朱紅蘋 劉睿清 張憲祥 張茂申 王東升 盧云
[摘要] 目的 探討局部進展期胃上部癌患者新輔助化療(NACT)前后炎癥營養(yǎng)指標(biāo)與NACT療效的關(guān)系,并建立臨床預(yù)測模型。方法 選取2013年4月—2022年1月于我院胃腸外科接受NACT的胃上部癌患者117例,根據(jù)化療結(jié)果分為有效組與無效組,收集患者的年齡、性別、吸煙史、飲酒史、首發(fā)癥狀、腫瘤部位、腫瘤分化程度、腫瘤臨床分期、腫瘤病理類型、NACT前1周內(nèi)及NACT后1周內(nèi)的血常規(guī)結(jié)果等臨床資料,經(jīng)單因素及多因素分析后篩選出影響NACT療效的因素,進一步構(gòu)建列線圖模型并驗證該模型的性能。結(jié)果 多因素分析結(jié)果顯示,患者NACT前后的血漿中性粒細(xì)胞與淋巴細(xì)胞比值(NLR)差值(△NLR)(OR=2.043,95%CI=1.334~3.127,P<0.05)、血漿血小板與淋巴細(xì)胞比值(PLR)差值(△PLR)(OR=1.007,95%CI=1.000~1.014,P<0.05)、血清白蛋白(Alb)差值(△Alb)(OR=0.936,95%CI=0.878~0.997,P<0.05)以及T分期(OR=4.044,95%CI=1.128~14.501,P<0.05)均為影響NACT療效的獨立危險因素?;诙嘁蛩胤治鼋Y(jié)果構(gòu)建胃上部癌NACT療效列線圖預(yù)測模型,該模型受試者特征曲線下面積為0.877,繪制的校準(zhǔn)曲線及臨床決策曲線顯示校準(zhǔn)度較好且與實際結(jié)果較一致。結(jié)論 胃上部癌患者△NLR、△PLR、△Alb及T分期為影響NACT療效的獨立危險因素,胃上部癌NACT療效預(yù)測模型具有良好的預(yù)測性能和臨床應(yīng)用價值。
[關(guān)鍵詞] 胃腫瘤;慢性病指標(biāo);營養(yǎng)評價;化學(xué)療法,腫瘤,局部灌注;危險因素;回歸分析
[中圖分類號] R735.2
[文獻標(biāo)志碼] A
VALUE OF A SCORING SYSTEM BASED ON INFLAMMATORY AND NUTRITIONAL INDICATORS IN PREDICTING THE EFFICACY OF NEOADJUVANT CHEMOTHERAPY FOR UPPER GASTRIC CANCER \? ZHU Hongping, LIU Ruiqing, ZHANG Xianxiang, ZHANG Maoshen, WANG Dongsheng, LU Yun? (Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266555, China)
[ABSTRACT] Objective To investigate the association of inflammatory and nutritional indicators with the efficacy of neoadjuvant chemotherapy (NACT) in patients with upper gastric cancer before and after NACT, and to establish a clinical predictive model. Methods A total of 117 patients with upper gastric cancer who underwent NACT in Department of Gastroenterology in our hospital from April 2013 to January 2022 were enrolled, and according to the efficacy of chemotherapy, they were divided into effective group and ineffective group. Related clinical data were collected, such as age, sex, smoking history, drinking history, initial symptoms, tumor location, degree of tumor differentiation, tumor stage, tumor pathological type, and routine blood test results within one week before NACT and within one week after NACT. Univariate and multivariate analyses were performed to identify the influencing factors for the efficacy of NACT, and then a nomogram model was established and validated. ResultsThe multivariate analysis showed that the difference in plasma neutrophil-to-lymphocyte ratio before and after NACT (△NLR) (OR=2.043,95%CI=1.334-3.127,P<0.05), the difference in plasma platelet-to-lymphocyte ratio before and after NACT (△PLR) (OR=1.007,95%CI=1.000-1.014,P<0.05), the difference in serum albumin before and after NACT (△Alb) (OR=0.936,95%CI=0.878-0.997,P<0.05), and T stage (OR=4.044,95%CI=1.128-14.501,P<0.05) were independent risk factors for the efficacy of NACT. A nomogram predictive model for the efficacy of NACT in upper gastric cancer was constructed based on the results of the multivariate analysis, with an area under the ROC curve of 0.877, and the calibration curve and the clinical decision curve showed that the model had good calibration and consistency with the actual results. Conclusion △NLR, △PLR, △Alb, and T stage are independent independent risk factors for the efficacy of NACT in patients with upper gastric can-cer, and the predictive model for the efficacy of NACT for upper gastric cancer has good predictive performance and clinical application value.
[KEY WORDS] Stomach neoplasms; Chronic disease indicators; Nutrition assessment; Chemotherapy, cancer, regional perfusion; Risk factors; Regression analysis
胃癌屬于全球人群中第5大常見和第3高病死率的腫瘤[1],近年來胃上部癌發(fā)病率呈上升趨勢[2]。既往研究表明新輔助化療(NACT)可提高腫瘤根治性切除率并改善患者預(yù)后[3-4]。目前歐洲腫瘤內(nèi)科學(xué)會(ESMO)指南[5]、美國國立綜合癌癥網(wǎng)絡(luò)(NCCN)指南[6]及我國2018版《胃癌診療規(guī)范》[7]均推薦局部進展期胃癌患者采用NACT治療。
既往研究表明,中性粒細(xì)胞與淋巴細(xì)胞比值(NLR)、血小板與淋巴細(xì)胞比值(PLR)、淋巴細(xì)胞與單核細(xì)胞比值(LMR)、系統(tǒng)免疫炎癥指數(shù)(SII)及血清白蛋白(Alb)等炎癥營養(yǎng)指標(biāo)均可作為評估胃癌患者預(yù)后的標(biāo)志物[8-10]。炎癥反應(yīng)可通過多種機制導(dǎo)致腫瘤生長、侵襲和轉(zhuǎn)移[11],患者營養(yǎng)不良可導(dǎo)致腫瘤進展。既往研究顯示,炎癥營養(yǎng)指標(biāo)與腫瘤患者營養(yǎng)不良相關(guān)[12]。有研究表明第三腰椎(L3)水平橫斷面機體組成成分面積能夠反映全身營養(yǎng)狀況[13]。本研究通過探討炎癥營養(yǎng)指標(biāo)及其NACT前后差值與NACT療效的關(guān)系,構(gòu)建相關(guān)指標(biāo)預(yù)測胃上部癌NACT效果的臨床模型,旨在為醫(yī)務(wù)工作者采取相關(guān)治療措施時提供一定參考?,F(xiàn)將結(jié)果報告如下。
1 資料和方法
1.1 一般資料
選取2013年4月—2022年1月于我院胃腸外科接受NACT的胃癌患者?;颊呒{入標(biāo)準(zhǔn):①年齡18~75歲者;②經(jīng)胃鏡活檢病理檢查證實為胃上部癌者;③接受NACT治療者;④NACT前腫瘤臨床分期≥cT2或有淋巴結(jié)轉(zhuǎn)移者;⑤影像學(xué)檢查未見腫瘤遠(yuǎn)處轉(zhuǎn)移者;⑥機體其他器官功能正常者;⑦用胃癌一線化療藥物(主要包括氟尿嘧啶類、鉑類與紫杉醇類)治療者。排除標(biāo)準(zhǔn):①NACT療程<2周期者;②行NACT后未手術(shù)者;③具有血液系統(tǒng)疾病及其他有血常規(guī)異常的疾病者。
收集患者的年齡、性別、吸煙史、飲酒史、首發(fā)癥狀、腫瘤部位、腫瘤分化程度、腫瘤臨床分期、腫瘤病理類型以及NACT前1周內(nèi)、NACT后1周內(nèi)血常規(guī)指標(biāo),計算患者NACT前后NLR、PLR、LMR、SII、Alb。獲取患者NACT前1個月內(nèi)以及手術(shù)前最后一次CT平掃的L3橫斷面單幅圖像,通過sliceOmatic圖像分析軟件計算該層面機體組成成分面積(皮下脂肪、內(nèi)臟脂肪及肌肉組織面積)[14],并計算NACT前后患者L3水平橫斷面機體組成成分面積的差值。由兩位放射科專家通過CT平掃對比患者NACT前后胃上部胃壁厚度的變化,按照實體瘤的療效評價標(biāo)準(zhǔn)[15]對胃上部癌NACT療效進行準(zhǔn)確評估,評估結(jié)果分為完全緩解(CR)、部分緩解(PR)、疾病穩(wěn)定(SD)和疾病進展(PD),根據(jù)NACT治療結(jié)果將患者分為有效組(CR、PR者)和無效組(SD、PD者)。
1.2 統(tǒng)計學(xué)分析
采用SPSS 26.0統(tǒng)計學(xué)軟件進行統(tǒng)計分析,服從正態(tài)分布的計量資料以x?±s表示,組間比較采用t檢驗;計數(shù)資料以例(率)表示,組間比較采用χ2檢驗。采用多因素logistic回歸模型分析NACT療效的影響因素。使用R語言建立預(yù)測NACT療效的列線圖預(yù)測模型,并對模型效能進行評價。以P<0.05為有統(tǒng)計學(xué)差異。
2 結(jié)果
2.1 兩組患者一般資料比較
本研究共納入患者117例,其中男性患者89例,女性患者28例,60歲及以上患者76例。有效組、無效組患者腫瘤T分期及分化程度差異有顯著性(χ2=9.584、6.764,P<0.05)。見表1。
2.2 兩組患者的炎癥及營養(yǎng)指標(biāo)比較
兩組患者的NACT前后NLR差值(△NLR)、PLR差值(△PLR)以及Alb差值(△Alb)相比較,差異均具有統(tǒng)計學(xué)意義(t=-3.781~2.496,P<0.05)。見表2。
2.3 影響NACT療效的多因素logistic回歸分析
將t檢驗及χ2檢驗中P<0.05的影響因素納入多因素logistic回歸模型,分析結(jié)果顯示T分期、△NLR、△PLR和△Alb為影響NACT療效的獨立危險因素(P<0.05)。見表3。
2.4 列線圖預(yù)測模型的構(gòu)建
基于多因素logistic回歸分析結(jié)果構(gòu)建預(yù)測NACT療效的列線圖模型(圖1A);繪制列線圖預(yù)測模型的受試者特征(ROC)曲線(圖B),計算曲線下面積(AUC)為0.877,95%CI=0.812~0.941。采用Bootstrap自抽樣法對上述模型進行內(nèi)部驗證,重復(fù)抽樣1 000次,計算C-index值為0.856,表示該模型具有良好的預(yù)測價值。繪制校準(zhǔn)曲線及臨床決策曲線結(jié)果顯示,該模型校準(zhǔn)度較好,模型和實際結(jié)果具有較好的一致性,并且具有明顯正向凈收益,在預(yù)測胃上部癌NACT療效方面具有較好臨床實用性(圖1C、D)。
3 討論
近年來,全球胃上部癌發(fā)病率逐漸增高,針對胃上部癌的治療方案也逐漸個體化以及精準(zhǔn)化。目前NACT方案已經(jīng)成為局部進展期胃癌的首選治療方案[5-6],且據(jù)以往研究,針對胃上部癌的NACT治療具有良好效果[16]。隨著NACT的推廣,對其療效的預(yù)測已經(jīng)成為研究熱點。一項研究表明NLR、PLR可以作為NACT療效的獨立預(yù)測指標(biāo)[17],但也有部分學(xué)者認(rèn)為NLR和PLR對腫瘤預(yù)后預(yù)測并無意義[18]。因此,雖然關(guān)于NACT療效判斷的研究較多,但評判標(biāo)準(zhǔn)仍存在爭議。本研究綜合多數(shù)研究中納入的指標(biāo)對NACT療效預(yù)測進行探討,以期得出更準(zhǔn)確結(jié)果。
炎癥反應(yīng)可導(dǎo)致腫瘤的發(fā)生發(fā)展,機體炎癥反應(yīng)可引起外周血中性粒細(xì)胞、淋巴細(xì)胞等血細(xì)胞數(shù)量異常,并通過相關(guān)途徑導(dǎo)致腫瘤進展[6]。外周血NLR和PLR作為系統(tǒng)炎性反應(yīng)指標(biāo),已被證實與多種腫瘤的發(fā)生發(fā)展有關(guān)系[19]。因此本研究通過NACT前后NLR、LMR、SII和PLR等炎癥指標(biāo)變化預(yù)測NACT療效具有可行性。機體營養(yǎng)不良易致腫瘤進展,較差的營養(yǎng)狀態(tài)可加劇腫瘤細(xì)胞增殖和腫瘤微環(huán)境形成,最終致腫瘤發(fā)展及轉(zhuǎn)移。血清Alb及CT平掃L3水平橫斷面機體組成成分可反映患者機體營養(yǎng)狀態(tài)[14],故本研究亦將上述兩者作為反映患者NACT前后營養(yǎng)狀況的研究指標(biāo)。
本研究NACT有效組的患者NACT后NLR、PLR、LMR和SII明顯降低,反映出淋巴細(xì)胞數(shù)量的增加可能是由于NACT誘導(dǎo)致炎癥下調(diào)的原因。與炎癥標(biāo)志物相反,NACT后Alb升高,反映患者營養(yǎng)狀態(tài)得以改善。經(jīng)研究發(fā)現(xiàn),NACT前低血小板與中性粒細(xì)胞比值以及高淋巴細(xì)胞與白細(xì)胞比值都屬于NACT療效的獨立危險因素[20]。有研究顯示,NACT后NLR與淋巴細(xì)胞計數(shù)減少為化療效果的獨立危險因素[21]。此外腫瘤細(xì)胞可誘導(dǎo)血小板活化并聚集,使PLR升高,導(dǎo)致腫瘤進展。
ISHIBASHI等[21]研究顯示NACT前NLR升高為食管癌預(yù)后的獨立危險因素,KIM等[22]研究結(jié)果表明NACT前NLR升高為胃癌患者預(yù)后的獨立危險因素,MUNGAN等[23]的研究結(jié)果則顯示NACT前較高PLR和NLR與胃癌患者不良預(yù)后有關(guān)。本研究兩組患者的T分期、△NLR、△PLR以及△Alb表現(xiàn)出顯著性差異,且T分期、△NLR、△PLR和△Alb為胃上部癌NACT療效的獨立危險因素。另外,本研究關(guān)注NACT前后相關(guān)炎癥營養(yǎng)指標(biāo)的差值因素,并發(fā)現(xiàn)相關(guān)炎癥營養(yǎng)指標(biāo)差值對胃上部癌NACT療效具有預(yù)測價值,故該模型具有一定創(chuàng)新性。
本研究構(gòu)建的預(yù)測NACT療效的列線圖模型以國人臨床數(shù)據(jù)為基礎(chǔ),因此更適用于我國的胃癌NACT患者,此外既往研究中多以單一因素為基點討論胃癌NACT療效的影響因素,本研究系統(tǒng)討論了多個臨床指標(biāo),依據(jù)每個參數(shù)的權(quán)重和重要性構(gòu)建了列線圖預(yù)測模型,且血常規(guī)結(jié)果、Alb水平、腫瘤分化程度、腫瘤臨床分期等皆為臨床工作中易于獲取的實用性指標(biāo),因此本研究構(gòu)建的列線圖預(yù)測模型具有一定的實用性。本研究也存在不足之處,如樣本量偏少,且為回顧性研究,未進行外部驗證。上述不足需在后期研究中進行完善。
綜上所述,T分期、△NLR、△PLR和△Alb為胃上部癌NACT療效的獨立危險因素,基于以上因素構(gòu)建的臨床預(yù)測模型則可以準(zhǔn)確地判斷胃上部癌NACT臨床效果。
作者聲明:所有作者均參與了研究設(shè)計、論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻]
[1]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2018,68(6):394-424.
[2]LI P, JING J, LI R, et al. Upper gastrointestinal cancer in China: Spatial epidemiologic evidence from screening areas[J]. Cancer Prev Res (Phila), 2020,13(11):935-946.
[3]KUMAR CG P, MUDULY D, IMADUDDIN M, et al. P-282 Factors predicting response to neoadjuvant chemotherapy in gastric cancer[J]. Ann Oncol, 2021,32:S193.
[4]ZHU Z, GONG Y B, XU H M. Neoadjuvant therapy strategies for advanced gastric cancer:Current innovations and future challenges[J]. Chronic Dis Transl Med, 2020(3):147-157.
[5]SMYTH E C, VERHEIJ M, ALLUM W, et al. Gastric can-cer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2016,27(suppl 5):v38-v49.
[6]AJANI J A, D'AMICO T A, ALMHANNA K, et al. Gastric cancer, version 3.2016, NCCN clinical practice guidelines in onco-logy[J]. J Natl Compr Canc Netw, 2016,14(10):1286-1312.
[7]陳俊良,王風(fēng)華. 2021版CSCO胃癌診療指南轉(zhuǎn)移性胃癌更新解讀[J]. 中國腫瘤臨床, 2022,49(7):325-330.
[8]ZHANG L X, WEI Z J, XU A M, et al. Can the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be beneficial in predicting lymph node metastasis and promising prognostic markers of gastric cancer patients? Tumor maker retrospective study[J]. Int J Surg, 2018,56:320-327.
[9]LI K J, XIA X F, SU M, et al. Predictive value of lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-lymphocyte ratio (NLR) in patients with oesophageal cancer undergoing concurrent chemoradiotherapy[J]. BMC Cancer, 2019,19(1):1004.
[10]CHEN G J, WUXIAO Z J, LIANG Y, et al. Inflammation-based Glasgow prognostic score as an independent prognostic factor in patients with angioimmunoblastic T-cell lymphoma[J]. Chin Med J (Engl), 2021,134(5):579-581.
[11]SINGH N, BABY D, RAJGURU J P, et al. Inflammation and cancer[J]. Ann Afr Med, 2019,18(3):121-126.
[12]AKBOGA S A, GOKCE A, HATIPOGLU M, et al. The relationship between mortality and inflammatory markers and the systemic immune inflammatory index in patients in the intensive care unit with a pneumothorax as a complication of COVID-19 disease[J]. Ir J Med Sci, 2022,191(4):1931-1936.
[13]UOJIMA H, CHUMA M, TANAKA Y, et al. Skeletal muscle mass influences tolerability and prognosis in hepatocellular carcinoma patients treated with lenvatinib[J]. Liver Cancer, 2020,9(2):193-206.
[14]LINDQVIST C, BRISMAR T B, MAJEED A, et al. Assessment of muscle mass depletion in chronic liver disease: Dua-l-energy X-ray absorptiometry compared with computed tomography[J]. Nutrition, 2019,61:93-98.
[15]楊學(xué)寧,吳一龍. 實體瘤治療療效評價標(biāo)準(zhǔn):RECIST[J]. 循證醫(yī)學(xué), 2004,4(2):85-90,111.
[16]RAHMAN S, THOMAS B, MAYNARD N, et al. Impact of postoperative chemotherapy on survival for oesophagogastric adenocarcinoma after preoperative chemotherapy and surgery[J]. Br J Surg, 2022,109(2):227-236.
[17]TANG C, CHENG X, YU S, et al. Platelet-to-lymphocyte ratio and lymphocyte-to-white blood cell ratio predict the efficacy of neoadjuvant chemotherapy and the prognosis of locally advanced gastric cancer patients treated with the oxaliplatin and capecitabine regimen[J]. Onco Targets Ther, 2018,11:7061-7075.
[18]LOCOCO F, CHIAPPETTA M, EVANGELISTA J, et al. Role of peripheral blood markers for detecting response and predicting prognosis in patients with non-small-cell lung cancer undergoing neoadjuvant therapy and surgery[J]. Lung, 2022,200(3):393-400.
[19]HU Y P, WANG S M, DING N H, et al. Platelet/lymphocyte ratio is superior to neutrophil/lymphocyte ratio as a predictor of chemotherapy response and disease-free survival in luminal B-like (HER2-) breast cancer[J]. Clin Breast Cancer, 2020,20(4):e403-e409.
[20]TEZOL O, BOZLU G, SAGCAN F, et al. Value of neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio and red blood cell distribution width in distinguishing between reactive lymphadenopathy and lymphoma in children[J]. Bratisl Lek Listy, 2020,121(4):287-292.
[21]ISHIBASHI Y, TSUJIMOTO H, HIRAKI S, et al. Predictive value of immuno-inflammatory and nutritional measures modulated by neoadjuvant chemotherapy on the response of neoadjuvant chemotherapy and long-term outcomes in patients with esophageal cancer[J]. Oncol Lett, 2020,19(1):487-497.
[22]KIM M R, KIM A S, CHOI H I, et al. Inflammatory markers for predicting overall survival in gastric cancer patients: A systematic review and meta-analysis[J]. PLoS One, 2020,15(7):e0236445.
[23]MUNGAN I, DICLE ? B, BEKTA? ?, et al. Correction to: Does the preoperative platelet-tolymphocyte ratio and neutrophil-to-lymphocyte ratio predict morbidity after gastrectomy for gastric cancer?[J]. Mil Med Res, 2020,7(1):12.
(本文編輯 范睿心 厲建強)