国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

任意空間維傾斜狄拉克費米子的帶內(nèi)縱向光電導的推導

2023-04-29 20:52:24侯鑒桐王鵬李志強張浩然

侯鑒桐 王鵬 李志強 張浩然

摘要:狄拉克費米子是當前凝聚態(tài)物理中的研究熱點. 狄拉克費米子的縱向光電導,因其能夠提取能帶結(jié)構(gòu)信息而被廣泛關(guān)注. 本文基于低能有效模型與線性響應(yīng)理論,利用生成函數(shù)方法,解析地處理零溫下任意空間維、任意傾斜相的狄拉克費米子的帶內(nèi)縱向光電導. 特別地,我們討論了二維和三維空間情況,并揭示了不同維度的傾斜類型對帶內(nèi)縱向光電導的影響. 文中發(fā)展的生成函數(shù)方法有望用于其他相關(guān)問題的研究.

關(guān)鍵詞:帶內(nèi)縱向光電導;傾斜狄拉克費米子;任意空間維

收稿日期: 2023-05-11

基金項目: 國家自然科學基金(11547200);四川省科技創(chuàng)新(苗子工程)培育項目(2022-YCG057)

作者簡介: 侯鑒桐 (1996-), 男, 四川成都人, 碩士研究生, 主要研究方向為理論凝聚態(tài)物理.

通訊作者: 張浩然. E-mail: hrchang@mail.ustc.edu.cn

Intraband longitudinal optical conductivity of tilted

Dirac fermions in arbitrary spatial dimensionality

HOU Jian-Tong1, WANG Peng1, LI Zhi-Qiang1, ZHANG Hao-Ran2

(1. College of Physics, Sichuan University, Chengdu 610064, China;

2. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China)

Dirac fermion is one of the current research topics in condensed matter physics. The longitudinal optical conductivity(LOC)of Dirac fermion has attracted much attention because of its ability to extract band structure information. Based on the low-energy effective model and linear response theory, this paper uses the generating function method to analytically process the intraband LOCs of Dirac fermions in arbitrary spatial dimension and of tilted phase at zero temperature. In particular, we discuss the two-dimensional and three-dimensional spatial situations and reveal the influence of the tilted types from different dimensions on the intraband LOCs. The generating function method developed in this paper is expected to be applied to other related problems.

Intraband longitudinal optical conductivity; Tilted Dirac fermions; Arbitrary spatial dimensionality

1 引 言

自發(fā)現(xiàn)石墨烯以來,狄拉克費米子一直是凝聚態(tài)物理中的熱點問題[1-9]. 按照傾斜參數(shù)的不同,狄拉克費米子可劃分為四種相:正立相(t=0), type-Ⅰ相(01)和type-Ⅲ 相(t=1)[10-15]. 作為凝聚態(tài)物理重要的物理量,縱向光電導(包含帶內(nèi)部分和帶間部分)能提取材料系統(tǒng)的能帶結(jié)構(gòu)信息,并被廣泛應(yīng)用到狄拉克費米子系統(tǒng)的理論和實驗研究中. 它的實部表征從電磁場能量到電子動能能量轉(zhuǎn)化過程中實際的能量損失[16],在實驗上可用紅外光譜學等手段測量[17]. 關(guān)于狄拉克費米子縱向光電導的研究,早期主要集中于二維和三維的正立相(t=0)[18-23],隨后拓展到二維和三維的傾斜相(t≠0)[24-32].

物理系統(tǒng)的空間維度和載流子能量色散在很大程度上決定了大多數(shù)物理性質(zhì)[33,34]. 采取統(tǒng)一的方式解析地計算任意空間維中的物理量,不僅能夠發(fā)展一勞永逸的計算方法,而且可以提供深刻的視角用以審查空間維度對相同的動力學模型中同一個物理量的影響. 例如,在任意空間維中的RKKY相互作用[35,36]能夠自動給出一維[37,38]、二維[39-42]和三維[42-46]電子氣體中RKKY相互作用的解析表達形式,而且揭示RKKY相互作用在不同空間維中的相似性與差異性.

最近,有研究者對一維、二維和三維空間中傾斜狄拉克費米子的帶內(nèi)和帶間縱向光電導進行了系統(tǒng)的理論分析,發(fā)現(xiàn)空間維度和傾斜參數(shù)對縱向光電導的物理行為有十分顯著的影響[47]. 此外,研究者還進一步將空間維度從一維、二維和三維推廣到任意空間維,發(fā)現(xiàn)帶間縱向光電導與聯(lián)合態(tài)密度之間的深刻聯(lián)系[48]. 然而,該工作并沒有研究縱向光電導的帶內(nèi)部分. 因此,本文的主要目標是計算并分析任意空間維中傾斜狄拉克費米子的帶內(nèi)縱向光電導.

本文將在長波極限與零溫條件下,基于低能有效模型與線性響應(yīng)理論,利用生成函數(shù)方法,計算任意空間維和任意傾斜相的狄拉克費米子的帶內(nèi)縱向光電導的解析表達式. 特別地,在取空間維數(shù)d=2,3的情況下,這些解析形式可以自動給出之前工作的結(jié)果[18-32, 47].

2 理論模型和計算框架

在任意空間維(d維)中,一對傾斜狄拉克費米子可以由如下低能有效哈密頓量描述[46].

其中, k是d維矢量;τ3和τ0分別為第三個泡利矩陣及相應(yīng)的單位矩陣;而d維矢量α和I分別為定義在d維空間的d個狄拉克矩陣和相應(yīng)的單位矩陣(它們的表示空間維度記為偶數(shù)NR/2,其中NR為每個狄拉克點的簡并度). 相應(yīng)的傾斜狄拉克能帶為

其中, 不同的能谷由κ=±表示,而狄拉克能帶在第一個空間方向上傾斜的參數(shù)由t=vt/vF表征.此后的計算不妨選取適當?shù)膯挝唬沟?vF=1.

帶內(nèi)縱向光電導能夠反映系統(tǒng)電流對電場的同方向響應(yīng),也就是歐姆定律的微觀形式. 在上述低能有效模型中,帶內(nèi)縱向光電導可以從直觀上理解為n型或p型摻雜的傾斜狄拉克材料中的直流電導率,即德魯?shù)拢―rude)電導,而且傾斜參數(shù)t通過改變能帶的傾斜程度來影響光電導. 根據(jù)線性響應(yīng)理論,在d維空間中,傾斜狄拉克費米子沿jj方向的帶內(nèi)縱向光電導( j = 1,2,..d )具有如下表達式.

這些結(jié)果與三維傾斜狄拉克材料的帶內(nèi)縱向光電導的解析表達式[24,28,32,47]相吻合.

綜上,上述解析結(jié)果對摻雜和不摻雜的(μ=0和μ≠0), 各種傾斜相(t=0, 01),所有空間分量(平行于傾斜方向和垂直于傾斜方向)均適用,而且能夠自動給出二維和三維[18-32,47]體系的結(jié)果.

4 結(jié) 論

基于低能有效模型與線性響應(yīng)理論,本文利用生成函數(shù)方法,解析地計算了零溫下任意空間維中傾斜狄拉克費米子的帶內(nèi)縱向光電導. 采取統(tǒng)一的方式得到的解析表達式,能夠自動給出在二維和三維空間中正立相、type-Ⅰ相、type-Ⅱ相和type-Ⅲ相的狄拉克費米子的帶內(nèi)縱向光電導. 本文不僅指出了傾斜狄拉克費米子的帶內(nèi)縱向光電導在不同空間維中的相似性與差異性,而且揭示了傾斜類型對帶內(nèi)縱向光電導的影響. 本文發(fā)展的生成函數(shù)方法有望用于其他相關(guān)問題的研究.

參考文獻:

[1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666.

[2]Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev Mod Phys, 2009, 81: 109.

[3]Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids [J].Rev Mod Phys, 2018, 90: 015001.

[4]Sato T, Wang Z, Nakayama K, et al. Observation of band crossings protected by nonsymmorphic symmetry in the layered ternary telluride Ta3SiTe6[J]. Phys Rev, 2018, 98: 121111(R).

[5]Yang T Y, Wan Q, Yan D Y, et al. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order [J]. Nat Mater, 2020, 19: 27.

[6]Zhu Z, Li S, Yang M, et al. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order [J]. NPJ Quantum Mater, 2020, 5: 35.

[7]Wang B, Xia W, Li S, et al. One-dimensional metal embedded in two-dimensional semiconductor in Nb2Six-1Te4[J]. ACS Nano, 2021, 15: 7149.

[8]Zhang J, Lv Y, Feng X, et al. Observation of dimension-crossover of a tunable 1D Dirac fermion in topological semimetal NbSixTe2[J]. NPJ Quantum Mater, 2022, 7: 54.

[9]Yue S, Zhou H, Feng Y, et al. Observation of one-dimensional Dirac fermions in silicon nanoribbons [J]. Nano Lett, 2022, 22: 695.

[10]Katayama S, Kobayashi A, Suzumura Y. Pressure-induced zero-gap semiconducting state in organic conductor α-(BEDT-TTF)2I3salt [J]. J Phys Soc Jpn, 2006, 75: 054705.

[11]Zhou X F, Dong X, Oganov A R, et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions [J]. Phys Rev Lett, 2014, 112: 085502.

[12]Andrew J, Mannix X F, Zhou B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs [J]. Science, 2015, 350: 1513.

[13]Soluyanov A A, Gresch D, Wang Z, et al. Bernevig. Type-Ⅱ weyl semimetals [J]. Nature, 2015, 527: 495.

[14]Volovik G E, Zhang K. Lifshitz transitions, type-Ⅱ Dirac and Weyl fermions, event horizon and all that [J]. J Low Temp Phys, 2017, 189: 276.

[15]Volovik G E. Exotic Lifshitz transitions in topological materials [J]. Phys Usp, 2018, 61: 89.

[16]Pietro N, Iacopo T, Frank H L, et al. Optical and plasmonic properties of twisted bilayer graphene: impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity [J]. Phys Rev B, 2020, 102: 125403.

[17]Li Z, Henriksen E, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy [J]. Nat Phys, 2008, 4: 532.

[18]Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene [J]. Phys Rev Lett, 2006, 96: 256802.

[19]Gusynin V P, Sharapov S G, Carbotte J P. Sum rules for the optical and Hall conductivity in graphene [J]. Phys Rev B, 2007, 75: 165407.

[20]Mikhailov S A, Ziegler K. New electromagnetic mode in graphene [J]. Phys Rev Lett, 2007, 99: 016803.

[21]Kuzmenko A B, van Heumen E, Carbone F, et al. Universal optical conductance of graphite [J]. Phys Rev Lett, 2008, 100: 117401.

[22]Mak K F, Sfeir M Y, Wu Y, et al. Universal optical conductance of graphite [J]. Phys Rev Lett, 2008, 101: 196405.

[23]Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum [J]. Phys Rev B, 2008, 78: 085432.

[24]Phillip E, Ashby C, Carbotte J P. Chiral anomaly and optical absorption in Weyl semimetals [J]. Phys Rev B, 2014, 89: 245121.

[25]Nishine T, Kobayashi A, Suzumura Y. Tilted-cone induced cusps and nonmonotonic structures in dynamical polarization function of massless Dirac fermions [J]. J Phys Soc Jpn, 2010, 79: 114715.

[26]Verma S, Mawrie A, Ghosh T K. Effect of electron-hole asymmetry on optical conductivity in borophene [J]. Phys Rev B, 2017, 96: 155418.

[27]Herrera S A, Naumis G G. Kubo conductivity for anisotropic tilted Dirac semimetals and its application to 8-Pmmn borophene: role of frequency, temperature, and scattering limits [J]. Phys Rev B, 2019, 100: 195420.

[28]Rostamzadeh S, Adagideli I, Goerbig M O. Large enhancement of conductivity in Weyl semimetals with tilted cones: pseudorelativity and linear response [J]. Phys Rev B, 2019, 100: 075438.

[29]Tan C Y, Yan C X, Zhao Y H, et al. Anisotropic longitudinal optical conductivities of tilted Dirac bands in 1T′-MoS2[J]. Phys Rev B, 2021, 103: 125425.

[30]Tan C Y, Hou J T, Yan C X, et al. Signatures of Lifshitz transition in the optical conductivity of two-dimensional tilted Dirac materials [J]. Phys Rev B, 2022, 106: 165404.

[31]Wild A, Mariani E, Portnoi M E. Optical absorption in two-dimensional materials with tilted Dirac cones [J]. Phys Rev B, 2022, 105: 205306.

[32]Carbotte J P. Dirac cone tilt on interband optical background of type-I and type-II Weyl semimetals [J]. Phys Rev B, 2016, 94: 165111.

[33]Mukherjee S P, Carbotte J P. Absorption of circular polarized light in tilted type-I and type-II Weyl semimetals [J]. Phys Rev B, 2017, 96: 085114.

[34]Giuliani G, Vignale G. Quantum theory of the electron liquid Cambridge [M]. UK: Cambridge University Press, 2005.

[35]Mahan G D. Many-particle physics [M]. New York: Springer, 2007.

[36]Larsen U. Damping of the RKKY interaction in metals of arbitrary dimensions [J]. J Phys F: Met Phys, 1985, 15: 101.

[37]Aristov D N. Indirect RKKY interaction in any dimensionality [J]. Phys Rev B, 1997, 55: 8064.

[38]Litvinov V I, Dugaev V K. RKKY interaction in one- and two-dimensional electron gases [J]. Phys Rev B, 1998, 58: 3584.

[39]Giuliani G F, Vignale G, Datta T. RKKY range function of a one-dimensional noninteracting electron gas [J]. Phys Rev B, 2005, 72: 033411.

[40]Korenblit I Y, Shender E F. Dilute ferromagnetic alloys with long-range exchange interaction [J]. Sov Phys JETP, 1975, 42: 566.

[41]Fischer B, Klein M W. Magnetic and nonmagnetic impurities in two-dimensional metals [J]. Phys Rev B, 1975, 11: 2025.

[42]Beal-Monod M T. Ruderman-Kittel-Kasuya-Yosida indirect interaction in two dimensions [J]. Phys Rev B, 1987, 36: 8835.

[43]Simion G, Giuliani G F. Friedel oscillations in a Fermi liquid [J]. Phys Rev B, 2005, 72: 045127.

[44]Ruderman M A, Kittel C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons [J]. Phys Rev, 1954, 96: 99.

[45]Kasuya T. Electrical resistance of ferromagnetic metals [J]. Prog Theor Phys, 1956, 16: 45.

[46]Yosida K. Magnetic properties of Cu-Mn alloys [J]. Phys Rev, 1957, 106: 893.

[47]Hou J T, Yan C X, Tan C Y, et al. Effects of spatial dimensionality and band tilting on the longitudinal optical conductivities in Dirac bands [J]. Phys Rev B, 2023, 108: 035407.

[48]Hou J T, Chang H R. Longitudinal optical conductivities for tilted Weyl fermions in arbitrary dimensionality [EB/OL]. [2023-05-20]. https://arxiv.org/pdf/2211.15357.pdf.

引用本文格式:

中 文: 侯鑒桐, 王鵬, 李志強, 等. 任意空間維傾斜狄拉克費米子的帶內(nèi)縱向光電導的推導[J]. 四川大學學報: 自然科學版, 2023, 60: 064001.

英 文: Hou J T, Wang P, Li Z Q, et al. Intraband longitudinal optical conductivity of tilted Dirac fermions in arbitrary spatial dimensionality [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 064001.

清镇市| 兴仁县| 陵川县| 通化县| 丽水市| 密云县| 石泉县| 乌拉特中旗| 历史| 丰县| 罗定市| 灵台县| 陵水| 武义县| 天等县| 遂宁市| 雅安市| 清镇市| 花垣县| 浠水县| 北票市| 巴彦县| 靖江市| 兴海县| 德阳市| 湖口县| 乳源| 墨竹工卡县| 卢龙县| 祁东县| 伊金霍洛旗| 临洮县| 石首市| 肥城市| 永昌县| 东丰县| 聊城市| 资兴市| 鱼台县| 万载县| 南丹县|