国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

系數(shù)滿足單邊Lipschitz條件的隨機(jī)微分方程隨機(jī)周期解的存在唯一性及數(shù)值逼近

2023-04-29 00:44:03朱馳騁張靜
關(guān)鍵詞:張靜收稿四川大學(xué)

朱馳騁 張靜

摘要:本文研究了一類系數(shù)滿足單邊Lipschitz條件的隨機(jī)微分方程隨機(jī)周期解的存在唯一性,利用馴化Euler-Maruyama(EM)方法給出了隨機(jī)周期解的數(shù)值逼近,并證明了數(shù)值逼近在均方意義下以α∈(0,1/2)階收斂到精確解. 數(shù)值算例驗(yàn)證了理論結(jié)果.

關(guān)鍵詞:隨機(jī)周期解; 馴化Euler-Maruyama方法; 單邊Lipschitz條件;數(shù)值逼近

收稿日期: 2022-12-05

基金項(xiàng)目: 國(guó)家自然科學(xué)基金(12161029, 11701127, 11871184); 海南省自然科學(xué)基金(121RC149, 121QN227)

作者簡(jiǎn)介: 朱馳騁(1997-), 男, 浙江臺(tái)州人, 碩士研究生, 主要研究方向?yàn)殡S機(jī)微分方程. E-mail: zhu_cc0926@hainnu.edu.cn

通訊作者: 張靜. E-mail: zh_jing0820@hotmail.com

Existence, uniqueness and numerical approximation for random periodic

solutions of the SDEs with one-sided Lipschitz coefficients

ZHU Chi-Cheng, ZHANG Jing

(School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China)

In this paper, we consider the existence and uniqueness of random periodic solutions of the SDEs with coefficients satisfying the one-sided Lipschitz condition. By using the tamed Euler-Maruyama (EM)method we give a numerical approximation for the random periodic solution and reveal that the numerical approximation converges to the exact solution with an order α∈(0,1/2) in the mean square sense. Examples are given to verify the theoretical result.

Random periodic solution; Tamed Euler-Maruyama method; One-sided Lipschitz condition; Numerical approximation

(2010 MSC 65C20, 60H35)

6 Summary

We have discussed the existence, uniqueness, and numerical approximation of the random periodic solutions of the stochastic differential equations with a drift coefficient satisfying the one-sided Lipschitz condition. We researched the basic properties of the solutions, demonstrated the boundness of the moments, the time-continuity and the relationship between solution and initial condition. Since the random periodic solutions are orbital motions in an infinite time domain, the existence and uniqueness theory for random periodic solutions was obtained by using the properties of random semi-flow.

Furthermore, the tamed EM method was introduced to deduce the numerical approximation of the random periodic solution. This numerical structure can ensure that the drift coefficient is moments-bounded with the one-sided Lipschitz condition. By using the random semi-flow, we discussed the basic properties of the numerical approximation in different time domains and proved that the numerical approximation converged to its exact solution. It was proved that the numerical approximation of the random periodic solution also had the random periodic property.

Finally, we revealed that the convergence rate between the exact random periodic solution and the approximated one was α∈(0,1/2) in the mean square sense.

References:

[1]Zhao H Z, Zheng Z H. Random periodic solutions of random dynamical systems [J]. J Diff Equat, 2009, 246: 2020.

[2]Feng C R, Zhao H Z, Bo Z. Pathwise random periodic solutions of stochastic differential equations [J]. J Diff Equat, 2011, 251: 119.

[3]Chekroun M D, Simonnet E, Ghil M. Stochastic climate dynamics: random attractors and time-dependent invariant measures [J]. Physica D, 2011, 240: 1685.

[4]Franses P H. Periodicity and stochastic trends in economic time series [M]. Oxford: Oxford University Press, 1996.

[5]Poincaré H. Memoire sur les courbes definier par une equation differentiate (I)[J]. J Math Pures Appl, 1881, 7: 375.

[6]Poincaré H. Memoire sur les courbes definier par une equation differentiate (II)[J]. J Math Pures Appl, 1882, 8: 251.

[7]Poincaré H. Memoire sur les courbes definier par une equation differentiate (III)[J]. J Math Pures Appl, 1885, 1: 167.

[8]Poincaré H. Memoire sur les courbes definier par une equation differentiate (IV)[J]. J Math Pures Appl, 1886, 2: 151.

[9]Feng C R, Yu L, Zhao H Z. Numerical approximation of random periodic solutions of stochastic differential equations [J]. Z Angew Math Phys, 2017, 119: 68.

[10]Wei R, Chen C Z. Numerical approximation of stochastic Theta method for random periodic solution of stochastic differential equations [J]. Acta Math Appl Sin E, 2020, 36: 689.

[11]Hutzenthaler M, Jentzen A, Kloeden P E. Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients [J]. Ann Appl Probab, 2012, 22: 1611.

[12]Ji Y T, Yuan C G. Tamed EM scheme of neutral stochastic differential delay equations [J]. J Comput Appl Math, 2017, 326: 335.

[13]Tan L, Yuan C G. Strong convergence of a tamed theta scheme for NSDDEs with one-sided Lipschitz drift [J]. Appl Math Comput, 2018, 338: 607.

[14]Beyn W J, Isaak E, Kruse R. Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes [J]. J Sci Comput, 2016, 67: 955.

[15]Kunita H. Stochastic flows and stochastic differential equation [J]. Stoch Proc Appl, 1990, 18: 230

[16]Deng S N, Fei C, Fei W Y, et al. Tamed EM schemes for neutral stochastic differential delay equations with superlinear diffusion coefficients [J]. J Comput Appl Math, 2021, 388: 113269.

引用本文格式:

中 文: 朱馳騁, 張靜. 系數(shù)滿足單邊Lipschitz條件的隨機(jī)微分方程隨機(jī)周期解的存在唯一性及數(shù)值逼近[J]. 四川大學(xué)學(xué)報(bào): 自然科學(xué)版, 2023, 60: 061004.

英 文: Zhu C C, Zhang J. Existence, uniqueness and numerical approximation for random periodic solutions of the SDEs with one-sided Lipschitz coefficients [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 061004.

猜你喜歡
張靜收稿四川大學(xué)
四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
Self—redemption in Desire—Analysis of Desire under the Elms
百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
四川大學(xué)華西醫(yī)院
Perspectives on China′s General Medicine Education,Training,Development and Challenges
A Study of Current English Learning and Teaching for College Art Majors and a Brief Discussion of Art—based English Teaching Strategy
四川大學(xué)信息顯示研究所
液晶與顯示(2014年2期)2014-02-28 21:12:58
Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions
自然雜志(2013年2期)2013-08-21 09:34:56
中國(guó)現(xiàn)代醫(yī)生(2009年24期)2009-09-11 08:25:38
湛江市| 五家渠市| 通山县| 筠连县| 衡山县| 建瓯市| 宁化县| 富川| 金沙县| 眉山市| 咸阳市| 临江市| 邻水| 汾阳市| 泰来县| 涟水县| 天台县| 砀山县| 台州市| 沙雅县| 三原县| 雷州市| 沧州市| 松桃| 武陟县| 海兴县| 九龙坡区| 邵阳市| 喀什市| 景德镇市| 襄汾县| 东明县| 河间市| 天峨县| 兴国县| 南江县| 通海县| 丹凤县| 乐至县| 渝中区| 瑞昌市|