié)構(gòu)形成,因此SiO2用量是影響虹彩膜呈色效果的重要因素之一.在確保成膜的基礎(chǔ)上(如圖2(d)所示),改變SiO2用量,在點(diǎn)光源下的成膜效果如圖3所示.其中,圖3 (a)~(d)分別對(duì)應(yīng)SiO2占總體系的質(zhì)量百分比0.1%、0.15%、0.2%、0.25%.當(dāng)SiO2用量較低時(shí)(0.1%,如圖3(a)所示),光子晶體自組裝效果較差,薄膜透明度高,局部有顏色,顯色效果差;隨著SiO2用量的增大,結(jié)構(gòu)色逐漸增強(qiáng);當(dāng)SiO2/PVA溶液質(zhì)量比為2∶1時(shí)(0.2%,如圖3(c)所示),虹彩效果最佳;當(dāng)繼續(xù)增加(0.25%,如圖3(d)所示)時(shí),因SiO2團(tuán)聚現(xiàn)象增多,薄膜整體泛白,虹彩色飽和度下降.
透光率是薄膜的重要指標(biāo)之一,所制備薄膜的透光率曲線如圖4所示.由圖4可以看出,在可見(jiàn)光范圍內(nèi),SiO2/PVA溶液質(zhì)量比為1∶2時(shí),膜的透光率最高,約為93%;質(zhì)量比為1∶1時(shí),透光率約90%;質(zhì)量比為2∶1時(shí),透光率為86%左右;質(zhì)量比為3∶1時(shí),透光率最低,約為80%.上述現(xiàn)象表明,隨著SiO2用量的增加,透光率逐漸減小.
綜上所述,當(dāng)SiO2/PVA溶液質(zhì)量比為2∶1時(shí),薄膜完整,SiO2自組裝效果最佳,虹彩色最佳,透光率較好,后續(xù)研究均選用該質(zhì)量比.
2.4PVP用量對(duì)薄膜的影響
2.4.1PVP對(duì)薄膜光學(xué)效果的影響
為改善SiO2在水中的分散性,加入PVP(5 wt%)作為分散劑,PVP添加前后薄膜的SEM圖及點(diǎn)光源下效果圖分別如圖5、圖6所示.可以看出,未加入PVP時(shí)(如圖5(a)、圖6(a)所示),SiO2微球排列無(wú)序,薄膜無(wú)結(jié)構(gòu)色.添加后(如圖5(b)、圖6(b)所示)微球的分散性得到提升,虹彩效果增強(qiáng).
采用超景深顯微鏡對(duì)薄膜的表觀形貌進(jìn)行表征,2D、3D圖分別如圖7、圖8所示.由2D圖可以看出,PVP添加前(如圖7(a)所示),薄膜表面亮度不均,說(shuō)明平整度較差(亮處表示凸起,暗處表示凹陷);PVP添加后(如圖7(b)所示),薄膜表面亮度均一.由3D圖可以看出,PVP添加前(如圖8(a)所示),薄膜表面極不平整,顏色跨度大,最高凸起部分可達(dá)30 μm;PVP添加后(如圖8(b)所示),顏色變化不大,說(shuō)明薄膜表面較均勻平整.綜上所述,PVP的加入可以提高薄膜表面的平整度,這主要是因?yàn)橹苯訉VP與SiO2/PVA共混,一部分PVP中的酰胺基團(tuán)與SiO2上的羥基反應(yīng)形成氫鍵,另一部分PVP中的酰胺基團(tuán)與PVA上的羥基形成氫鍵,使PVA的交聯(lián)密度變大,薄膜挺度增強(qiáng)[23].
不同PVP(5 wt%)用量下獲得SiO2/PVA/PVP膜在點(diǎn)光源下的光學(xué)效果如圖9所示.由圖9可以看出,隨著PVP用量的增加,虹彩色逐漸增強(qiáng).當(dāng)PVP用量為1.75%時(shí),薄膜的虹彩效果最佳.在此基礎(chǔ)上繼續(xù)增加PVP用量,虹彩色基本不變,綜合考慮顏色和成本,此PVP用量最佳.
薄膜的反射光譜如圖10所示.由圖10可以看出,反射光譜在450 nm處有明顯的吸收峰,600 nm處出現(xiàn)較緩和的饅頭峰.當(dāng)PVP用量由0.75%提高到2%時(shí),最大反射率由8%增加至32%,因此隨著PVP用量的增加,薄膜的反射率逐漸增強(qiáng);當(dāng)PVP的用量從0.75%升至1%時(shí),薄膜的反射率提升最多為6%,因此,PVP用量大于1%時(shí),薄膜的虹彩效果明顯增強(qiáng).當(dāng)PVP的用量從1.75%升至2%時(shí),薄膜的反射率幾乎沒(méi)變,因此當(dāng)PVP用量達(dá)1.75%時(shí),薄膜反射率趨于穩(wěn)定,與圖9結(jié)果一致.
2.4.2PVP對(duì)薄膜力學(xué)性能的影響
研究發(fā)現(xiàn),加入PVP后,膜的剛性變大,不同PVP用量下薄膜的應(yīng)力應(yīng)變曲線如圖11所示.由圖11可知,當(dāng)PVP用量從0%增至2%,薄膜的拉伸強(qiáng)度由200 MPa降至70 MPa;當(dāng)PVP用量為1.75%時(shí),拉伸強(qiáng)度為90 MPa,具有較高的機(jī)械強(qiáng)度,薄膜不容易被拉斷或折斷,且柔韌性適中.
3結(jié)論
(1)本研究對(duì)Stber法進(jìn)行改進(jìn),采用多步滴加硅源法制備正態(tài)分布型SiO2,粒徑分布范圍為450~650 nm,平均粒徑600 nm.
(2)以SiO2的乙醇分散液通過(guò)垂直自組裝法獲得光子晶體薄膜,點(diǎn)光源照射下具有高飽和度的虹彩色.
(3)以SiO2的水分散液進(jìn)行澆注沉積自組裝制備光子晶體薄膜,探究了SiO2、PVA、PVP用量對(duì)復(fù)合膜的影響.研究發(fā)現(xiàn),PVA用量的增加有助于改善薄膜的成膜性,SiO2用量太多或太少均會(huì)導(dǎo)致虹彩色飽和度降低,PVP的加入有助于增強(qiáng)薄膜虹彩色,但柔韌性變差.
(4)SiO2/PVA/PVP復(fù)合薄膜的優(yōu)化條件為:SiO2∶PVA溶液質(zhì)量比2∶1、SiO2用量0.2%、PVP用量1.75%,此時(shí)薄膜成膜性、虹彩效果和柔韌性綜合最佳.薄膜的點(diǎn)光源激發(fā)高飽和度虹彩特性,拓寬了其在光學(xué)防偽、光學(xué)加密和裝飾等領(lǐng)域的應(yīng)用潛力.
參考文獻(xiàn)
[1] Daqiqeh Rezaei S,Dong Z,You En Chan J,et al.Nanophotonic structural color[J].ACS Photonics,2021,8(1):18-33.
[2] Hong W,Yuan Z,Chen X.Structural color materials for optical anticounterfeiting[J].Small,2020,16(16):1 907 626.
[3] Hou K,Ali W,Lv J,et al.Optically active inverse photonic crystals[J].Journal of the American Chemical Society,2018,140(48):16 446-16 449.
[4] Suirong He,Qing He,Lianfu Wei.Atomic-type photonic crystals with adjustable band gaps[J].Optics Express,2021,29(26):43 148-43 163.
[5] Fengxiang Chen,Ya Huang,Run Li,et al.Bio-inspired structural colors and their applications[J].Chemical Communications,2021,57(99):13 448-13 464.
[6] Yuanjin Zhao,Zhuoying Xie,Hongcheng Gu,et al.Bio-inspired variable structural color materials[J].Chemical Society Reviews,2012,41(8):3 297-3 317.
[7] Hongkyu Eoh,Youngdoo Jung,Chanho Park,et al.Photonic crystal palette of binary block copolymer blends for full visible structural color encryption[J].Advanced Functional Materials,2022,32(1):2 103 697.
[8] Shuzhen Cui,Lang Qin,Xiaojun Liu,et al.Programmable coloration and patterning on reconfigurable chiral photonic paper[J].Advanced Optical Materials,2022,10(5):2 102 108.
[9] Junlong Liao,Changqing Ye,Jie Guo,et al.3D-printable colloidal photonic crystals[J].Materials Today,2022,56:29-41.
[10] Gun Ho Lee,Sang Hoon Han,Jong Bin Kim,et al.Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation[J].Chemistry of Materials,2019,31(19):8 154-8 162.
[11] Yin Li,Xiaohui Wang,Mingan Hu,et al.Patterned SiO2/polyurethane acrylate inverse opal photonic crystals with high color saturation and tough mechanical strength[J].Langmuir,2019,35(44):14 282-14 290.
[12] Ezgi Inci,Gokhan Topcu,Mustafa M.Demir.Colloidal films of SiO2 in elastomeric polyacrylates by photopolymerization:A strain sensor application[J].Sensors and Actuators B:Chemical,2020,305:127 452.
[13] Panmiao Liu,Jialun Chen,Zexi Zhang,et al.Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J].Nanoscale,2018,10(8):3 673-3 679.
[14] 遲聰聰,任超男,屈盼盼,等.納米二氧化硅的可控制備及其光子晶體自組裝[J].陜西科技大學(xué)學(xué)報(bào),2021,39(1):117-125.
[15] 遲聰聰,白飛飛,任超男,等.一種光變涂層及其制備方法[P].中國(guó)專利:CN113000340A,2021-06-22.
[16] Kunihiko Muramatsu,Masashi Takahashi,Kazuo Tajima,et al.Two-dimensional assemblies of colloidal SiO2 and TiO2 particles prepared by the langmuir-blodgett technique[J].Journal of Colloid and Interface Science,2001,242(1):127-132.
[17] Wang Aijun,Chen Shengli,Dong Peng,et al.Fabrication of colloidal photonic crystals with heterostructure by spin-coating method[J].Chinese Physics Letters,2009,26(2):024 210.
[18] I Lee,H Zheng,M F Rubner,et al.Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces[J].Advanced Materials,2002,14(8):572-577.
[19] M Holgado,F(xiàn) Garcia Santamaria,A Blanco,et al.Electrophoretic deposition to control artificial opal growth[J].Langmuir,1999,15(14):4 701-4 704.
[20] Yurina Aoyama,Akiko Toyotama,Tohru Okuzono,et al.Two-dimensional nonclose-packed colloidal crystals by the electrostatic adsorption of three-dimensional charged colloidal crystals[J].Langmuir,2019,35(28):9 194-9 201.
[21] Yiwen Chung,Ingchi Leu,Jianhong Lee,et al.Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal[J].Electrochimica Acta,2009,54(13):3 677-3 682.
[22] Nan Liu,Peixi Wang,Ravikumar Ayyanu,et al.Progress on rapidly and self-assembly magnetically responsive photonic crystals with high tunability and stability[J].Frontiers in Materials,2022,9:843 097.
[23] 宮宇寧,王奇,王紅蕾,等.聚乙烯醇/聚乙烯吡咯烷酮/碘復(fù)合水凝膠的制備與性能[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2020,41(9):2 078-2 084.
【責(zé)任編輯:陳佳】