李自強(qiáng),楊梅,張新忠,羅逢健,樓正云,梁爽*
改良QuEChERS方法與UPLC-MS/MS聯(lián)用測(cè)定茶葉中草甘膦、草銨膦及氨甲基膦酸
李自強(qiáng)1,楊梅2,張新忠2,羅逢健2,樓正云2,梁爽1*
1. 吉林農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,吉林 長(zhǎng)春 130118;2. 中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所農(nóng)產(chǎn)品質(zhì)量安全研究中心,浙江 杭州 310008
建立了改良QuEChERS-超高液相色譜-串聯(lián)質(zhì)譜法(UPLC-MS/MS)快速檢測(cè)紅茶和綠茶中草甘膦、草銨膦及氨甲基膦酸殘留的分析方法。樣品經(jīng)純凈水提取2次,提取液采用MWCNT、C18、PVPP和CNT-OH吸附劑分散固相萃取凈化,質(zhì)譜以多反應(yīng)監(jiān)測(cè)模式(MRM)進(jìn)行測(cè)定,外標(biāo)法定量。結(jié)果表明,紅茶和綠茶基質(zhì)中,草甘膦、草銨膦和氨甲基膦酸在一定濃度范圍內(nèi)線性良好,相關(guān)系數(shù)(2)為0.999?3~1.000?0,方法的檢出限(LOD)分別為0.005?0、0.030、0.030?mg·kg-1,定量限(LOQ)分別為0.050、0.10、0.10?mg·kg-1,平均加標(biāo)回收率在81.6%~120.0%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)在0.6%~13.6%。該方法前處理簡(jiǎn)單、成本低、重復(fù)性好、靈敏度高,適用于紅茶和綠茶中草甘膦、草銨膦及氨甲基膦酸的檢測(cè)。
QuEChERS;茶;草甘膦;草銨膦;氨甲基膦酸
草甘膦(Glyphosate)和草銨膦(Glufosinate)是非選擇性的廣譜型除草劑,被廣泛用于農(nóng)業(yè)、林業(yè)和城市環(huán)境中的雜草控制[1]。氨甲基膦酸(Aminomethyl phosphonic acid,AMPA)是草甘膦和草銨膦在植物和土壤中主要的代謝物[2]。然而,有研究表明草甘膦會(huì)對(duì)肝臟、免疫系統(tǒng)和生殖系統(tǒng)等產(chǎn)生影響[3],草銨膦可能會(huì)引起神經(jīng)系統(tǒng)疾病[4]。由于草甘膦和草銨膦的廣泛應(yīng)用,導(dǎo)致其經(jīng)常在植物、土壤、食物、甚至人類尿液中被檢測(cè)到[5]。
茶樹(shù)()是一種重要的經(jīng)濟(jì)作物,以其芽葉為原料制成的茶葉是世界范圍內(nèi)流行的飲品[6]。茶葉中含有許多對(duì)人體有益的成分,如茶多酚、氨基酸、黃酮、咖啡堿和維生素等,具有抗氧化、抗菌、抗癌和抗炎等作用[7]。茶樹(shù)一般生長(zhǎng)在濕熱環(huán)境,容易受到病蟲草的危害,為了保證茶葉的品質(zhì)和產(chǎn)量,化學(xué)農(nóng)藥仍是主要的防治措施。草甘膦和草銨膦具有優(yōu)秀的除草活性,我國(guó)已在茶園登記使用[8]。目前,在GB/T 2763—2021[9]中規(guī)定草甘膦和草銨膦在茶葉中的最高殘留限量(MRL)分別為1.0?mg·kg-1和0.50?mg·kg-1,歐盟(EU)規(guī)定茶葉中草甘膦和草銨膦的MRL值分別為2.0?mg·kg-1和0.10?mg·kg-1[10],日本規(guī)定茶葉中草甘膦和草銨膦的MRL值分別為1.0?mg·kg-1和0.30?mg·kg-1[11]。由于這些化合物具有較高的水溶性,在茶葉沖泡過(guò)程中其殘留物很容易轉(zhuǎn)移至茶湯中,易造成飲茶風(fēng)險(xiǎn)。目前貴州省、浙江省麗水市和云南省勐海縣等地區(qū)已出臺(tái)茶園禁用草甘膦的管理措施。因此,對(duì)茶葉中草甘膦、草銨膦和氨甲基膦酸的監(jiān)測(cè)十分必要。
目前,草甘膦、草銨膦和氨甲基膦酸檢測(cè)方法有毛細(xì)管電泳法(CE)[12]、氣相色譜法(GC)[13]、高效液相色譜法(HPLC)[14]、離子色譜-串聯(lián)質(zhì)譜法(IC-MS/MS)[15]、液相色譜-串聯(lián)質(zhì)譜法(LC-MS/MS)[16]、超高效液相色譜-串聯(lián)質(zhì)譜法(UPLC-MS/MS)[17]和氣相色譜-串聯(lián)質(zhì)譜法(GC-MS)[18]等。其中UPLC-MS/MS為上述目標(biāo)化合物常用的檢測(cè)方法,具有基質(zhì)干擾小,靈敏度高,分析速度快等特點(diǎn)[19]。因此,本研究采用UPLC-MS/MS為檢測(cè)方法。此外,由于茶葉基質(zhì)的復(fù)雜性,樣品前處理是影響目標(biāo)物準(zhǔn)確定量的關(guān)鍵性步驟。目前,固相萃取法(SPE)如親水/親油平衡(HLB)固相萃取柱[20]、混合型陽(yáng)離子(MCX)固相萃取柱[21]和十八烷基鍵合硅膠(C18)固相萃取柱[22]是草甘膦、草銨膦和氨甲基膦酸檢測(cè)最為常用的凈化方式之一。QuEChERS方法(Quick,easy,cheap,effective,rugged and safe)具有“綠色化學(xué)”的特點(diǎn),自2003年以來(lái)在農(nóng)藥殘留分析領(lǐng)域中受到了研究者的廣泛關(guān)注[23]。與固相萃取法相比,QuEChERS方法中所用凈化材料成本更低,凈化速度更快。然而,目前QuEChERS方法在茶葉的草甘膦、草銨膦和氨甲基膦酸檢測(cè)中應(yīng)用較少[3,8,24-25],且缺少不同凈化材料對(duì)茶葉中草甘膦、草銨膦和氨甲基膦酸凈化的系統(tǒng)性研究。
本研究擬建立一種改良的QuEChERS方法與UPLC-MS/MS結(jié)合同時(shí)檢測(cè)紅茶和綠茶中草甘膦、草銨膦及氨甲基膦酸殘留的分析方法,旨在滿足茶葉檢測(cè)需求,保證檢測(cè)結(jié)果準(zhǔn)確可靠的同時(shí),具有簡(jiǎn)便快捷、成本低、無(wú)需前處理調(diào)節(jié)pH、基質(zhì)效應(yīng)低等優(yōu)點(diǎn)。
Waters ACQUITY UPLC H-Class超高效液相色譜串聯(lián)Xevo TQ-S micro三重四極桿串聯(lián)質(zhì)譜儀,配有MassLynx 4.1處理軟件(美國(guó)Waters公司);3K-15冷凍離心機(jī)(德國(guó)Sigma公司);Vortex Genie 2型渦旋振蕩器(美國(guó)Scientific Industries);0.22?μm Filter Unit水系濾膜(天津博納艾杰爾科技有限公司)。
農(nóng)藥標(biāo)準(zhǔn)物質(zhì)草甘膦、草銨膦和氨甲基膦酸購(gòu)自天津阿爾塔科技有限公司,純度>99.0%;純凈水購(gòu)自杭州娃哈哈集團(tuán)有限公司;石墨化炭黑(GCB,120~400目)、-丙基乙二胺(PSA,40~63?μm)、十八烷基鍵合硅膠(C18,40~60?μm)購(gòu)自天津博納艾杰爾科技有限公司;多壁碳納米管(MWCNT,5~10?nm)購(gòu)自上海麥克林生化科技股份有限公司;交聯(lián)聚乙烯吡咯烷酮(PVPP)購(gòu)自廣州昂飛生物科技有限公司;羥基化碳納米管(CNT-OH,10~20?nm)購(gòu)自中國(guó)科學(xué)院成都有機(jī)化學(xué)有限公司。Oasis HLB-SPE柱(填料量/上樣體積:60?mg/3?mL)和Oasis MCX-SPE柱(填料量/上樣體積:60?mg/3?mL)購(gòu)自天津一方科技有限公司;C18-SPE柱(填料量/上樣體積:1?g/6?mL)購(gòu)自杭州津本科學(xué)儀器有限公司。
單標(biāo)準(zhǔn)品儲(chǔ)備液(100?mg·L-1):依次精準(zhǔn)稱取不同質(zhì)量的草甘膦、草銨膦和氨甲基膦酸農(nóng)藥標(biāo)準(zhǔn)物質(zhì)于50?mL容量瓶中,用純凈水進(jìn)行溶解、定容,配成質(zhì)量濃度為100?mg·L-1的單標(biāo)準(zhǔn)品儲(chǔ)備液,在4?℃冰箱中保存。
混合標(biāo)準(zhǔn)品工作液(10?mg·L-1):準(zhǔn)確吸取5?mL已配制好的單標(biāo)準(zhǔn)品儲(chǔ)備液于50?mL容量瓶中,用純凈水定容至刻度線,配成質(zhì)量濃度為10?mg·L-1混合標(biāo)準(zhǔn)品工作液,在4?℃冰箱中保存。
1.3.1 樣品前處理
提?。壕_稱取3.00?g磨碎后成茶樣品(精確至0.01?g)至50?mL聚丙烯塑料離心管中,加入15?mL純凈水后混勻,渦旋振蕩提取5?min,于11?000?r·min-1離心5?min,取全部上清液于50?mL離心管中,重復(fù)上述提取步驟進(jìn)行第2次提取,并將兩次提取液混勻,待凈化。
凈化:稱取5?mg MWCNT、20?mg C18、60?mg PVPP和50?mg CNT-OH于2?mL離心管中,加入2?mL提取液,渦旋30?s,在14?000?r·min-1下離心5?min,收集上清液。
衍生:取0.6?mL凈化液,分別依次加入0.4?mL 10?mg·mL-1的FMOC-Cl乙腈溶液和0.2?mL 5%的硼酸鈉緩沖溶液(pH=9),渦旋混勻后,在40?℃水浴下衍生過(guò)夜。在14?000?r·min-1下離心5?min后,過(guò)0.22?μm水系濾膜至進(jìn)樣小瓶,待UPLC-MS/MS進(jìn)樣分析。
1.3.2 色譜條件
流動(dòng)相A為0.1%甲酸-乙腈,流動(dòng)相B為0.1%甲酸-水。流動(dòng)相洗脫程序?yàn)?~1.5?min,30% A;1.5~3.0?min,30%~55% A;3.0~7.0?min,55%~90% A;7.0~10.2?min,90%~100% A;10.2~10.4?min,100%~70% A;10.4~12.0?min,70%~30% A。色譜柱為Acquity HSS T3柱(100?mm×2.1?mm,1.8?μm),柱溫為40?℃。進(jìn)樣體積為5.0?μL,流速為0.3?mL·min-1。
1.3.3 質(zhì)譜條件
質(zhì)譜條件:電噴霧正電離模式(ESI+),多反應(yīng)監(jiān)測(cè)(MRM)模式;離子源溫度為150?℃;脫溶劑氣N2溫度為350?℃,流量為700?L·h-1;毛細(xì)管電壓為3.5?kV;碰撞氣Ar流量為0.35?mL·min-1;錐孔氣N2流量為60?L·h-1;倍增電壓為650?V。質(zhì)譜參數(shù)如表1所示。
使用Excel 2019計(jì)算回收率、標(biāo)準(zhǔn)曲線方程、基質(zhì)效應(yīng)等數(shù)據(jù),使用OriginPro 2018作圖。
由于草甘膦缺少發(fā)色基團(tuán)和熒光基團(tuán),檢測(cè)前一般需要先進(jìn)行衍生化。本研究借鑒文獻(xiàn)[8]中的衍生化步驟,選擇FMOC-Cl作為衍生試劑。其衍生原理主要是在堿性條件下,F(xiàn)MOC-Cl可以取代目標(biāo)化合物氮原子上的氫從而生成更為穩(wěn)定的衍生物,便于儀器檢測(cè)[26]。
草甘膦、草銨膦和氨甲基膦酸均為強(qiáng)極性化合物,易溶于水,難溶于大多數(shù)有機(jī)溶劑[27]。目前茶葉中草甘膦、草銨膦和氨甲基膦酸的提取溶劑一般采用純水[28]、水-二氯甲烷[29]、水-乙腈[30]、水-甲醇[31]或堿性水溶液[32],提取凈化效率分別為94.0%~116.0%、79.4%~95.2%、80.6%~98.1%、83.7%~92.2%、75.6%~96.6%,其中以純水和堿性水溶液提取最為常見(jiàn)。本研究選取成本最低的純水進(jìn)行提取優(yōu)化,在綠茶空白基質(zhì)添加水平為1.0?mg·kg-1下,對(duì)比了純水提取1次和純水提取2次對(duì)目標(biāo)物的提取效果,結(jié)果如圖1所示,純水提取2次得到的目標(biāo)物回收率(86.8%~100.8%)明顯高于純水提取1次(75.9%~89.6%)。
基于此,進(jìn)一步研究了茶葉中農(nóng)藥殘留檢測(cè)常用的提取方式(渦旋和超聲)對(duì)目標(biāo)物的提取能力,并參照文獻(xiàn)[28]和文獻(xiàn)[31]設(shè)定渦旋和超聲時(shí)間分別為5?min和30?min。渦旋振蕩可將樣品與提取液通過(guò)高速轉(zhuǎn)動(dòng)短時(shí)間內(nèi)混合均勻,在轉(zhuǎn)動(dòng)過(guò)程中提取液與目標(biāo)物的不斷接觸達(dá)到快速提取的目的[33]。超聲波輔助主要是利用超聲波在液體中的空化作用加速了分析物的溶解和擴(kuò)散,從而提高了提取效率[34]。如圖1所示,兩種提取方式對(duì)目標(biāo)化合物的提取效果無(wú)明顯差異。因此,選擇耗時(shí)短的渦旋振蕩為后續(xù)的提取方式。
表1 目標(biāo)化合物的質(zhì)譜分析參數(shù)
注:*表示定量離子
Note: * represents quantification ions
注:VE1表示純水渦旋提取1次,VE2表示純水渦旋提取2次,UE2表示純水超聲提取2次
2.2.1 單一凈化材料的優(yōu)化
QuEChERS方法的凈化材料一般為MgSO4、NaCl和PSA[35],其中鹽(MgSO4和NaCl)的加入可以誘導(dǎo)水相和有機(jī)相更好地分離。PSA常用于去除脂肪酸、糖類等形成氫鍵的成分[36]。然而,傳統(tǒng)的凈化材料無(wú)法滿足復(fù)雜基質(zhì)的凈化,因此需要篩選其他凈化材料,通過(guò)改進(jìn)QuEChERS方法以滿足凈化需求。目前用于茶葉農(nóng)藥殘留檢測(cè)的凈化材料有GCB、PSA、MWCNT、C18、PVPP和CNT-OH等。其中,GCB用于去除色素和類固醇[37];MWCNT對(duì)色素等物質(zhì)具有較好的去除效果[38];C18為非極性吸附劑,可有效去除脂肪酸等非極性化合物[39];PVPP常用于去除多酚類物質(zhì),是極性干擾化合物和脂肪酸去除的有效吸附劑[40];CNT-OH表面富含羥基,增加了其在水溶液中的分散效果以及對(duì)水溶性雜質(zhì)的去除效果[41]。
本研究分別考察了這6種凈化材料在不同劑量下對(duì)草甘膦、草銨膦和氨甲基膦酸回收率的影響,以期獲得單一材料的最佳用量,并為后續(xù)組合凈化材料的用量提供參考。將混合標(biāo)準(zhǔn)品工作液加入到綠茶空白樣品提取液中,配制成質(zhì)量濃度為1.0?mg·L-1的基質(zhì)標(biāo)準(zhǔn)溶液進(jìn)行凈化材料優(yōu)化。不同凈化材料用量以及對(duì)應(yīng)的回收率結(jié)果如圖2所示。結(jié)果發(fā)現(xiàn),6種凈化材料中PSA對(duì)草甘膦的吸附作用最強(qiáng),且對(duì)草甘膦的吸附作用隨著PSA用量的增加而增強(qiáng),當(dāng)用量大于20?mg時(shí)會(huì)對(duì)草甘膦產(chǎn)生明顯的吸附,回收率由93.1%降到53.3%。這可能是因?yàn)镻SA吸附劑是一種弱陰離子交換劑,可與各種極性有機(jī)酸(如草甘膦等)發(fā)生強(qiáng)烈相互作用[42]。PSA同時(shí)也會(huì)對(duì)草銨膦和氨甲基膦酸產(chǎn)生一定的吸附作用。類似地,當(dāng)GCB用量達(dá)到300?mg時(shí)會(huì)對(duì)草甘膦產(chǎn)生輕微的吸附作用,C18用量達(dá)到200?mg時(shí)對(duì)3種目標(biāo)物均有輕微的吸附作用。而其余3種凈化材料(MWCNT、PVPP和CNT-OH)在所選用量下對(duì)目標(biāo)物幾乎不產(chǎn)生吸附作用。
2.2.2 組合凈化材料的優(yōu)化
由于茶葉基質(zhì)的復(fù)雜性,不同凈化材料組合一般比單一凈化材料凈化效果更好[43]?;趩我粌艋牧系膬艋囼?yàn)結(jié)果,對(duì)上述6種凈化材料進(jìn)行正交試驗(yàn)設(shè)計(jì)(表2)。在綠茶空白樣品添加水平為1.0?mg·kg-1下,進(jìn)行不同凈化材料組合的添加回收試驗(yàn),結(jié)果表明(圖3A),18組凈化材料均可得到滿意的回收率(83.9%~111.7%)。同時(shí)考察了18組凈化材料的凈化效果,配制了質(zhì)量濃度為0.005?0~5.0?mg·L-1的混合溶劑標(biāo)準(zhǔn)溶液和對(duì)應(yīng)的18組凈化材料凈化后的綠茶基質(zhì)匹配標(biāo)準(zhǔn)溶液,以基質(zhì)效應(yīng)(ME)作為評(píng)價(jià)標(biāo)準(zhǔn),按照以下計(jì)算公式進(jìn)行計(jì)算:
=/×100%。
式中,為溶劑標(biāo)準(zhǔn)曲線的斜率,為基質(zhì)標(biāo)準(zhǔn)曲線的斜率。當(dāng)<100時(shí)發(fā)生基質(zhì)抑制效應(yīng),當(dāng)>100時(shí)發(fā)生基質(zhì)增強(qiáng)效應(yīng)[44]。結(jié)果如圖3B所示,組合2可以明顯降低基質(zhì)效應(yīng)影響,基質(zhì)抑制效應(yīng)由37.3%~55.5%減弱至63.9%~73.9%。與組合1相比,采用其他組合凈化目標(biāo)物基質(zhì)效應(yīng)變化不明顯。
此外,將凈化材料組合2與常用固相萃取柱(HLB柱、C18柱和MCX柱)進(jìn)行對(duì)比。在綠茶空白樣品添加水平為1.0?mg·kg-1下,回收率結(jié)果表明(圖4),4種凈化方法對(duì)目標(biāo)物的回收率無(wú)明顯差異,在96.8%~109.6%范圍內(nèi),均滿足殘留檢測(cè)的需求。從耗時(shí)和成本方面考量,如表3所示,本研究選擇的凈化材料組合在凈化時(shí)間和成本上遠(yuǎn)低于上述3種固相萃取柱。此外,與其他文獻(xiàn)報(bào)道的凈化材料組合相比[25,45],本研究的凈化組合仍顯示出較為優(yōu)異的凈化效率。綜上所述,凈化材料組合2(MWCNT 5?mg、C1820?mg、PVPP 60?mg和CNT-OH 50?mg)被選為后續(xù)試驗(yàn)的凈化方式。
表2 正交試驗(yàn)設(shè)計(jì)表
注:凈化材料組合(1~18)分別代表表2中編號(hào)1~18所對(duì)應(yīng)的凈化材料組合及用量
注:凈化材料組合2為MWCNT(5?mg)、C18(20?mg)、PVPP(60?mg)和CNT-OH(50?mg)
表3 不同凈化方法對(duì)比
2.3.1 方法的線性范圍和基質(zhì)效應(yīng)
本研究主要對(duì)紅茶和綠茶基質(zhì)中目標(biāo)化合物的線性范圍和基質(zhì)效應(yīng)進(jìn)行考察,結(jié)果如表4所示,目標(biāo)物在一定范圍內(nèi)線性良好,相關(guān)系數(shù)(2)在0.999?3~1.000?0,滿足農(nóng)藥殘留定量分析的需求?;|(zhì)效應(yīng)計(jì)算根據(jù)2.2.2章節(jié)進(jìn)行,結(jié)果表明,在紅茶基質(zhì)中草甘膦和草銨膦呈現(xiàn)基質(zhì)增強(qiáng)效應(yīng),氨甲基膦酸呈現(xiàn)基質(zhì)抑制效應(yīng);在綠茶基質(zhì)中3個(gè)目標(biāo)物均呈現(xiàn)出基質(zhì)抑制效應(yīng);3種物質(zhì)在紅茶中的基質(zhì)效應(yīng)均弱于綠茶。
2.3.2 方法的準(zhǔn)確度、精密度和定量限
對(duì)紅茶和綠茶的空白樣品設(shè)置不同的添加水平(0.050~5.0?mg·kg-1)進(jìn)行加標(biāo)回收率試驗(yàn),每個(gè)水平重復(fù)5次,并通過(guò)空白基質(zhì)匹配標(biāo)準(zhǔn)溶液校正的方法進(jìn)行計(jì)算。結(jié)果如表5所示,目標(biāo)物的平均回收率在81.6%~120.0%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)在0.6%~13.6%,回收率和精密度符合農(nóng)藥殘留分析方法的要求。定量限(LOQ)和檢出限(LOD)根據(jù)紅茶和綠茶的空白樣品添加低濃度目標(biāo)物確定,信噪比(S/N)≥10被定義為L(zhǎng)OQ,S/N≥3被定義為L(zhǎng)OD。本方法茶葉中3種物質(zhì)的LOD為0.005?0~0.030?mg·kg-1,LOQ為0.050~0.10?mg·kg-1。
采用本研究方法對(duì)市場(chǎng)隨機(jī)抽取的15份紅茶和15份綠茶樣品進(jìn)行測(cè)定。結(jié)果顯示,有 10份樣品檢出草甘膦(6份綠茶樣品:0.060~0.54?mg·kg-1;4份紅茶樣品:0.090~0.53?mg·kg-1),1份綠茶樣品檢出草銨膦(0.49?mg·kg-1),1份綠茶樣品檢出氨甲基膦酸(0.40?mg·kg-1)。所有檢出農(nóng)藥的殘留量均低于我國(guó)GB/T 2763—2021[9]中規(guī)定的最大殘留限量值,表明茶園中草甘膦和草銨膦的施藥較為規(guī)范。從抽樣分析結(jié)果來(lái)看,本研究所構(gòu)建的檢測(cè)技術(shù)可以滿足實(shí)際樣品中草甘膦、草銨膦和氨甲基膦酸的定量檢測(cè)。
本研究系統(tǒng)地探究了不同凈化材料對(duì)茶葉中草甘膦、草銨膦和氨甲基膦酸檢測(cè)的影響,建立了改良QuEChERS前處理方法與UPLC-MS/MS相結(jié)合的檢測(cè)草甘膦、草銨膦和氨甲基膦酸殘留技術(shù),并將其成功應(yīng)用于紅茶和綠茶的實(shí)際樣品檢測(cè)。目標(biāo)物在一定范圍內(nèi)線性良好,相關(guān)系數(shù)為0.999?3~1.000?0。在0.050~5.0?mg·kg-1的添加水平下,草甘膦、草銨膦和氨甲基膦酸的平均回收率在81.6%~120.0%,RSD在0.6%~13.6%,方法的LOD分別為0.005?0、0.030、0.030?mg·kg-1,LOQ分別為0.050、0.10、0.10?mg·kg-1。該方法前處理簡(jiǎn)單、成本低、重復(fù)性好、靈敏度高,為茶葉中草甘膦、草銨膦和氨甲基膦酸殘留的快速檢測(cè)提供了可靠的技術(shù)支持。同時(shí),該方法也為3個(gè)目標(biāo)物在復(fù)雜基質(zhì)中的凈化提供參考。
表4 目標(biāo)化合物的線性方程和相關(guān)系數(shù)
表5 目標(biāo)化合物的添加回收率、相對(duì)標(biāo)準(zhǔn)偏差、檢出限和定量限(n=5)
[1] Du Z X, Cao J Y, Li W T, et al. A method to assess glyphosate, aminomethylphosphonic acid and glufosinate in Chinese herb samples using a derivatization method and LC-MS/MS [J]. Chromatographia, 2022, 85(9): 817-829.
[2] Poiger T, Buerge I J, Bachli A, et al. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS [J]. Environmental Science and Pollution Research, 2017, 24(2): 1588-1596.
[3] Wang Y, Gao W J, Li Y Y, et al. Establishment of a HPLC-MS/MS detection method for glyphosate, glufosinate-ammonium, and aminomethyl phosphoric acid in tea and its use for risk exposure assessment [J]. Journal of Agricultural and Food Chemistry, 2021, 69(28): 7969-7978.
[4] Goodwin L, Startin J R, Keely B J, et al. Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface [J]. Journal of Chromatography A, 2003, 1004(1/2): 107-119.
[5] Liao Y, Berthion J M, Colet I, et al. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2018, 1549: 31-38.
[6] Li H X, Zhong Q, Wang X R, et al. Simultaneous quantitative determination of residues of pyriproxyfen and its metabolites in tea and tea infusion using ultra-performance liquid chromatography-tandem mass spectrometry [J]. Agronomy-Basel, 2022, 12(8): 1829. doi: 10.3390/agronomy12081829.
[7] Huang Y S, Shi T, Luo X, et al. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS [J]. Food Chemistry, 2019, 275: 255-264.
[8] Tong M M, Gao W J, Jiao W T, et al. Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (L.) [J]. Journal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646.
[9] 中華人民共和國(guó)國(guó)家衛(wèi)生健康委員會(huì). 食品安全國(guó)家標(biāo)準(zhǔn)食品中農(nóng)藥最大殘留限量: GB 2763—2021[S]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2021. National Health Commission of the People's Republic of China. National food safety standard: maximum residue limits for pesticides in food: GB 2763—2021 [S]. Beijing: China Agriculture Press, 2021.
[10] European Commission. EU pesticide residue limit standard database [EB/OL]. [2023-01-13]. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls.
[11] The Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods [EB/OL]. [2023-01-13]. http://db.ffcr.or.jp/front.
[12] 李小娟, 孟品佳, 王燕燕, 等. 毛細(xì)管電泳-間接紫外法測(cè)定飲用水中草甘膦, 草銨膦及其代謝產(chǎn)物[J]. 理化檢驗(yàn)-化學(xué)分冊(cè), 2015, 51(3): 307-311. Li X J, Meng P J, Wang Y Y, et al. Determination of glyphosate, glufosinate and their metabolites by capillary electrophoresis combined with indirect UV detection [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(3): 307-311.
[13] Tseng S H, Lo Y W, Chang P C, et al. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector [J]. Journal of Agricultural and Food Chemistry, 2004, 52(13): 4057-4063.
[14] Pires N L, Passos C J S, Morgado M G A, et al. Determination of glyphosate, AMPA and glufosinate by high performance liquid chromatography with fluorescence detection in waters of the santarém plateau, Brazilian amazon [J]. Journal of Environmental Science and Health Part B, 2020, 55(9): 794-802.
[15] Geerdink R B, Hassing M, Ayarza N, et al. Analysis of glyphosate, AMPA, glufosinate and MPPA with ion chromatography tandem mass spectrometry using a membrane suppressor in the ammonium form application to surface water of low to moderate salinity [J]. Analytica Chimica Acta, 2020, 1133: 66-76.
[16] Jansons M, Pugajeva I, Bartkevics V, et al. LC-MS/MS characterisation and determination of dansyl chloride derivatised glyphosate, aminomethylphosphonic acid (AMPA), and glufosinate in foods of plant and animal origin [J]. Journal of Chromatography B, 2021, 1177: 122779. doi: 10.1016/j.jchromb.2021.122779.
[17] Demonte L D, Michlig N, Gaggiotti M, et al. Determination of glyphosate, AMPA and glufosinate in dairy farm water from argentina using a simplified UHPLC-MS/MS method [J]. Science of the Total Environment, 2018, 645: 34-43.
[18] 楊亞琴, 馮書惠, 胡永建, 等. 氣相色譜-質(zhì)譜法測(cè)定綠茶中草甘膦和氨甲基膦酸殘留量[J]. 茶葉科學(xué), 2020, 40(1): 125-132. Yang Y Q, Feng S H, Hu Y J, et al. Determination of glyphosate and aminomethyl phosphonic acid residue in green tea by gas chromatography-mass spectrometry [J]. Journal of Tea Science, 2020, 40(1): 125-132.
[19] Zhuang M, Feng X X, Wang J, et al. Method development and validation of seven pyrethroid insecticides in tea and vegetable by modified QuEChERS and HPLC-MS/MS [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(4): 768-778.
[20] Botero-Coy A M, Ibanez M, Sancho J V, et al. Direct liquid chromatography-tandem mass spectrometry determination of underivatized glyphosate in rice, maize and soybean [J]. Journal of Chromatography A, 2013, 1313: 157-165.
[21] Li Z M, Kannan K. A method for the analysis of glyphosate, aminomethylphosphonic acid, and glufosinate in human urine using liquid chromatography-tandem mass spectrometry [J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 4966. doi: 10.3390/ijerph19094966.
[22] Ding J J, Jin G H, Jin G W, et al. Determination of underivatized glyphosate residues in plant-derived food with low matrix effect by solid phase extraction-liquid chromatography-tandem mass spectrometry [J]. Food Analytical Method, 2016, 9(10): 2856-2863.
[23] Wang J, Duan H L, Fan L, et al. A magnetic fluorinated multi-walled carbon nanotubes-based QuEChERS method for organophosphorus pesticide residues analysis inMurr [J]. Food Chemistry, 2021, 338: 127805. doi: 10.1016/j.foodchem.2020.127805.
[24] 葉美君, 陸小磊, 劉相真, 等. 柱前衍生-超高效液相色譜-串聯(lián)質(zhì)譜測(cè)定茶葉中草甘膦, 草銨膦及主要代謝物氨甲基膦酸殘留[J]. 色譜, 2018, 36(9): 873-879. Ye M J, Lu X L, Liu X Z, et al. Determination of glyphosate, glufosinate, and main metabolite aminomethylphosphonic acid residues in dry tea using ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(9): 873-879.
[25] 馮月超, 馬立利, 賈麗, 等. 多壁碳納米管分散固相萃取-液質(zhì)聯(lián)用技術(shù)測(cè)定茶葉中草甘膦, 草銨膦, 氨甲基膦酸殘留量[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2014, 5(4): 1147-1154. Feng Y C, Ma L L, Jia L, et al. Determination of glyphosate, glufosinate and aminomethylphonic acid residues in tea by liquid chromatography-tandem mass spectrometry using multi-walled carbon nanotubes as dispersive solid-phase extraction sorbent [J]. Journal of Food Safety and Quality, 2014, 5(4): 1147-1154.
[26] 諸力, 陳紅平, 周蘇娟, 等. 超高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定不同茶葉中草甘膦、氨甲基膦酸及草銨膦的殘留[J]. 分析化學(xué), 2015, 43(2): 271-276. Zhu L, Chen H P, Zhou S J, et al. Determination of glyphosate,aminomethyl phosphonic acid and glufosinate in different teas by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 271-276.
[27] 勵(lì)炯, 安海娟, 王紅青, 等. 改進(jìn)的固相萃取/高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定茶葉中草甘膦和氨甲基膦酸殘留量[J]. 分析儀器, 2019(1): 102-107. Li J, An H J, Wang H Q, et al. Determination of glyphosate and aminomethyl phosphonic acid in tea by modified high performance liquid chromatography-tandem mass spectrometry with purification based on solid phase extraction [J]. Analytical Instrumentation, 2019(1): 102-107.
[28] 趙春華, 左于一菲, 孫倩. 高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)茶葉中痕量草胺膦、草甘膦及其代謝物氨甲基膦酸殘留[J]. 化學(xué)分析計(jì)量, 2018, 27(5): 96-101. Zhao C H, Zuo-Yu Y F, Sun Q. Determination of trace glufosinate, glyphosate and its metabolites residue in tea by HPLC-MS/MS [J]. Chemical Analysis and Meterage, 2018, 27(5): 96-101.
[29] 吳曉剛, 陳孝權(quán), 肖海軍, 等. 柱前衍生-超高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)檢測(cè)茶葉中草甘膦和草銨膦的殘留量[J]. 色譜, 2015, 33(10): 1090-1096. Wu X G, Chen X Q, Xiao H J, et al. Simultaneous determination of glyphosate and glufosinate-ammonium residues in tea by ultra performance liquid chromatography-tandem mass spectrometry coupled with pre-column derivatization [J]. Chinese Journal of Chromatography, 2015, 33(10): 1090-1096.
[30] 孫文閃, 章虎, 王川丕, 等. 分散固相萃取凈化液質(zhì)聯(lián)用測(cè)定茶葉中的草銨膦, 草甘膦和氨甲基膦酸殘留[J]. 分析試驗(yàn)室, 2020, 39(6): 658-663. Sun W S, Zhang H, Wang C P, et al. Determination of glufosinate,glyphosate and aminomethyl phosphonic acid in tea by liquid chromatography triple quadrupole mass spectrometry using dispersive solid-phase extraction sorbent [J]. Chinese Journal of Analysis Laboratory, 2020, 39(6): 658-663.
[31] 王如坤, 方愛(ài)琴, 趙海英, 等. 超高效液相色譜-四極桿/靜電場(chǎng)軌道阱高分辨質(zhì)譜法快速檢測(cè)茶葉中草甘膦、草銨膦及其代謝物殘留[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2021, 12(10): 3954-3959. Wang R K, Fang A Q, Zhao H Y, et al. Rapid determination of glyphosate, glufosinate-ammonium and their metabolite residues in tea by ultra performance liquid chromatography-quadrupole electrostatic field orbital trap high resolution mass spectrometry [J]. Journal of Food Safety and Quality, 2021, 12(10): 3954-3959.
[32] 楊梅, 孫思, 劉文鋒, 等. 超高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定茶葉中草甘膦和草銨膦的殘留量[J]. 食品科學(xué), 2019, 40(10): 337-343. Yang M, Sun S, Liu W F, et al. Determination of glyphosate and glufosinate-ammonium residues in tea by UPLC-MS/MS [J]. Food Science, 2019, 40(10): 337-343.
[33] 蔣瑞東, 金戈輝. 氣相色譜法測(cè)定果蔬中5種擬除蟲菊酯類農(nóng)藥殘留[J]. 化學(xué)分析計(jì)量, 2009, 18(5): 55-58. Jiang R D, Jin G H. Determination of 5 pyrethroid pesticide residues in fruits and vegetables by gas chromatography [J]. Chemical Analysis and Meterage, 2009, 18(5): 55-58
[34] 鄧愛(ài)華, 馮國(guó)金. 植物性食品中有機(jī)氯農(nóng)藥殘留量檢測(cè)的前處理方法研究[J]. 分析測(cè)試學(xué)報(bào), 2010, 29(9): 958-961. Deng A H, Feng G J. Investigation on different pretreatment methods for determination of residual organochlorine pesticides in phytogenic foodstuff [J]. Journal of Instrumental Analysis, 2010, 29(9): 958-961.
[35] Anastassiades M, Lehotay S J, Stajnbaher D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of AOAC International, 2003, 86(2): 412-431.
[36] Guan Y Q, Tang H, Chen D Z, et al. Modified QuEChERS method for the analysis of 11 pesticide residues in tea by liquid chromatography-tandem mass spectrometry [J]. Analytical Methods, 2013, 5(12): 3056-3067.
[37] Huo F F, Tang H, Wu X, et al. Utilizing a novel sorbent in the solid phase extraction for simultaneous determination of 15 pesticide residues in green tea by GC/MS [J]. Journal of Chromatography B, 2016, 1023/1024: 44-54.
[38] Han Y T, Song L, Zou N, et al. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials [J]. Journal of Chromatography B, 2016, 1031: 99-108.
[39] Wang C, Chen H P, Zhu L, et al. Accurate, sensitive and rapid determination of perchlorate in tea by hydrophilic interaction chromatography-tandem mass spectrometry [J]. Analytical Methods, 2020, 12(28): 3592-3599.
[40] Zhang M L, Ma G C, Zhang L, et al. Chitosan-reduced graphene oxide composites with 3d structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis [J]. Analyst, 2019, 144(17): 5164-5171.
[41] 彭曉俊, 伍長(zhǎng)春, 梁偉華, 等. 氣相色譜-質(zhì)譜法測(cè)定陳皮及其制品中的三氯殺螨醇和擬除蟲菊酯殘留量[J]. 理化檢驗(yàn)-化學(xué)分冊(cè), 2019, 53(7): 848-854. Peng X J, Wu C C, Liang W H, et al. GC-MS determination of residual amounts of dicofol and pyrethroids in dried orange peel and its products [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 53(7): 848-854.
[42] Zhao P Y, Wang L, Jiang Y P, et al. Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents [J]. Journal of Agricultural and Food Chemistry, 2012, 60(16): 4026-4033.
[43] Wang Z H, Wang X R, Wang M, et al. Establishment of a QuEChERS-UPLC-MS/MS method for simultaneously detecting tolfenpyrad and its metabolites in tea [J]. Agronomy, 2022, 12(10): 2324. doi: 10.3390/agronomy12102324.
[44] Rutkowska E, Lozowicka B, Kaczynski P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry [J]. Food Chemistry, 2019, 279: 20-29.
[45] 曹慧, 鄭軍科, 黃麗英, 等. QuEChERS-UPLC/MS/MS快速測(cè)定茶葉中的草甘膦和氨甲基磷酸[J]. 食品與機(jī)械, 2016, 32(4): 84-87. Cao H, Zheng J K, Huang L Y, et al. Fast determination of glyphosate and aminomethyl phosphonic acid residues in tea QuEChERs and UPLC/MS/MS [J]. Food and Machinery, 2016, 32(4): 84-87.
Simultaneous Determination of Glyphosate, Glufosinate and Aminomethyl Phosphonic Acid Residues in Tea by Modified QuEChERS Method Coupled with UPLC-MS/MS
LI Ziqiang1, YANG Mei2, ZHANG Xinzhong2, LUO Fengjian2, LOU Zhengyun2, LIANG Shuang1*
1. College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; 2. Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
An analytical method was developed for the simultaneous determination of glyphosate, glufosinate and aminomethyl phosphonic acid residues in black and green tea by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with a modified QuEChERS method. The samples were extracted twice with pure water, and the extraction solutions were purified by dispersive solid phase extraction with MWCNT, C18, PVPP and CNT-OH adsorbents. The mass spectrometry was performed in multiple reaction monitoring (MRM) mode and quantified by external standard method. The results show that glyphosate, glufosinate and aminomethyl phosphonic acid had a good linear relationship within a certain concentration range with correlation coefficients (2) ranging from 0.999?3 to 1.000?0 in black and green tea. The limits of detection ( LOD ) of the method were 0.005?0, 0.030?mg·kg-1and 0.030?mg·kg-1, respectively. The limits of quantitation (LOQ) were 0.050, 0.10?mg·kg-1and 0.10?mg·kg-1, respectively.The average spiked recovery rates and the relative standard deviations (RSD) of pesticides were in the range of 81.6%-120.0% and 0.6%-13.6%, respectively. The method is simple, inexpensive, reproducible, sensitive and suitable for the determination of glyphosate, glufosinate and aminomethyl phosphonic acid in black and green tea.
QuEChERS, tea, glyphosate, glufosinate, aminomethyl phosphonic acid
S517.1;S482
A
1000-369X(2023)02-263-12
2023-01-13
2023-03-10
吉林省科技發(fā)展計(jì)劃項(xiàng)目(20230202025NC)、國(guó)家自然科學(xué)基金青年項(xiàng)目(42007354)
李自強(qiáng),男,碩士研究生,主要從事農(nóng)藥快速檢測(cè)方面的研究,lzq_99@126.com。*通信作者:liangshuang@jlau.edu.cn