從光雷 夏雙雙 劉春雪 洪平
摘要: 辣椒堿(CAP)是一種從辣椒中分離出來的生物堿,作為香料被廣泛使用。已有研究結(jié)果表明,辣椒堿具有多效性,如抗炎、抗氧化和抗癌癥等作用,但其影響動物腸道功能和腸道菌群組成方面的研究相對較少。本文綜述了辣椒堿對動物腸道功能和腸道菌群的調(diào)節(jié)作用,并闡述其在緩解動物腸炎發(fā)生和發(fā)展方面的作用機制,為辣椒堿在維持腸道穩(wěn)態(tài)方面的應(yīng)用提供理論基礎(chǔ)。
關(guān)鍵詞: 辣椒堿;腸道功能;腸道菌群;腸道穩(wěn)態(tài);腸道炎癥
中圖分類號: S816 文獻標識碼: A 文章編號: 1000-4440(2023)01-0287-08
Research progress of the effect of capsaicin on animal intestinal function and intestinal microflora and its relieving effect on intestinal inflammation
CONG Guang-lei, XIA Shuang-shuang, LIU Chun-xue, HONG Ping
(Anyou Biotechnology Group Co., Ltd., Suzhou 215437, China)
Abstract: Capsaicin is an alkaloid isolated from peppers and is widely used as spice. Previous studies have shown that capsaicin has pleiotropic effects, such as anti-inflammatory, antioxidant and anticancer effects, but less attention has been paid to its effects on animal intestinal function and intestinal microflora? composition. In this paper, the regulatory effect of capsaicin on animal intestinal function and intestinal microflora was reviewed, and its action mechanism in relieving the occurrence and development of animal intestinal inflammation was described, so as to provide a theoretical basis for the application of capsaicin in maintaining intestinal homeostasis.
Key words: capsaicin;intestinal function;intestinal microflora;intestinal homeostasis;intestinal inflammation
辣椒堿(CAP)是一種從辣椒中分離出來的生物堿,其化學名稱為8-甲基-N-香草基-6-壬烯酰胺。近年來已有較多研究結(jié)果證明CAP具有多方面的益處,如抗炎、抗氧化和抗菌等功效[1-4],但關(guān)于其對腸道功能和腸道菌群方面影響的研究相對較少。已有研究結(jié)果表明,CAP對腸道功能和菌群具有有益的作用,可抑制腸道致病菌,促進有益菌的生長[5-7]。因此,本研究將CAP與腸道功能和腸道菌群的組成、豐度聯(lián)系起來進行探討,旨在對這些效應(yīng)進行系統(tǒng)化的綜述并揭示CAP發(fā)揮作用的潛在機制。
1 CAP對胃腸道系統(tǒng)的有益作用
1.1 CAP調(diào)節(jié)腸道形態(tài)結(jié)構(gòu)的作用
Filik等[8]的研究結(jié)果表明,隨著飼料的中辣椒渣(HPWP,CAP是其主要成分)的添加量增加,鵪鶉的腸絨毛高度、黏膜下層、漿膜、肌層、絨毛高度/隱窩深度和絨毛表面積也隨之顯著增加,腸道的杯狀細胞數(shù)量也增加,提高了鵪鶉的生產(chǎn)性能。Liu等[9]將大腸桿菌F18攻毒的斷奶仔豬模型與對照組相比發(fā)現(xiàn),添加CAP 能夠提高仔豬腸道黏膜和黏蛋白2的mRNA表達量。Namted等[10]研究發(fā)現(xiàn),在豬飼料中添加CAP能夠增加十二指腸的絨毛高度,并發(fā)現(xiàn)其與DL-蛋氨酸羥基類似物聯(lián)合使用對腸道形態(tài)的正向影響更大。而在大鼠飼料中添加0.01% CAP,飼喂8周后發(fā)現(xiàn)其能夠促進腸道刷狀邊界膜(BBM)的膜流動性,提高腸道膜結(jié)合酶的活性,改變腸道黏膜形態(tài)結(jié)構(gòu)[11]。空腸和回腸區(qū)域的膽固醇含量和磷脂比降低也佐證了CAP能夠增加BBM的膜流動性。CAP能激活空腸黏膜甘氨酸-甘氨酸二肽酶、亮氨酸氨基肽酶和γ-谷氨酰轉(zhuǎn)肽酶的活性,表明CAP與蛋白質(zhì)周圍的脂質(zhì)與疏水部分結(jié)合和互作,從而調(diào)節(jié)膜動力,這可能會降低膜脂對酶蛋白的空間約束作用,從而改變酶的構(gòu)象。電子顯微鏡掃描發(fā)現(xiàn),CAP處理組腸道絨毛的超微結(jié)構(gòu)改變,腸絨毛長度和周長增加,這意味著CAP能夠增加小腸絨毛表面積,從而提高微量營養(yǎng)素的生物利用率。因此,飼糧中添加CAP可誘導(dǎo)BBM的流動性和被動通透性改變,增加腸絨毛高度和小腸的吸收面積,從而促進動物機體的生產(chǎn)性能提高。
1.2 CAP促進胃腸道的消化作用
CAP對胃腸道的消化促進作用,主要通過2種方式實現(xiàn):一是通過刺激肝臟產(chǎn)生和分泌富含膽汁酸的膽汁[12];二是激活胰腺和腸道的消化酶活性[13]。刺激膽汁分泌和激活消化酶活性,會促使整個消化過程加速,從而縮短食物通過胃腸道的時間[12]。飼料中持續(xù)添加和口服CAP均能夠激活胰腺消化酶和小腸黏膜末端消化酶活性,顯著提高胰腺的胰淀粉酶、胰蛋白酶、胰凝乳酶、腸道脂肪酶和腸道淀粉酶的活性,但不能激活胰脂肪酶的活性[13]。
已知CAP能夠刺激膽汁分泌,且膽汁中膽汁酸含量較高,而膽汁酸在脂肪的消化和吸收過程中具有重要作用[14]。因此,為探究CAP能否在高脂肪攝入期間促進脂肪的消化和吸收,有研究以高脂攝入大鼠(HFD)為試驗對象,在大鼠飼料中添加0.015%的CAP,發(fā)現(xiàn)CAP可提高HFD的胰脂肪酶、淀粉酶、胰蛋白酶和糜蛋白酶活性,增加膽汁分泌量和膽汁酸含量,從而促進脂肪吸收。同時還可防止HFD的肝臟和血清中甘油三酯積累,降低肝臟中主要脂肪生成酶活性,升高激素敏感脂肪酶活性[15]。上述結(jié)果表明,CAP能夠通過促進膽汁酸的分泌和激活胰脂肪酶活性,從而促進脂肪的消化吸收。
1.3 CAP促進營養(yǎng)素的吸收作用
CAP能夠改變腸道黏膜形態(tài)結(jié)構(gòu)和滲透性,而腸道形態(tài)結(jié)構(gòu)和滲透性改變會影響微量元素的吸收。為了驗證這一點,連續(xù)8周給大鼠飼喂含CAP的飼料,在試驗結(jié)束時檢測大鼠十二指腸、空腸和回腸食糜中的鐵、鋅和鈣含量[16]。結(jié)果表明,CAP能夠明顯提高動物機體對鐵、鋅和鈣的吸收,其中對鈣吸收的影響最大。表明CAP可能是通過增加腸道吸收表面積和改變滲透性,從而促使腸道吸收微量元素。
研究發(fā)現(xiàn),CAP能夠改變腸道黏膜形態(tài)和通透性,促進腸道對β-胡蘿卜素的吸收[17]。Veda等[18]給大鼠口服CAP后,檢測到大鼠肝臟中β-胡蘿卜素含量顯著增加,但維生素A的含量并未發(fā)生變化,表明CAP能夠促進β-胡蘿卜素的吸收,但不能促進β-胡蘿卜素在體內(nèi)轉(zhuǎn)化。β-胡蘿卜素轉(zhuǎn)化為維生素A的過程需要β-胡蘿卜素-15,15-雙加氧酶和視網(wǎng)膜還原酶參與,而添加CAP會降低腸道和肝臟中的β-胡蘿卜素-15,15-雙加氧酶活性,但不影響視網(wǎng)膜還原酶的活性,這與體外研究結(jié)果一致。
近年來研究還發(fā)現(xiàn),CAP與野櫻梅花青素聯(lián)合使用,能夠促進野櫻梅花青素在小腸中的吸收[19]。綜上所述,CAP與其他物質(zhì)具有協(xié)同或螯合的特性,從而促進營養(yǎng)素的吸收。
2 CAP對腸道菌群的作用
2.1 CAP對有益菌的調(diào)節(jié)作用
CAP能夠影響腸道菌群組成、豐度和功能。機體在吸收CAP前,其在腸腔內(nèi)濃度能達到500~1 000 μmol/L,表明CAP與腸道菌群存在互作[20]。在后續(xù)的研究中也驗證了這一點,并發(fā)現(xiàn)CAP對厚壁菌門和擬桿菌門的影響最大[21]。
普拉梭菌(Faecalibacterium prausnitzii,厚壁菌門)是一種厭氧細菌,是腸道微生物群中最重要的共生菌[22-23],其含量與腸炎、糖尿病、哮喘、重度抑郁癥和結(jié)腸直腸癌的發(fā)生呈負相關(guān),是機體腸道健康的指標之一[24-28]。小鼠灌胃CAP[8 mg/(kg·d)]1周后,隨灌胃時間延長,雄性小鼠腸道中普拉梭菌含量逐漸增加,而在雌性小鼠中未檢出[2]。此外,短期高劑量CAP(10 mg/d,共處理2周)處理能增加健康人體的細菌豐度[29]。Long等[30]研究發(fā)現(xiàn),在豬飼料中添加CAP能夠增加結(jié)腸中普拉梭菌的豐度和腸道中揮發(fā)性脂肪酸的含量,提高仔豬生產(chǎn)性能。提示CAP是普拉梭菌存在于腸道菌群中的決定性因素,CAP通過調(diào)控普拉梭菌相對豐度來促進動物的生產(chǎn)性能提高。
羅斯氏菌(Roseburia,厚壁菌門)是革蘭氏陽性厭氧細菌,其在腸道中增殖能改善小鼠的葡萄糖耐受不良和體質(zhì)量減輕的問題[31]。小鼠灌服CAP[8 mg/(kg·d)] 1周,發(fā)現(xiàn)雄性小鼠腸道的羅斯氏菌含量增加,但在雌性小鼠上并未出現(xiàn)相同的情況,表明CAP對腸道菌群的作用存在性別差異[5]。連續(xù)灌服6周0.01%和0.02%的CAP,能夠促使自發(fā)性肥胖型糖尿病模型小鼠腸道中的羅斯氏菌含量增加[21]。在奶牛飼料中添加CAP能夠顯著提高厚壁菌門中瘤胃球菌科UCG014屬和RC9腸道菌屬的菌群相對豐度,從而提高奶牛泌乳前期的產(chǎn)奶潛力[32]。
乳酸菌是一種典型的厚壁菌門益生菌,對免疫細胞的穩(wěn)態(tài)和腸道宿主的健康至關(guān)重要[33]。嗜酸乳桿菌能夠增加有益菌的數(shù)量,從而抑制腸道中的致病菌[34]。Namted等[10]研究發(fā)現(xiàn),CAP與DL-蛋氨酸羥基類似物聯(lián)合使用具有提高豬盲腸乳酸菌相對豐度的趨勢,可顯著提高腸道乳酸濃度。與單喂高脂飼料小鼠相比,高脂飼料和CAP(每2 d 2 mg/kg,連續(xù)12周)共同飼喂的小鼠腸道中乳酸桿菌相對豐度增加[35],還發(fā)現(xiàn)CAP能夠提高嗜酸乳桿菌的L-乳酸產(chǎn)量[36]。以瘦素受體缺乏型糖尿病小鼠為模型,持續(xù)灌胃0.01%的CAP 8周能夠緩解胰島素抵抗和改善葡萄糖穩(wěn)態(tài),這一效應(yīng)與CAP誘導(dǎo)的乳酸菌屬豐度增加有關(guān)[37]。
此外,Song等[21]的研究結(jié)果表明,CAP在門水平上提高了厚壁菌門與擬桿菌門比例,在屬水平上降低了腸道中的擬桿菌門和副擬桿菌屬相對豐度。連續(xù)添加2周低濃度的CAP(5 mg/d)和2周高濃度的CAP(10 mg/d),發(fā)現(xiàn)也能使腸道菌群平衡比例提高[29]。相關(guān)研究結(jié)果還表明,根據(jù)擬桿菌屬、普雷沃氏菌屬和瘤胃球菌屬豐度,腸道分為3種腸型,而CAP的作用取決于宿主腸道的腸道類型,腸型1(擬桿菌屬)的宿主比腸型2(普雷沃氏菌屬)的宿主食用CAP能獲得更多的益處。研究者認為需要根據(jù)腸道菌群分型情況來使用CAP[29]。
擬桿菌門能夠?qū)⒛c道中大分子分解成小分子,有利于機體吸收營養(yǎng)素[38]。灌胃CAP[8 mg/(kg·d )] 1周后,雄性小鼠腸道中的擬桿菌屬豐富度降低,但在雌性小鼠中并未有相似的情況,提示CAP的作用具有性別依賴性[5]。飼喂高脂飼料的小鼠每2 d在飼料中添加2 mg/kg CAP,12周后雄性小鼠腸道中普氏擬桿菌豐度恢復(fù)到對照組水平[35]。體外研究結(jié)果表明,CAP(0.33 mmol/L)對擬桿菌門(Bacteroidetes)的布氏普雷沃氏菌B14和脆弱擬桿菌25285均具有抑制作用,對厚壁菌門(phylum Firmicutes)的艱難梭菌(Clostridioides difficile 9689)具有拮抗作用,表明CAP影響腸道菌群的方式與臨床中使用的抗生素相似[39]。
2.2 CAP的抑菌作用及其機制
CAP具有重要的抑菌作用??股啬退幮院汀敖埂钡牡絹恚偈谷藗儗ふ姨烊坏目咕镔|(zhì),以減少抗生素的使用[40]。
抗生素耐藥性形成的主要因素是細菌的多藥耐藥外排泵。迄今,已發(fā)現(xiàn)十多個針對金黃色葡萄球菌的外排泵[41-42]。研究發(fā)現(xiàn),CAP(0.8~50.0 mg/L)是一種新型的NorA外排泵(EPI)抑制劑,不僅能抑制金黃色葡萄球菌EPI,還能降低金黃色葡萄球菌的侵襲能力,從而降低其毒力。說明CAP是一種外排泵抑制劑,其抗菌機制主要是通過抑制多藥外排泵NorA的活性[43]。
已有研究結(jié)果表明,灌服2 mg/kg的CAP能夠抑制大腸桿菌生長和質(zhì)粒轉(zhuǎn)移,降低高脂攝入小鼠腸道的腸桿菌比例[35]。Oyedemi等[44]的研究結(jié)果也表明,CAP能夠抑制外排多藥耐藥菌的生長和R-質(zhì)粒結(jié)合轉(zhuǎn)移,其具有廣譜抗菌特性。但也有研究結(jié)果表明,墨西哥辣椒提取物能夠抑制單核增生李斯特菌的生長,但對大腸桿菌O157∶H7無體外抑制作用[45]。這可能與Ca2+的需要量有關(guān),革蘭氏陽性菌單核細胞增生李斯特菌的肽聚糖層中,Ca2+和其他陽離子是其結(jié)構(gòu)的必要組成,但革蘭氏陰性菌大腸桿菌O157∶H7無此特性[46],因此需要確定有CAP的存在,并且CAP能夠螯合鈣。而Bacon等[45]已證明辣椒提取物能抑制單核增生李斯特菌V7培養(yǎng)菌,并利用光譜方法確定抗菌作用是由CAP產(chǎn)生。除了直接的抗菌特性,CAP在細菌感染過程中還發(fā)揮間接的疾病緩解作用。CAP能夠通過抑制腫瘤壞死因子-α(TNF–α)表達來減輕幽門螺桿菌造成的胃炎損傷[47]。部分幽門螺桿菌具有致病性,可引起消化性潰瘍、胃炎和胃癌[48]。體外試驗結(jié)果也驗證了這點,CAP可減少幽門螺桿菌的數(shù)量,以劑量依賴的方式降低幽門螺桿菌致病力,劑量在10 μg/ml和50 μg/ml時效果最好[49]。CAP能夠通過增加重組組蛋白樣類核結(jié)構(gòu)蛋白(H-NS)表達量,從而抑制霍亂弧菌的霍亂毒素A亞基基因、毒力協(xié)同調(diào)節(jié)菌毛A亞單位基因和toxT基因表達[50]。綜上所述,CAP的抗致病菌的作用機制分為2種:直接抑制致病菌外排泵;間接抗炎和降低致病菌毒力。目前關(guān)于CAP抗致病菌的研究結(jié)果主要來自體外研究,有待體內(nèi)試驗進行驗證。
2.3 CAP對腸道菌群的調(diào)節(jié)機制
CAP作用于腸道菌群的潛在機制可分為直接依賴瞬時感受器香草酸受體1(TRPV1)和間接依賴TRPV1。CAP能夠直接激活TRPV1通道來調(diào)節(jié)腸道功能和腸道菌群[51-52]。CAP還可刺激TRPV1通道,從而改變腸道的興奮性和敏感性,并誘導(dǎo)局部釋放神經(jīng)肽(P物質(zhì)和降鈣素)[51-54]來改變腸道中的炎癥和免疫條件,從而間接調(diào)節(jié)腸道菌群組成和結(jié)構(gòu)[21]。
但也有研究發(fā)現(xiàn)無論TRPV1通道是否激活,CAP都能夠調(diào)節(jié)腸道菌群。在飼喂高脂飼料的野生小鼠和TRPV1基因敲除小鼠中,持續(xù)灌胃2 mg/kg CAP,均能夠增加阿克曼菌屬、擬桿菌屬、普氏菌屬、臭桿菌屬、糞球菌屬和異桿菌屬的豐度,并減少脫硫弧菌、螺桿菌、埃希氏菌和薩特氏菌的豐度[55]。說明CAP對腸道菌群的調(diào)節(jié)作用,是依賴TRPV1通道激活機制和獨立機制共同介導(dǎo)的結(jié)果。
3 CAP減輕腸道炎癥的作用
在炎性腸病(IBD)、克羅恩病和潰瘍性結(jié)腸炎的發(fā)病過程中,遺傳因素與環(huán)境誘因相結(jié)合,導(dǎo)致慢性炎癥和腸黏膜損傷,但腸炎的常規(guī)治療會受免疫抑制劑和抗炎藥副作用的影響。而CAP是一種天然物質(zhì),可加速腸道蠕動,但會造成肛門灼燒感[56]。因此,CAP香料往往是IBD患者最忌諱的食物成分[57]。IBD患者在結(jié)腸神經(jīng)纖維、結(jié)腸上皮黏膜細胞和浸潤性炎癥細胞中表現(xiàn)出較高的TRPV-1免疫反應(yīng)[58]。TRPV1表達量的增加與炎癥的發(fā)生、炎癥的生物標志物和內(nèi)鏡下根據(jù)黏膜外觀評估的疾病無關(guān)[59]。此外,通過免疫組化檢測分析,發(fā)現(xiàn)腹痛的嚴重程度與IBD患者結(jié)腸中TRPV1表達量的增加有關(guān)[60]。因此,CAP作為TRPV1受體的激動劑,可能加重這些患者的腹痛。然而,沒有直接證據(jù)表明CAP會使IBD癥狀惡化。相反,CAP處理可改善腹痛癥狀[61]。連續(xù)4周每天添加0.75 mg的CAP能夠使TRPV1受體脫敏,從而減輕腹痛[62]。
通過對IBD的糞便樣本檢測發(fā)現(xiàn),IBD腸道中具有促炎作用的細菌相對豐度增加,而腸道有益菌菌群相對豐度減少25%[63-64]。此外,克羅恩病的回腸黏膜中檢出低豐度的普拉梭菌[65]。在外周血單核細胞培養(yǎng)和結(jié)腸炎動物模型中均發(fā)現(xiàn)普拉梭菌能夠減少促炎因子,增加IL-10的分泌量[65]。此外,Kawaguchi等[66]的研究結(jié)果表明,IBD會過度激活患者CD4+T細胞,使得患者對食物抗原的免疫耐受性發(fā)生改變,類似于IL-10敲除小鼠。CAP能夠增加厚壁菌門與擬桿菌門的比值和普拉梭菌豐度,從而改變免疫平衡,使IBD患者對食物抗原和共生菌具有更強的耐受力[67]。以上結(jié)果說明,添加CAP對克羅恩病具有有益的影響。
在動物模型上的研究結(jié)果也表明,CAP具有保護腸道黏膜的作用。三硝基苯磺酸會引起結(jié)腸潰瘍,而CAP(640 μmol/l)與三硝基苯磺酸共同給藥,能夠降低三硝基苯磺酸引起的結(jié)腸潰瘍,表明CAP具有減輕潰瘍的作用[68]。在葡聚糖硫酸鈉誘導(dǎo)的結(jié)腸炎中,添加CAP(1 mg/kg和10 mg/kg,連續(xù)6 d)可防止結(jié)腸黏膜損傷[69]。皮下注射消炎痛(非甾體類藥物)的前30 min、后9 h添加CAP(10 mg/kg)可減輕大鼠小腸潰瘍發(fā)生[70]。皮下注射CAP(50 mg/kg,連續(xù)3 d)能夠降低醋酸造成的結(jié)腸損傷[71],表明抗炎作用是通過TRPV1傳入感覺神經(jīng)末梢介導(dǎo)的。此外,在葡聚糖硫酸鈉誘導(dǎo)的結(jié)腸炎模型中,若破壞腸道中對CAP敏感的感覺神經(jīng)元,會減輕CAP緩解腸道炎癥的作用[69]。除此之外,研究還發(fā)現(xiàn),CAP可能是通過NF-κB信號通路下調(diào)促炎因子TNF-α、IL-6、CXCL8、IL-8的表達,上調(diào)IL-10的表達[72-73]。CAP還能夠增加閉鎖蛋白、閉合小環(huán)蛋白-1的表達量影響F-肌動蛋白重組,從而調(diào)節(jié)緊密連接屏障功能,表明CAP的預(yù)處理對減輕脂多糖引起的炎癥有益,并且可能有助于維持腸道完整性,減少豬養(yǎng)殖過程中腸道慢性炎癥的發(fā)生[72-74]。然而,動物模型的病理生理機制可能與炎癥性腸病的潛在機制不同。因此,還需要進一步研究來驗證CAP在畜牧生產(chǎn)中緩解腸道炎癥的效果。
綜上所述,CAP在減輕腸道炎癥的癥狀方面具有正向作用,但要注意添加劑量,高濃度CAP(超過100 μmol/L)對細胞具有毒性作用。另外,推測在斷奶仔豬飼料中添加適量的CAP具有腸道保健和預(yù)防腹瀉的作用[9],但這需要進一步的體內(nèi)試驗研究驗證。
4 展望
綜上所述,CAP對腸道菌群具有調(diào)節(jié)作用,能夠促進普拉梭菌和羅斯氏菌定殖與相對豐度的增加,兩者是能量代謝調(diào)控和共生菌群平衡所需的產(chǎn)丁酸鹽細菌。并且CAP能夠減少產(chǎn)脂多糖的革蘭氏陰性菌的相對豐度,增強腸道屏障,從而阻止脂多糖進入血液循環(huán)。同時CAP 還能夠通過抑制毒力基因,來降低致病菌的毒力。但CAP 對特定細菌屬的影響在不同研究中的結(jié)果并不一致,這主要可能是CAP濃度和飼糧組成以及試驗動物不同與生理狀態(tài)不同造成的差異。CAP重塑腸道微生物群和改變特定細菌相對豐度的機制尚未完全被闡明,有待進一步驗證。
CAP能夠通過調(diào)整腸道菌群組成和相對豐度來穩(wěn)定腸道的內(nèi)環(huán)境,抑制腸道局部的炎癥。但需要注意CAP的使用劑量,過多地添加CAP會適得其反。目前CAP對腸道功能和腸道菌群組成以及緩解腸炎的研究主要集中在小鼠上,在畜禽上的研究與應(yīng)用相對較少,后續(xù)還需要在不同畜禽中進一步驗證,從而為CAP在畜禽生產(chǎn)以及減輕腸道炎癥與腹瀉中的應(yīng)用提供理論參考依據(jù)。
參考文獻:
[1] ABD AL HALEEM E N, HASAN W Y S, ARAFA H M M. Therapeutic effects of thymoquinone or capsaicin on acrylamide-induced reproductive toxicity in rats mediated by their effect on oxidative stress, inflammation, and tight junction integrity [J]. Drug and Chemical Toxicology, 2021, 7: 1-13.
[2] CHEN H, LI N, ZHAN X, et al. Capsaicin protects against lipopolysaccharide-induced acute lung injury through the HMGB1/NF-κB and PI3K/AKT/mTOR pathways [J]. Journal of Inflammation Research, 2021, 14: 5291-5304.
[3] HOSSEINI M, TAVALAEE M, RAHMANI M, et al. Capsaicin improves sperm quality in rats with experimental varicocele [J]. Andrologia, 2020, 52(11): 1-8.
[4] GU H, YANG Z, YU W Q, et al. Antibacterial activity of capsaicin against sectional cariogenic bacteria [J]. Pakistan Journal of Zoology, 2019, 51(2): 681-687.
[5] WANG F H, HUANG X Y, CHEN Y Y, et al. Study on the effect of capsaicin on the intestinal flora through high-throughput sequencing [J]. ACS Omega, 2020, 5(2): 1246-1253.
[6] MARINI E, MAGI G, MINGOIA M, et al. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive group a streptococci [J]. Front Microbiol, 2015, 6: 1-7.
[7] QIU J Z, NIU X D, WANG J F, et al. Capsaicin protects mice from community-associated methicillin-resistant staphylococcus aureus pneumonia [J]. PLoS One, 2012, 7(3): 1-10.
[8] FILIK G, COSKUN I, TEKIN O K, et al. Effects of dietary hot pepper waste powder on gut health and small intestine properties in japanese quails [J]. Brazilian Journal of Poultry Science, 2020, 22(4): 1-8.
[9] LIU Y, SONG M, CHE T M, et al. Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection[J]. Journal of Animal Science, 2014, 92(5): 2050-2062.
[10]NAMTED S, POEIKHAMPHA T, RAKANGTHONG C, et al. Effect of capsaicin and capsaicin plus DL-methionine hydroxy analog in diet on growth performance and gastrointestinal conditions of nursery pigs [J]. Indian Journal of Animal Research, 2019, 54(6): 703-708.
[11]PRAKASH U, SRINIVASAN K. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats [J]. The British Journal of Nutrition, 2010, 104(1): 31-39.
[12]PLATEL K, SRINIVASAN K. Studies on the influence of dietary spices on food transit time in experimental rats [J]. Nutrition Research, 2001, 21(9): 1309-1314.
[13]PLATEL K, SRINIVASAN K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats [J]. Nahrung Food, 2000, 44(1): 42-46.
[14]BHAT B G, SRINIVASAN M R, CHANDRASEKHARA N. Influence of curcumin and capsaicin on the composition and secretion of bile in rats [J]. Journal of Food Science and Technology, 1984, 21: 225-227.
[15]PRAKASH U N, SRINIVASAN K. Fat digestion and absorption in spice-pretreated rats [J]. Journal of the Science of Food and Agriculture, 2012, 92(3): 503-510.
[16]PRAKASH U, SRINIVASAN K. Enhanced intestinal uptake of iron, zinc and calcium in rats fed pungent spice principles-piperine, capsaicin and ginger (Zingiber officinale) [J]. Journal of Trace Elements in Medicine and Biology, 2013, 27(3): 184-190.
[17]VEDA S, SRINIVASAN K. Influence of dietary spices-black pepper, red pepper and ginger on the uptake of β-carotene by rat intestines [J]. Journal of Functional Foods, 2009, 1(4): 394-398.
[18]VEDA S, SRINIVASAN K. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats [J]. British Journal of Nutrition, 2011, 105(10): 1429-1438.
[19]TAKAHASHI A, SAKAGUCHI H, HIGUCHI O, et al. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model [J]. Food Chemistry, 2019, 277: 323-326.
[20]BLEY K, BOORMAN G, MOHAMMAD B, et al. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin [J]. Toxicologic Pathology, 2012, 40(6): 847-873.
[21]SONG J X, REN H, GAO Y F, et al. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice [J]. Frontiers in Physiology, 2017, 8: 1-12.
[22]PASSALACQUA L F M, JIMENEZ R M, FONG J Y, et al. Allosteric modulation of the faecalibacterium prausnitzii hepatitis delta virus-like ribozyme by glucosamine 6-phosphate: the substrate of the adjacent gene product [J]. Biochemistry, 2017, 56(45): 6006-6014.
[23]KHAN M T, DUNCAN S H, STAMS A J, et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases [J]. The ISME Journal, 2012, 6(8): 1578-1585.
[24]PROSBERG M, BENDTSEN F, VIND I, et al. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis [J]. Scandinavian Journal of Gastroenterology, 2016, 51(12): 1407-1415.
[25]MIQUEL S, MARTíN R, ROSSI O, et al. Faecalibacterium prausnitzii and human intestinal health [J]. Current Opinion in Microbiology, 2013, 16(3): 255-261.
[26]KARLSSON F H, TREMAROLI V, NOOKAEW I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control [J]. Nature, 2013, 498(7452): 99-103.
[27]FERREIRA-HALDER C V, FARIA A V S, ANDRADE S S. Action and function of faecalibacterium prausnitzii in health and disease [J]. Best Practice and Research Clinical Gastroenterology, 2017, 31(6): 643-648.
[28]DEMIRCI M, TOKMAN H B, UYSAL H K, et al. Reduced akkermansia muciniphila and faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma [J]. Allergologia et Immunopathologia, 2019, 47(4): 365-371.
[29]KANG C, ZHANG Y, ZHU X H, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes [J]. The Journal of Clinical Endocrinology and Metabolism, 2016, 101(12): 4681-4689.
[30]LONG S F, LIU S J, WANG J, et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs [J]. Animal Nutrition, 2021, 7(2): 305-314.
[31]TAMANAI-SHACOORI Z, SMIDA I, BOUSARGHIN L, et al. Roseburia spp.: a marker of health? [J]. Future Microbiology, 2017, 12: 157-170.
[32]朱 靖,林 紅,裴明財,等. 辣椒堿對泌乳前期奶牛產(chǎn)奶性能、血清生化指標、瘤胃微生物及代謝組的影響 [J]. 動物營養(yǎng)學報, 2021, 33(11): 6290-6299.
[33]REN C C, ZHANG Q X, DE HAAN B J, et al. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation [J]. Scientific Reports, 2016, 6:1-12.
[34]LI Z, WANG W W, LIU D, et al. Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with clostridium perfringens [J]. PLoS One, 2017, 12(11): 1-16.
[35]BABOOTA R K, MURTAZA N, JAGTAP S, et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice [J]. The Journal of Nutritional Biochemistry, 2014, 25(9): 893-902.
[36]SHARMA S, JAIN S, NAIR G N, et al. Capsicum annuum enhances L-lactate production by Lactobacillus acidophilus: implication in curd formation [J]. Journal of Dairy Science, 2013, 96(7): 4142-4148.
[37]HUI S C, LIU Y, CHEN M T, et al. Capsaicin improves glucose tolerance and insulin sensitivity through modulation of the gut microbiota-bile acid-FXR axis in type 2 diabetic db/db mice [J]. Molecular Nutrition and Food Research, 2019, 63(23): 1-13.
[38]WEXLER H M. Bacteroides: the good, the bad, and the nitty-gritty [J]. Clinical Microbiology Reviews, 2007, 20(4): 593-621.
[39]LAKES J E, RICHARDS C I, FLYTHE M. Inhibition of Bacteroidetes and Firmicutes by select phytochemicals [J]. Anaerobe, 2019, 61: 1-15.
[40]HEMAISWARYA S, KRUTHIVENTI A K, DOBLE M. Synergism between natural products and antibiotics against infectious diseases [J]. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 2008, 15(8): 639-652.
[41]POOLE K. Efflux pumps as antimicrobial resistance mechanisms [J]. Annals of Medicine, 2007, 39(3): 162-176.
[42]JANG S. Multidrug efflux pumps in staphylococcus aureus and their clinical implications [J]. Journal of Microbiology, 2016, 54(1): 1-8.
[43]KALIA N P, MAHAJAN P, MEHRA R, et al. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of staphylococcus aureus [J]. The Journal of Antimicrobial Chemotherapy, 2012, 67(10): 2401-2408.
[44]OYEDEMI B O, KOTSIA E M, STAPLETON P D, et al. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer [J]. Journal of Ethnopharmacology, 2019, 245: 1-9.
[45]BACON K, BOYER R, DENBOW C, et al. Antibacterial activity of jalapeo pepper (Capsicum annuum var. annuum) extract fractions against select foodborne pathogens [J]. Food Science and Nutrition, 2017, 5(3): 730-738.
[46]MATIAS V R, AL-AMOUDI A, DUBOCHET J, et al. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2003, 185(20): 6112-6118.
[47]TOYODA T, SHI L, TAKASU S, et al. Anti-inflammatory effects of capsaicin and piperine on Helicobacter pylori-induced chronic gastritis in mongolian gerbils [J]. Helicobacter, 2016, 21(2): 131-142.
[48]BURKITT M D, DUCKWORTH C A, WILLIAMS J M, et al. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models [J]. Disease Models and Mechanisms, 2017, 10(2): 89-104.
[49]JONES N L, SHABIB S, SHERMAN P M. Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori [J]. FEMS Microbiology Letters, 1997, 146(2): 223-227.
[50]CHATTERJEE S, ASAKURA M, CHOWDHURY N, et al. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae [J]. FEMS Microbiology Letters, 2010, 306(1): 54-60.
[51]ALLAIS L, DE SMET R, VERSCHUERE S, et al. Transient receptor potential channels in intestinal inflammation: what is the impact of cigarette smoking? [J]. Pathobiology : Journal of Immunopathology, Molecular and Cellular Biology, 2017, 84(1): 1-15.
[52]NILIUS B. Transient receptor potential (TRP) cation channels: rewarding unique proteins [J]. Bulletin et Mémoires de L Académie Royale de Médecine de Belgique, 2007, 162(3/4): 244-253.
[53]CLAPHAM D E. TRP channels as cellular sensors [J]. Nature, 2003, 426(6966): 517-524.
[54]WILES T J, JEMIELITA M, BAKER R P, et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota [J]. PLoS Biology, 2016, 14(7):1-24.
[55]WANG Y W, TANG C, TANG Y, et al. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations [J]. Food and Nutrition Research, 2020, 64: 1-8.
[56]GONLACHANVIT S, FONGKAM P, WITTAYALERTPANYA S, et al. Red chili induces rectal hypersensitivity in healthy humans: possible role of 5HT-3 receptors on capsaicin-sensitive visceral nociceptive pathways [J]. Alimentary Pharmacology and Therapeutics, 2007, 26(4): 617-625.
[57]BERGERON F, BOUIN M, D'AOUST L, et al. Food avoidance in patients with inflammatory bowel disease: what, when and who? [J]. Clinical Nutrition, 2018, 37(3): 884-889.
[58]YIANGOU Y, FACER P, DYER N H, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel [J]. Lancet, 2001, 357(9265): 1338-1339.
[59]LUO C X, WANG Z J, MU J X, et al. Upregulation of the transient receptor potential vanilloid 1 in colonic epithelium of patients with active inflammatory bowel disease [J]. International Journal of Clinical and Experimental Pathology, 2017, 10(11): 11335-11344.
[60]CARR N J, BIBEAU F, BRADLEY R F, et al. The histopathological classification, diagnosis and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas and pseudomyxoma peritonei [J]. Histopathology, 2017, 71(6): 847-858.
[61]MOTTE J, AMBROSIUS B, GR?TER T, et al. Capsaicin-enriched diet ameliorates autoimmune neuritis in rats [J]. Journal of Neuroinflammation, 2018, 15(1): 1-13.
[62]FüHRER M, HAMMER J. Effect of repeated, long term capsaicin ingestion on intestinal chemo- and mechanosensation in healthy volunteers [J]. Neurogastroenterology and Motility, 2010, 21(5): 521-527.
[63]MATSUOKA K, KANAI T. The gut microbiota and inflammatory bowel disease [J]. Seminars in Immunopathology, 2015, 37(1): 47-55.
[64]DEMIRBILEK S, ERSOY M O, DEMIRBILEK S, et al. Small-dose capsaicin reduces systemic inflammatory responses in septic rats [J]. Anesthesia and Analgesia, 2004, 99(5): 1501-1507.
[65]SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43): 16731-16736.
[66]KAWAGUCHI T, MORI M, SAITO K, et al. Food antigen-induced immune responses in crohn's disease patients and experimental colitis mice [J]. Journal of Gastroenterology, 2015, 50(4): 394-405.
[67]KANG C, ZHANG Y, ZHU X H, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes [J]. Journal of Clinical Endocrinology and Metabolism, 2016(12):4681-4689.
[68]GOSO C, EVANGELISTA S, TRAMONTANA M, et al. Topical capsaicin administration protects against trinitrobenzene sulfonic acid-induced colitis in the rat [J]. European Journal of Pharmacology, 1993, 249(2): 185-190.
[69]OKAYAMA M, TSUBOUCHI R, KATO S, et al. Protective effect of lafutidine, a novel histamine H2-receptor antagonist, on dextran sulfate sodium-induced colonic inflammation through capsaicin-sensitive afferent neurons in rats [J]. Digestive Diseases and Sciences, 2004, 49(10): 1696-1704.
[70]KATO S, TANAKA A, KUNIKATA T, et al. Protective effect of lafutidine against indomethacin-induced intestinal ulceration in rats: relation to capsaicin-sensitive sensory neurons [J]. Digestion, 2000, 61(1): 39-46.
[71]ELIAKIM R, KARMELI F, OKON E, et al. Ketotifen ameliorates capsaicin-augmented acetic acid-induced colitis [J]. Digestive Diseases and Sciences, 1995, 40(3): 503-509.
[72] ZHAO X Y, DONG B Q, FRIESEN M, et al. Capsaicin attenuates lipopolysaccharide-induced inflammation and barrier dysfunction in intestinal porcine epithelial cell line-J2 [J]. Frontiers in Physiology, 2021, 12: 1-14.
[73]SHEKARAPPA S B, KANDAGALLA S, MALOJIRAO V H, et al. A systems biology approach to identify the key targets of curcumin and capsaicin that downregulate pro-inflammatory pathways in human monocytes [J]. Computational Biology and Chemistry, 2019, 83: 1-13.
[74] CONG X, ZHANG Y, YANG N Y, et al. Occludin is required for TRPV1-modulated paracellular permeability in the submandibular gland [J]. Journal of Cell Science, 2013, 126(5): 1109-1121.
(責任編輯:陳海霞)