国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

具有質(zhì)量漲落的雙分?jǐn)?shù)階耦合振子系統(tǒng)的隨機(jī)共振

2023-04-29 15:07:11夏偉任芮彬羅懋康鄧科
關(guān)鍵詞:共振阻尼峰值

夏偉 任芮彬 羅懋康 鄧科

本文對(duì)具有質(zhì)量漲落的雙分?jǐn)?shù)階耦合振子系統(tǒng)的隨機(jī)共振(Stochastic Resonance,SR)進(jìn)行了研究.利用Shapiro-Loginov公式和Laplace變換求得系統(tǒng)輸出振幅增益(Output Amplitude Gain,OAG)的解析式后,本文研究了不同參數(shù)對(duì)OAG共振行為的影響.數(shù)值模擬結(jié)果顯示,OAG隨噪聲強(qiáng)度、信號(hào)頻率、阻尼系數(shù)的變化出現(xiàn)隨機(jī)共振.此外分?jǐn)?shù)階和耦合系數(shù)對(duì)OAG的隨機(jī)共振也有影響.

分?jǐn)?shù)階耦合振子; 質(zhì)量漲落; 隨機(jī)共振

O29A2023.021002

收稿日期: 2022-05-06

基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFA0714000)

作者簡(jiǎn)介: 夏偉(1998-), 男, 安徽合肥人, 碩士研究生, 主要研究方向?yàn)橹悄芟到y(tǒng)和數(shù)學(xué)信息技術(shù).E-mail: 1876555393@qq.com

通訊作者: 鄧科.E-mail: dk_83@126.com

Stochastic resonance of a double fractional coupled oscillator system with mass fluctuation

XIA Wei1, REN Rui-Bin2, LUO Mao-Kang1, DENG Ke1

(1.School of Mathematics, Sichuan University, Chengdu 610064, China;

2.College of Mathematics, Southwest Jiaotong University, Chengdu 611756, China)

This paper explores the stochastic resonance (SR) of a coupled fractional? oscillator system with mass fluctuation. The Shapiro-Loginov formula and Laplace transform are applied to obtain the analytical expression of the output amplitude gain (OAG) of the system, and the dependence of OAG on system parameters are studied. Numerical simulation shows that SR can be induced by? the strength of noise, signal frequercy, fractional order, damping intensity, and the fractional order and coupling parameters have an impact on the SR of OAG as well.

Fractional coupled oscillator; Mass fluctuation; Stochastic resonance

1 引 言

近年來(lái),人們發(fā)現(xiàn),在隨機(jī)非線性系統(tǒng)中當(dāng)輸入信號(hào)、噪聲以及系統(tǒng)的非線性條件之間存在某種匹配時(shí),系統(tǒng)的穩(wěn)態(tài)響應(yīng)振幅會(huì)顯著增大.這一現(xiàn)象因與傳統(tǒng)共振現(xiàn)象相似而被稱為隨機(jī)共振(Stochastic Resonance,SR)[1,2].長(zhǎng)期以來(lái),對(duì)SR現(xiàn)象的研究廣受關(guān)注,其結(jié)果也被應(yīng)用于物理、生物、工程技術(shù)等眾多領(lǐng)域[3-9].

在黏彈性介質(zhì)中,粒子的運(yùn)動(dòng)受其歷史運(yùn)動(dòng)的影響,此時(shí)用分?jǐn)?shù)階導(dǎo)數(shù)代替Langevin方程中的整數(shù)階導(dǎo)數(shù)是適當(dāng)?shù)?Soika等[10]研究了雙態(tài)隨機(jī)噪聲和三態(tài)隨機(jī)噪聲驅(qū)動(dòng)的分?jǐn)?shù)階線性Langevin方程,發(fā)現(xiàn)系統(tǒng)出現(xiàn)SR.鐘蘇川等[11]研究了一個(gè)帶有固有頻率漲落的雙分?jǐn)?shù)階Langevin方程,發(fā)現(xiàn)隨著外部信號(hào)頻率、系統(tǒng)參數(shù)和噪聲參數(shù)的變化,系統(tǒng)的輸出振幅出現(xiàn)非單調(diào)變化.

另一方面,很多系統(tǒng)是相互耦合的.蔚濤等[12]在一個(gè)雙粒子耦合的分?jǐn)?shù)階振子系統(tǒng)中引入質(zhì)量漲落,研究了系統(tǒng)的隨機(jī)共振.Vishwamittar等[13]研究了一個(gè)雙粒子耦合的雙分?jǐn)?shù)階Langevin系統(tǒng),并在系統(tǒng)固有頻率和耦合參數(shù)中考慮外噪聲的影響,發(fā)現(xiàn)系統(tǒng)固有頻率以及耦合參數(shù)的變化會(huì)使系統(tǒng)輸出振幅增益(Output Amplitude Gain,OAG)出現(xiàn)SR.值得注意的是,粒子往往具有一定的吸附能力,會(huì)隨機(jī)地吸附周圍的粒子或分解出粒子,導(dǎo)致其質(zhì)量的波動(dòng)[14,15].Gitterman和Shapiro[16]在線性振子中引入質(zhì)量漲落來(lái)模擬隨機(jī)質(zhì)量,并發(fā)現(xiàn)了SR現(xiàn)象.

據(jù)我們了解,現(xiàn)有的研究大多考慮單分?jǐn)?shù)階Langevin方程中質(zhì)量漲落[17,18],阻尼漲落[19,20],固有頻率漲落[21-23]以及是否存在時(shí)延等[24-27],雙分?jǐn)?shù)階耦合振子系統(tǒng)中當(dāng)粒子出現(xiàn)質(zhì)量漲落的演化行為還沒(méi)有被研究過(guò).本文基于雙分?jǐn)?shù)階Langevin方程來(lái)構(gòu)建雙粒子耦合系統(tǒng)[28,29]存在質(zhì)量波動(dòng)的研究其共振行為.

本文結(jié)構(gòu)如下:第二節(jié)介紹模型并求解系統(tǒng)的OAG.在第三節(jié)中我們進(jìn)行模擬仿真,觀察隨機(jī)共振現(xiàn)象. 第四節(jié)為總結(jié).

3 數(shù)值結(jié)果與分析

3.1 隨機(jī)噪聲強(qiáng)度對(duì)OAG的作用

首先對(duì)我們研究OAG對(duì)噪聲強(qiáng)度σ2的依賴.

從圖1a,1b可以看出,在α值從1.4增加到1.8的過(guò)程中,隨著噪聲強(qiáng)度的增加OAG出現(xiàn)SR,且α越大OAG峰值出現(xiàn)越早,即出現(xiàn)在低噪聲強(qiáng)度時(shí).隨著α的減小,OAG峰值對(duì)應(yīng)的噪聲強(qiáng)度變大.然而,當(dāng)α取值低于1.6之后OAG達(dá)到峰值時(shí)的噪聲強(qiáng)度雖然仍在增加,但OAG的最大峰值開(kāi)始逐漸變大.在圖1c,1d中,當(dāng)β值逐漸增加時(shí),OAG同樣出現(xiàn)SR,β值越小OAG峰值出現(xiàn)越早,且隨著β取值的增大OAG達(dá)到峰值時(shí)的噪聲強(qiáng)度越大.當(dāng)β取值高于0.75后,OAG達(dá)到峰值時(shí)的噪聲強(qiáng)度雖然仍在增加但OAG的最大峰值開(kāi)始逐漸變大.綜上,當(dāng)分?jǐn)?shù)階導(dǎo)數(shù)α,β分別向2,0靠近時(shí),OAG達(dá)到峰值時(shí)的噪聲強(qiáng)度變小,峰值較大;當(dāng)α,β均向1靠近時(shí),雖然系統(tǒng)OAG達(dá)到峰值時(shí)的噪聲強(qiáng)度在增加但OAG的最大峰值出現(xiàn)先減后增,且增加后的OAG峰值可能會(huì)高于當(dāng)α,β分別向2,0靠近時(shí)的峰值.

然后,我們對(duì)OAG在不同a,b取值下對(duì)噪聲強(qiáng)度的依賴進(jìn)行研究.從圖2可以看到,OAG隨噪聲強(qiáng)度增加出現(xiàn)SR.由圖2a,2b可以看出,隨a增加,SR峰值出現(xiàn)時(shí)的噪聲強(qiáng)度不斷減小,峰值強(qiáng)度逐漸變大.由圖2a,2c可以觀察到,當(dāng)OAG的SR達(dá)到峰值時(shí)噪聲強(qiáng)度大致在2左右由圖2b,2d可以發(fā)現(xiàn),隨著b的增加,OAG達(dá)到峰值時(shí)的外噪聲強(qiáng)度仍然是逐漸減小的趨勢(shì),而OAG峰值則隨b的增加先增后減,當(dāng)參數(shù)b取值介于0.2~0.3之間時(shí)OAG達(dá)到最大值.

圖3示出了耦合系數(shù)ε1,ε2對(duì)OAG共振行為的影響.可以看到,隨著噪聲強(qiáng)度的增加,OAG先增后減,隨機(jī)共振出現(xiàn).此外,隨耦合系數(shù)的變化,OAG的變化趨勢(shì)不變,均在噪聲強(qiáng)度增加至2左右時(shí)達(dá)到峰值,且隨著耦合系數(shù)的增加OAG的峰值不斷減小,可見(jiàn)粒子越活躍OAG峰值越大.

接下來(lái)我們研究阻尼系數(shù)對(duì)OAG的影響.從圖4中我們可以看到,隨著噪聲強(qiáng)度的增加,OAG先增后減,出現(xiàn)SR,OAG在噪聲強(qiáng)度取值在2左右時(shí)達(dá)到最大,之后隨噪聲強(qiáng)度的增加迅速減小.阻尼系數(shù)部分刻畫(huà)了黏性介質(zhì)中粒子所受到的阻尼的大小.由OAG峰值的變化可以看到,阻尼參數(shù)越小,OAG的越大,與耦合系數(shù)對(duì)OAG的影響相同.

3.2 信號(hào)頻率對(duì)OAG的作用

在這一部分,我們研究信號(hào)頻率的對(duì)OAG的作用.同樣,我們首先在分?jǐn)?shù)階導(dǎo)數(shù)取不同值的情況下研究OAG的共振行為.

從圖5中我們觀察到,隨著頻率的增加,OAG先增后減,SR出現(xiàn).從圖5a,5c.可以觀察到,隨著α不斷向2靠近,OAG的峰值越來(lái)越大,達(dá)到峰值時(shí)的頻率不斷增加,當(dāng)α取值為1.9時(shí),OAG達(dá)到峰值,此時(shí)的頻率也最大,約為0.6.其次,由圖5b,5d可以看到,隨著β的增加,β取值越靠近1時(shí)OAG的峰值越大,頻率值越低,當(dāng)β取值為0.9時(shí)OAG的峰值達(dá)到最大,頻率達(dá)到最小,約為0.6.可見(jiàn),當(dāng)分?jǐn)?shù)階α,β分別趨向于2和1時(shí),OAG表現(xiàn)出越來(lái)越明顯的SR,同時(shí)OAG達(dá)到峰值時(shí)的頻率取值分別呈現(xiàn)出越來(lái)越大和越來(lái)越小的趨勢(shì),最終均穩(wěn)定在0.6左右.

下面我們研究噪聲強(qiáng)度a,b對(duì)OAG的共振行為影響.從圖6中我們可以看出,隨噪聲強(qiáng)度增大,OAG峰值逐漸減小,與一般所認(rèn)為的外噪聲會(huì)干擾系統(tǒng)輸出的預(yù)期一致,當(dāng)噪聲強(qiáng)度增加至一定數(shù)值時(shí)系統(tǒng)增益消失.因此,在一定范圍內(nèi),噪聲不但不會(huì)降低OAG,反而會(huì)使OAG的峰值得到提升,即隨機(jī)共振.

然后我們研究耦合系數(shù)對(duì)OAG隨機(jī)共振的作用.從圖7中我們可以觀察到,隨著驅(qū)動(dòng)頻率的增加,OAG先增后減,隨機(jī)共振出現(xiàn).進(jìn)一步觀察可以看到,隨著耦合系數(shù)的增加,隨機(jī)共振的峰值不斷降低.從圖7a,7c可以看出,當(dāng)耦合系數(shù)ε1逐漸增大時(shí),OAG不斷減小,隨機(jī)共振峰值出現(xiàn)時(shí)的頻率緩慢增加,向0.6靠近.從圖7b,7d可以看出,隨著耦合系數(shù)ε2的增加,隨機(jī)共振峰值同樣逐漸降低,共振峰值出現(xiàn)時(shí)的頻率緩慢降低,也向0.6靠近.所以我們認(rèn)為,在系統(tǒng)參數(shù)固定的前提下,可能存在一個(gè)最優(yōu)頻率,使OAG達(dá)到最大.

最后我們研究阻尼系數(shù)對(duì)OAG共振的影響.從圖8中我們可以看出,隨著驅(qū)動(dòng)頻率增長(zhǎng),OAG先增后減,隨機(jī)共振出現(xiàn).此外,當(dāng)阻尼系數(shù)γ1,γ2逐漸增加時(shí),系統(tǒng)的隨機(jī)共振峰值逐漸減小.其原因是當(dāng)耦合系數(shù)、阻尼系數(shù)增加時(shí),粒子的活躍度降低,導(dǎo)致隨機(jī)共振峰值降低.另外我們還可以看到,當(dāng)阻尼系數(shù)增加時(shí),OAG達(dá)到峰值時(shí)的頻率同樣在逐漸向0.6靠近,即可能存在一個(gè)最優(yōu)頻率使(系統(tǒng)參數(shù)固定時(shí))OAG達(dá)到最優(yōu).

4 結(jié) 論

本文對(duì)一個(gè)具有質(zhì)量漲落的雙分?jǐn)?shù)階耦合振子系統(tǒng)的隨機(jī)共振進(jìn)行了研究.結(jié)果顯示,當(dāng)系統(tǒng)參數(shù)固定時(shí),隨著噪聲強(qiáng)度、信號(hào)頻率的變化,系統(tǒng)OAG表現(xiàn)出豐富的SR行為.我們預(yù)期所得結(jié)果對(duì)實(shí)際應(yīng)用可能具有指導(dǎo)意義.

參考文獻(xiàn):

[1] Lanzara E, Mantegna R N, Spagnolo B, et al.Experimental study of a nonlinear system in the presence of noise:the stochastic resonance [J].Am J Phys, 1997, 65: 341.

[2] Wio H S, Lindenberg K.Noise induced phenomena: a sampler [J].Amer Inst Phys, 2003, 658: 1.

[3] Das M, Kantz H.Stochastic resonance and hysteresis in climate with state-dependent fluctuations [J].Phys Rev E, 2020, 101: 62.

[4] Rufener K S, Kauk J, Ruhnau P, et al.Inconsistent effects of stochastic resonance on human auditory processing [J].Sci Rep-Uk, 2020, 10: 6419.

[5] Benzi R.Stochastic resonance: from climate to biology [J].Nonlinear Proc Geoph, 2010, 17: 431.

[6] Barik D, Ghosh P K, Ray D S.Langevin dynamics with dichotomous noise;direct simulation and applications [J].J Stat Mech-Theory E, 2006, 3: 03010.

[7] Jiang S Q, Guo F, Zhou Y R, et al.Parameter-induced stochastic resonance in an over-damped linear system [J].Physica A, 2007, 375: 483.

[8] Guo F, Wang X Y, Qin M Y.Resonance phenomenon for a nonlinear system with fractional derivative subject to multiplicative and additive noise [J].Physica A, 2021, 562: 125.

[9] 鐘蘇川, 高仕龍, 馬洪, 等.線性過(guò)阻尼分?jǐn)?shù)階Langevin方程的共振行為 [J].物理學(xué)報(bào), 2012, 61: 170501.

[10] Soika E, Mankin R.Response of a fractional oscillator to multiplicative trichotomous noise [J].Wseas Trans Biol Biomed, 2010, 7: 21.

[11] Zhong S C, Ma Hong, Peng H, et al.Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings [J].Nonlinear Dynam, 2015, 82: 535.

[12] Yu T, Zhang L, Zhong S C, et al.The resonance behavior in two coupled harmonic oscillators with fluctuating mass [J].Nonlinear Dynam, 2019, 96: 1735.

[13] Vishwamittar, Batra P, Chopra R.Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise [J].Physica A, 2021, 561: 125148.

[14] You P L, Lin L F, Wang H Q.Cooperative mechanism of generalized stochastic resonance in a time-delayed fractional oscillator with random fluctuations on both mass and damping [J].Chaos Solition Fract, 2020, 135: 109789.

[15] 蔚濤, 張路, 羅懋康.具有漲落質(zhì)量的線性諧振子的共振行為 [J].物理學(xué)報(bào), 2013, 62: 120504.

[16] Gitterman M, Shapiro I.Stochastic resonance in a harmonic oscillator with random mass subject to asymmetric dichotomous noise [J].J Stat Phys, 2011, 144: 139.

[17] Yang S, Deng M, Ren R B.Stochastic resonance of fractional-order Langevin equation driven by periodic modulated noise with mass fluctuation [J].Adv Differ Equ-Ny, 2020, 2020: 81.

[18] Gitterman M.Stochastic oscillator with random mass: New type of Brownian motion [J].Physica A, 2014, 395: 11.

[19] Huang X P, Lin L F, Wang H Q.Generalized stochastic resonance for a fractional noisy oscillator with random mass and random damping [J].J Stat Phys, 2020, 178: 1201.

[20] He L F, Wu X, Zhang G.Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation [J].Physica A, 2020, 545: 123345.

[21] Ren R B, Luo M K, Deng K.Stochastic resonance in a fractional oscillator subjected to multiplicative trichotomous noise [J].Nonlinear Dynam, 2017, 90: 379.

[22] Tu Z, Zhao D Z, Qiu F, et al.Stochastic resonance in coupled underdamped harmonic oscillators with fluctuating frequency driven by dichotomous noise [J].J Stat Phys, 2020, 179: 247.

[23] Zhang G, Wang H, Zhang T Q.Stochastic resonance research on under-damped nonlinear frequency fluctuation for coupled fractional-order harmonic oscillators [J].Results Phys, 2020, 17: 103158.

[24] Wadop Ngouongo Y J, Djolieu Funaye M, Djuidjé Kenmoé G, et al.Stochastic resonance in deformable potential with time-delayed feedback [J].Phil T R Soc A, 2021, 379: 20200234.

[25] Tian Y, He G T, Liu Z B, et al.The impact of memory effect on resonance behavior in a fractional oscillator with small time delay [J].Physica A, 2021, 563: 125383.

[26] Ren R B, Deng K.Noise and periodic signal induced stochastic resonance in a Langevin equation with random mass and frequency [J].Physica A, 2019, 523: 145.

[27] Burov S, Gitterman M.Noisy oscillator: Random mass and random damping [J].Phys Rev E, 2016, 94: 052144.

[28] Yu T, Zhang L, Ji Y D, et al.Stochastic resonance of two coupled fractional harmonic oscillators with fluctuating mass [J].Commun Nonlinear Sci, 2019, 72: 26.

[29] Zhang L, Xu L, Yu T, et al.Collective behavior of a nearest neighbor coupled system in a dichotomous fluctuating potential [J].Commun Nonlinear Sci, 2021, 93: 105499.

[30] Caputo M.Linear models of dissipation whose Q is almost frequency independent-II [J].Geophys J Int, 1967, 13: 529.

[31] Shapiro V E, Loginov V M."Formulae of differentiation" and their use for solving stochastic Equations [J].Physica A, 1978, 91: 563.

[32] Soika E, Mankin R, Ainsaar A.Resonant behavior of a fractional oscillator with fluctuating frequency [J].Phys Rev E, 2010, 81: 011141.

猜你喜歡
共振阻尼峰值
“四單”聯(lián)動(dòng)打造適齡兒童隊(duì)前教育峰值體驗(yàn)
N維不可壓無(wú)阻尼Oldroyd-B模型的最優(yōu)衰減
關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
安然 與時(shí)代同頻共振
選硬人打硬仗——紫陽(yáng)縣黨建與脫貧同頻共振
CTA 中紡院+ 化纖聯(lián)盟 強(qiáng)強(qiáng)聯(lián)合 科技共振
寬占空比峰值電流型準(zhǔn)PWM/PFM混合控制
具阻尼項(xiàng)的Boussinesq型方程的長(zhǎng)時(shí)間行為
基于峰值反饋的電流型PFM控制方法
庐江县| 吉安市| 福泉市| 永靖县| 临西县| 尼玛县| 甘南县| 绥阳县| 揭阳市| 崇义县| 安康市| 龙游县| 万州区| 台湾省| 襄樊市| 华宁县| 闻喜县| 福安市| 南乐县| 绩溪县| 武义县| 平阳县| 和龙市| 镇宁| 两当县| 高台县| 宣威市| 永城市| 旅游| 渑池县| 绥棱县| 会理县| 七台河市| 江孜县| 赣州市| 麦盖提县| 高安市| 礼泉县| 杂多县| 镇坪县| 盈江县|