尹子銘,楊 燕,唐若蘭,鮑紫陽,李麗瓊,彭麗娟,李國學,袁 京
秸稈對豬糞靜態(tài)兼性堆肥無害化和腐熟度的影響
尹子銘,楊 燕,唐若蘭,鮑紫陽,李麗瓊,彭麗娟,李國學,袁 京※
(中國農(nóng)業(yè)大學資源與環(huán)境學院農(nóng)田土壤污染防控與修復北京市重點實驗室,北京 100193)
為促進豬糞靜態(tài)兼性堆肥產(chǎn)品無害化和腐熟,通過添加玉米秸稈調控堆體物理結構特性和碳氮比,采用傳統(tǒng)自然發(fā)酵方式進行為期90 d的靜態(tài)兼性堆肥試驗,分別設置純豬糞處理(P)和秸稈調控處理(PC)研究靜態(tài)兼性堆肥過程腐熟度指標、糞大腸菌群以及微生物群落結構演變特征。結果表明,秸稈調控增加了堆體孔隙率(提高19.41%),促進氧氣向堆體內(nèi)部擴散,增強了好氧微生物對有機質的降解,降低NH4+-N,可溶性有機氮(dissolved total nitrogen, DTN)等植物毒性物質含量,提升了堆肥腐熟度,兩組處理堆肥產(chǎn)品種子發(fā)芽指數(shù)分別為40.84%(P)和114.60%(PC)。靜態(tài)兼性堆肥經(jīng)過30~40 d自然發(fā)酵后,糞大腸菌群數(shù)量達到衛(wèi)生安全標準,堆體溫度、NH4+-N和有機酸含量均會影響糞大腸桿菌的活性。堆體中微生物以厚壁菌門、放線菌門、變形菌門等與木質纖維素降解相關的菌門為優(yōu)勢菌門,堆體自上而下由好氧菌屬演替為厭氧菌屬,并形成好氧、兼性、厭氧的微生物分層。秸稈調控增加了堆體的好氧區(qū)域,促進和提高了豬糞靜態(tài)兼性堆肥無害化和腐熟度。
秸稈;品質控制;靜態(tài)兼性堆肥;糞大腸菌群;微生物群落
隨著經(jīng)濟的迅速發(fā)展以及人民生活水平的逐步提高,生豬養(yǎng)殖業(yè)規(guī)模不斷加大,中國2020年生豬出欄數(shù)達4.07億頭,糞尿年產(chǎn)生量已達8.41億t[1]。豬糞含有較高的有機質、N、P、K及微量元素,若未能得到有效的資源化處理,會導致嚴峻的環(huán)境污染問題[2]。同時,農(nóng)業(yè)科技進步也帶動農(nóng)業(yè)生產(chǎn)水平大幅提升,農(nóng)作物秸稈產(chǎn)量也隨之增加[3],達到8億t/a,居世界首位。對糞便和秸稈進行無害化處理并加以合理利用,不但能解決污染問題,而且能將其轉化為農(nóng)業(yè)生產(chǎn)的寶貴資源[4]。高溫好氧堆肥技術具有周期短,腐熟徹底,腐殖化程度高等優(yōu)點,是實現(xiàn)資源化利用的有效途徑之一[5],但高溫好氧堆肥技術需配備專業(yè)的機械設備,且為保障堆體內(nèi)氧氣含量滿足微生物需求,常依賴于強制鼓風或翻堆處理,存在成本高等問題。目前在中國中小型養(yǎng)殖場和散養(yǎng)戶,高溫好氧堆肥處理技術并不普遍。
傳統(tǒng)靜態(tài)兼性堆肥技術無需專業(yè)的通風設備,主要通過空氣自由擴散提供微好氧發(fā)酵條件,可通過有機質較長時間降解實現(xiàn)堆肥無害化和腐熟。與高溫好氧堆肥相比,靜態(tài)兼性堆肥溫度整體較低,保持在20~40 ℃之間。受農(nóng)業(yè)季節(jié)性用肥的原因,靜態(tài)兼性堆肥技術是目前廣泛采用的低成本輕簡化的就地就近資源化利用方式,目前中國60%以上的畜禽糞便,尤其是豬糞,普遍采用靜態(tài)兼性堆肥技術[6]。靜態(tài)兼性堆肥過程空氣擴散深度有限,堆體氧氣含量低,呈現(xiàn)兼性好氧環(huán)境,導致微生物代謝活性低,不利于有機物降解,存在發(fā)酵周期較長、發(fā)酵溫度低[7]、無害化不徹底以及產(chǎn)品腐熟度低等問題。
為提高靜態(tài)兼性堆肥產(chǎn)品腐熟度,以堆體物理結構特性和物料碳氮比為出發(fā)點,采用豬糞和秸稈作為性能較好的互補輔料[8]。在豬糞中添加適宜比例的秸稈可增加堆體孔隙率并調節(jié)C/N[9],利于空氣向堆體內(nèi)部擴散,提高堆體微生物的代謝活性[10-11]。大量研究表明,畜禽糞便與作物秸稈協(xié)同堆肥可顯著提高堆肥產(chǎn)品的穩(wěn)定性和腐熟程度[12-13]。XU等[14]研究發(fā)現(xiàn)秸稈添加可以通過調節(jié)堆肥原料中氧氣含量和C/N等特性縮短腐熟期。ZHOU等[15-16]利用鋸末、秸稈和廢蘑菇基質等碳源膨松劑調節(jié)原料C/N,可以減少溫室氣體和NH3的排放,并提高腐熟度。LIU等[17]在雞糞、豬糞、牛糞中添加秸稈進行堆肥,發(fā)現(xiàn)秸稈調控可極大地促進有機質的降解,促進堆肥腐熟。但關于秸稈調控如何影響靜態(tài)兼性堆肥腐熟度和微生物群落結構的研究還較少,尤其是對病原菌變化的影響幾乎未有報道。
因此,本研究選擇產(chǎn)量大且易獲取的玉米秸稈作為調節(jié)豬糞靜態(tài)兼性堆肥性質的輔料,通過研究豬糞靜態(tài)兼性堆肥過程理化性質、腐熟度溶解性碳氮含量、糞大腸菌群變化和微生物群落演替,結合RDA(redundancy analysis)及相關性分析揭示豬糞靜態(tài)兼性堆肥過程病原菌滅活和堆肥產(chǎn)物腐熟機制,擬為畜禽糞便靜態(tài)兼性堆肥技術提供理論依據(jù)和技術標準化支撐。
靜態(tài)兼性堆肥試驗原料為新鮮豬糞和玉米秸稈,豬糞取自畜禽分中心昌平試驗基地,耕層土和玉米秸稈取自中國農(nóng)業(yè)大學上莊實驗站,玉米秸稈經(jīng)自然風干后粉碎成10~50 mm的均勻小段,堆肥基本理化性質見表1。
表1 靜態(tài)兼性堆肥原材料基本理化性質
注:a基于干基;b基于濕基。
Note: a is based on the dry weight, b is based on the wet weight.
試驗設置2個處理,豬糞不添加輔料作為對照,標記為P處理;豬糞與玉米秸稈按4:1的濕基質量比混合堆肥,標記為PC處理。為降低靜態(tài)兼性堆肥過程污染氣體排放,模擬小規(guī)模養(yǎng)殖場普遍采用的耕層土覆蓋方式,在豬糞堆體(50 cm)表層覆蓋耕層土(15 cm),靜態(tài)兼性堆肥周期為90 d。試驗裝置為100 L法蘭鐵箍桶(圖1),口徑40 cm,桶體直徑50 cm,底部直徑35 cm,桶體高度80 cm。在堆體中間插入溫度傳感器,記錄堆肥溫度,發(fā)酵桶頂部敞開,呈自然通風方式。
分別在靜態(tài)兼性堆肥的第0、10、20、50和80天稱重取樣,第90天取堆肥上層(Upper layers,U;0~15 cm)、中層(Middle layers,M;15~35 cm)和下層(Bottom layers,B;35~50 cm)樣品。用四分法多點采集固體樣品約200 g分兩部分保存,一部分于4 ℃的冷藏冰箱保存,用于測定pH值、電導率(electrical conductivity,EC)、種子發(fā)芽指數(shù)(germination index,GI)、C/N、可溶性有機碳(dissolved organic carbon,DOC)、可溶性有機氮(dissolved total nitrogen,DTN)、銨態(tài)氮(NH4+-N)、硝態(tài)氮(NO3--N)、微生物群落及糞大腸菌群,另一部分經(jīng)自然風干磨成粉末后測定總碳(total carbon,TC)和總氮(total nitrogen,TN)含量。
溫度由自動數(shù)字溫度計(WD-6210,北京宏遠鵬奧有限公司,中國)測定;含水率采用烘干法于105℃烘箱中烘至質量恒定后測定;O2含量由便攜式沼氣分析儀(Biogas 5000,Geotech,英國)測定;用元素分析儀(Elementar Analysen systeme,Hanau,德國)測定總碳和總氮的含量??扇苄杂袡C碳和可溶性氮采用液相色譜法(TOC-L,日本島津)測定。
堆體自由孔隙率根據(jù)Baptista等[18]中的公式計算。
NH4+-N和NO3--N的測定:用2 mol/L的KCl溶液,按照1∶10(固液比)同試樣混合,震蕩30 min、靜置,過濾取其上清液經(jīng)流動分析儀(Auto Analyzer3,Seal,德國)進行測定;
pH值、電導率和種子發(fā)芽指數(shù)的測定:將堆肥鮮樣與去離子水按照1∶10(固液比)混勻,在170 r/min的轉速下振蕩30 min,靜置10 min,通過0.45 μm濾膜過濾,收集上清液作為待測液,測定pH值、電導率和種子萌發(fā)指數(shù)。其中pH、EC采用多參數(shù)分析儀(DZS-706-A,雷磁,上海)進行測定;GI的測定方法為取待測液5 mL鋪于有濾紙的培養(yǎng)皿中,均勻放置10粒蘿卜種子,于(25±1)℃培養(yǎng)箱(SHP-250,精宏,上海)中避光培養(yǎng)48 h,測算GI,計算方法參照《有機肥料(NY/T525-2021)》。
微生物群落結構測定:根據(jù)制造商說明書,采用FastDNA SPIN試劑盒(MP Biomedicals,Solon,USA)從堆肥樣品中提取基因組DNA。采用Illumina公司的Miseq PE300/NovaSeq PE250平臺進行測序(上海美吉生物醫(yī)藥科技有限公司)。測序結果根據(jù)公司云平臺計算軟件進行數(shù)據(jù)處理分析。
糞大腸菌群的測定:按照GB/T19524.1-2004的規(guī)定方法測定。
利用Microsoft Excel 2019計算數(shù)據(jù)的平均值和標準偏差,使用Origin Lab 2022b繪圖。采用Pearson相關分析方法,利用SPSS 26.0(SPSS Inc.,Chicago,USA)分析理化參數(shù)、微生物群落與腐殖化指標間的關系。網(wǎng)絡分析采用MWNA(molecular ecological network analysis pipeline)(http://ieg4.rccc.ou.edu/mena/login.cgi)和RStudio進行(RStudio Inc.,波士頓,MA),由Gephi 0.9.2執(zhí)行。
溫度是評價堆肥穩(wěn)定狀態(tài)的直觀指標,靜態(tài)兼性堆肥過程中堆體溫度維持在25.13~36.13 ℃(圖2a)。靜態(tài)兼性堆肥過程有機質降解緩慢,堆體沒有明顯高溫期且隨環(huán)境溫度變化波動。堆肥初期,由于秸稈調控提高了堆體自由孔隙率(提高19.41%)和C/N,充足的氧氣和碳源,使好氧微生物降解有機物速率加快,耗氧量增加(圖2b),導致PC處理升溫較快[19]。堆肥進行25 d后,P處理與PC處理溫度表現(xiàn)出相同的趨勢。因此,靜態(tài)兼性堆肥方式下,改善堆體的物理結構和C/N能有效促進堆肥發(fā)酵進程。
O2含量與微生物代謝活動聯(lián)系密切,能反映堆肥中好氧微生物活性[20]。O2含量在堆肥前期變化波動較大,堆肥進行40 d后,兩組處理變化趨勢基本相同(圖2b)。堆肥前期,PC處理O2含量下降幅度更大(降低64.15%),是由于秸稈添加改善了堆體結構,微生物降解有機物更劇烈,O2消耗量更大。堆肥進行40 d后,兩組處理的易降解有機物含量減少,微生物群落結構基本穩(wěn)定,對O2需求量減少。經(jīng)秸稈調控后,O2可經(jīng)過堆體自由孔隙向內(nèi)部擴散,激活堆體內(nèi)部好氧微生物活性,促進了靜態(tài)兼性堆肥進程。
圖2 靜態(tài)兼性堆肥過程中溫度和氧氣含量變化
pH值變化主要由堆體中微生物活動和有機物降解產(chǎn)物共同決定[21]。兩組處理pH值為6.99~8.35(圖 3a),PC處理pH值顯著高于P處理(<0.05),這可能是微生物作用使含氮化合物降解產(chǎn)生NH4+-N導致pH值上升。堆肥結束時,兩組處理上層pH值差異較大,主要是PC處理微生物活性高,氮素轉化較P處理提前,導致部分氮素以氨氣形式損失,最終的pH值較低(7.04)。P處理的堆體物理結構緊實,O2難以深層擴散,厭氧環(huán)境產(chǎn)生有機酸,導致P處理中層和下層pH值較低。而PC處理中層pH值達到7.91,這是由于秸稈調控后,氧氣擴散至堆體中層,滿足好氧微生物降解氮源有機物條件,產(chǎn)生銨鹽等堿性離子,使堆體pH值較高。
EC值可反映可溶性鹽含量,是產(chǎn)生植物毒害作用的重要因素之一[22-23]。一般認為,EC<4 mS/cm不會對植物產(chǎn)生毒害作用[24]。靜態(tài)兼性堆肥過程中,PC處理不同階段的EC值顯著低于P處理(<0.005)(圖3b)。隨堆肥進行,PC處理的EC值呈逐漸下降并穩(wěn)定的趨勢,堆肥結束時為1.57 mS/cm,可能是堆肥產(chǎn)生的NH4+-N轉換為氨氣釋放及小分子有機酸分解導致[25]。P處理則呈先增加后降低的變化趨勢,純豬糞堆體自由孔隙率低,有機物轉化緩慢,產(chǎn)生的水溶性礦物離子發(fā)生“濃縮效應”,堆肥進行20 d時達到峰值(3.18 mS/cm)。隨后,微生物利用產(chǎn)生的NH4+-N,轉化為微生物氮并合成大分子腐殖質,EC值略有下降[26],這與P處理NH4+-N含量變化結果一致。堆肥結束時,堆肥上層物料EC值含量低,主要是由于PC處理產(chǎn)生的NH4+-N等鹽分離子揮發(fā);堆肥中層物料兩組處理EC值均達到峰值,為3.97~3.99 mS/cm,PC處理堆體中層呈兼性堆肥條件,利于好氧微生物降解有機物,產(chǎn)生大量鹽分離子;堆體下層,兩組處理形成厭氧環(huán)境,礦化程度低,EC值低于堆肥中層。
注:U、M、B分別為堆肥上層、中層和下層,下同。
堆肥C/N比是反映堆肥穩(wěn)定性、腐殖化程度和微生物活性的重要指標[27]。靜態(tài)兼性堆肥過程中,兩處理C/N均為先升高后降低變化趨勢(圖3c)。堆肥前期,兩組處理C/N逐漸升高,并在第20天達到峰值,可能是由于堆肥初有機氮的降解速率高于有機碳。堆肥后期,微生物增殖代謝導致有機質分解加快[28]以及氮的礦化使C/N均下降。一般認為,C/N越低代表堆體的腐熟程度越好[29],堆肥結束時,兩組處理分層C/N自上而下逐漸增加,表明堆肥上層腐熟效果最好。
GI是判斷堆肥無害化和腐熟度的權威和經(jīng)典生物指標,被廣泛應用于評價堆肥產(chǎn)品植物毒性,一般認為GI>70%時,堆肥達到腐熟[30]。靜態(tài)兼性堆肥過程,兩組處理的GI逐漸上升(圖3d),PC處理GI始終高于P處理,至堆肥結束時,P處理GI為40.84%,未達到腐熟標準,PC處理的GI為114.60%,提高了73.76%,表明秸稈調控可有效促進堆肥腐熟并降低植物毒性。靜態(tài)兼性堆肥不同層腐熟程度不同,堆肥上層,兩處理堆肥腐熟效果均最好,GI分別達到90.23%(P)和93.21%(PC);堆肥中層,PC處理相比于P處理的GI提高61.34%,這是由于秸稈添加提高了堆體自由孔隙率(40.42%),增加了中層好氧微生物對有機物的好氧降解過程;堆肥下層,兩組處理GI均為0%,厭氧環(huán)境產(chǎn)生的有機酸可能是脅迫種子萌發(fā)的主要因素[31]。
糞大腸菌群是表征有機肥料無害化程度的重要指標之一[30]。靜態(tài)兼性堆肥過程中,糞大腸菌群數(shù)逐漸下降并趨于穩(wěn)定(圖4)。堆肥初期,兩組處理原始物料中糞大腸菌群數(shù)均為350 cfu/g,堆肥進行20 d后,P處理糞大腸菌群數(shù)下降到安全閾值以下(<2 lgcfu/g),較PC處理提前20 d,主要是由于秸稈調控后,PC處理具備的良好堆體物理結構為糞大腸菌群提供了更適宜的存活環(huán)境。而P處理由于自由孔隙率低,且EC值和NH4+-N含量較高,抑制了糞大腸菌群活性[32]。經(jīng)靜態(tài)兼性堆肥,兩處理糞大腸菌群數(shù)均滿足畜禽糞便無害化處理技術規(guī)范(GB/T 36195-2018)中糞大腸菌群小于2 lgcfu/g要求。
圖4 靜態(tài)兼性堆肥過程中糞大腸菌群數(shù)量的變化
靜態(tài)兼性堆肥過程中,兩處理無機態(tài)氮主要以NH4+-N形式存在(0.31~7.06 g/kg),NO3--N含量較低(0.002~0.27 g/kg)。P處理NH4+-N含量較高,主要由堆肥有機物被微生物緩慢分解和累積濃縮效應導致。秸稈調控后,PC處理自由孔隙率提高,NH4+-N以氨氣形式損失,導致NH4+-N含量降低[33]。堆肥前期,含氮有機物礦化而轉化為大量NH4+-N[21],使堆體NH4+-N含量逐漸增加;堆肥后期,有機質礦化作用減弱,硝化作用增強,堆體NH4+-N含量開始下降,特別是PC處理,下降幅度較大(89.49%),可能是由于秸稈調控后硝化細菌活性加強,使部分NH4+-N向NO3--N轉化[34](圖5b)。堆肥上層,兩組處理NH4+-N和NO3--N含量均較低,可能是氨化、硝化和反硝化作用下轉化為N2O和N2等含N氣體損失;NO3--N主要在PC處理中層產(chǎn)生(0.45 g/kg),較高的pH值有利于硝化反應,因為硝化是一種堿度消耗過程[35],這與PC處理中層pH值較高結果一致(圖3a)。
可溶性有機碳和可溶性氮是評價堆肥植物毒性的重要指標,反映堆肥有機物分解和轉化情況[36]。P處理DOC和DTN含量始終維持在較高水平(圖5),且DOC含量在堆肥過程變化不明顯,但在PC處理中DOC含量呈降低趨勢,從初始的9.75 g/kg下降至4.52 g/kg,兩處理DTN含量分別下降65.66%(P)和13.28%(PC),主要是由于秸稈調控增強了微生物對于DOC和DTN的利用。DOC和DTN是抑制種子發(fā)芽的主要因素[37-38],兩組處理DOC和DTN含量自上而下逐漸升高,這與GI結果一致(圖3d)。PC處理中層物料DOC和DTN含量顯著低于純豬糞處理(<0.01),表明秸稈調控促進了有機質降解和堆肥腐熟,使物料腐熟區(qū)間擴大,有利于堆肥物料腐熟的均一化[39]。
圖5 靜態(tài)兼性堆肥過程中NH4+-N、NO3--N、DOC、DTN濃度變化
Ace和Chao、Shannon和Simpson指數(shù)分別表示微生物群落的豐富性和多樣性,較高的值表示較高的豐富性和多樣性(表2)。在PC處理中,秸稈調控為微生物創(chuàng)造了良好的生存環(huán)境,且使堆體自上而下呈好氧、兼性、厭氧的堆肥環(huán)境,微生物的豐富度和多樣性均較高。而P處理未添加秸稈進行調控,中層和下層堆體環(huán)境具有高度同質性,P處理中層微生物的豐富度和多樣性顯著低于PC處理。
表2 靜態(tài)兼性堆肥微生物多樣性指數(shù)
堆肥過程中有機質的降解通常伴隨微生物演替[40](圖6a),兩組處理優(yōu)勢細菌門為厚壁菌門(Firmicutes)、放線菌門(Actinobacteria)和變形菌門(Proteobacteria),相對豐度占比達64.70%~99.91%。Firmicutes在堆肥過程中通常表現(xiàn)出較高的相對豐度,在P處理中層、下層和PC處理下層的相對豐度達80%以上,這與Firmicutes可在高NH4+-N、高有機酸的極端環(huán)境中生存有關。堆體中層,P處理相對豐度達96.11%,PC處理為63.63%,表明秸稈調控構建了較好的微生物生存環(huán)境。Actinobacteria可產(chǎn)生木質纖維素水解酶,在有機物的降解中發(fā)揮著重要的作用[41]。秸稈調控處理Actinobacteria從2.96%(20 d)升高至17.97%(50 d),Actinobacteria在一定程度上可表征堆肥腐熟程度[42],因此,PC處理獲得了較高的腐熟度。Proteobacteria中包括大量碳氮循環(huán)代謝菌屬,是有機質降解轉化過程中關鍵菌門,因而在PC處理堆肥上層和中層相對豐度較高,分別為22.32%和20.37%,P處理僅在堆肥上層達到16.39%。細菌屬水平種類及相對豐度更能反映堆肥中微生物群落結構變化[43],在靜態(tài)兼性堆肥樣本中檢測的前20個屬(相對豐度>0.01%)中,優(yōu)勢菌屬主要為:、、、_1和(圖6b)。P處理以厭氧微生物占主導地位,PC處理則以好氧微生物為優(yōu)勢菌群。此外,堆體不同分層微生物菌群也存在差異,自上而下由好氧菌屬逐漸演替為厭氧菌屬。
圖6 細菌在門水平及屬水平相對豐度變化
根據(jù)細菌屬的相對豐度對兩個處理堆肥90 d結束時上層、中層和下層的前6個細菌屬進行差異分析(圖7)。兩組處理上層微生物菌屬多樣性均高于中層和下層,P處理中層和下層微生物群落結構相似,共有菌屬達到141種;PC處理上層和中層微生物群落結構相似,且兩處理下層堆體微生物群落結構更具相似性,共有菌屬達119種。是一類好氧菌屬,出現(xiàn)在兩組處理堆肥上層(P:5.31%,PC:2.48%),說明堆肥上層具有適宜的好氧堆肥環(huán)境,_1為嚴格厭氧菌屬,在堆肥下層具有較高的相對豐度(P:44.06%,PC:50.88%)。值得注意的是,和_1同時存在于PC處理中層,秸稈調控使堆體形成了良好的兼性堆肥結構。秸稈調控增加了堆體中微生物豐富度和多樣性,使堆體自上而下形成了好氧、兼性、厭氧的堆肥條件。,,和在上層、中層和下層廣泛存在。此外,是一種病原菌,其豐度的降低意味著疾病傳播風險降低,且PC處理對其消減作用更強,進一步說明秸稈調控可影響堆體的微生物群落結構并對病原菌活性產(chǎn)生影響。
通過網(wǎng)絡分析堆肥理化參數(shù)(pH值、EC、O2、C/N、溫度)及腐熟度指標(NH4+-N、NO3--N、DOC、DTN、GI)與微生物群落的相關關系。P和PC處理分別產(chǎn)生168、325個節(jié)點和258、719個邊,秸稈調控的PC處理形成了更加復雜和穩(wěn)定的微生物群落結構(圖8)。靜態(tài)兼性堆肥過程微生物群落均主要由Firmicutes、Actinobacteria和Proteobacteria組成,總相對豐度大于90%。P處理中菌屬較單一,大部分菌屬來自Firmicutes,從腐熟度指標來看,單個優(yōu)勢菌門對堆肥的影響并不明顯。兩組處理微生物群落均與氧氣呈正相關關系,氧氣擴散程度會直接影響堆肥過程微生物群落的演替及有機物的降解效率。NH4+-N和DTN與大部分微生物群落呈負相關關系,但P處理中與其相關的菌屬明顯少于PC處理,表明較高含量的氮(圖5a,圖5d)會抑制微生物群落演替,進而影響堆肥有機物的降解。總而言之,秸稈調控使PC處理中微生物具有較高的多樣性和相對豐度,尤其是增加了與堆肥腐熟度相關的微生物菌屬,促進了有機質降解和堆肥腐熟。
圖7 P和PC處理90上(90U)、90中(90M)和90下(90B)層及前6個細菌屬的差異分析
圖8 P和PC處理中關鍵因子與相關細菌在屬水平上的Pearson分析
1)秸稈調控可改善堆體孔隙率和物料C/N,使堆肥產(chǎn)品種子發(fā)芽指數(shù)(GI)提高了73.76%,促進豬糞靜態(tài)兼性堆肥腐熟。靜態(tài)兼性堆肥過程易形成物料腐熟分層化,堆體底層形成厭氧區(qū)域,腐熟度隨堆體的深度逐漸降低,秸稈調控可改善厭氧區(qū)域,有利于堆體物料腐熟均一化。
2)豬糞靜態(tài)兼性堆肥經(jīng)過30~40 d堆漚后,糞大腸菌群數(shù)可降低至衛(wèi)生安全標準以下(<2 lgcfu/g),堆體溫度、NH4+-N和有機酸含量均會影響糞大腸菌群的活性。
3)秸稈調控增加了堆體微生物多樣性和豐富度,使微生物群落結構更加復雜和穩(wěn)定,減少了厭氧區(qū)域,增加了Firmicutes、Actinobacteria、Proteobacteria等與木質纖維素降解相關的菌屬相對豐度以及等好氧菌屬,提高了堆肥有機質降解和物料腐熟。
[1] 莊犁,周慧平,張龍江. 我國畜禽養(yǎng)殖業(yè)產(chǎn)排污系數(shù)研究進展[J]. 生態(tài)與農(nóng)村環(huán)境學報,2015,31(5):633-639.
ZHUANG Li, ZHOU Huiping, ZHANG Longjiang. Progress in the study of production and emission factors of livestock and poultry farming in China[J]. Journal of Ecology and Rural Environment, 2015, 31(5): 633-639. (in Chinese with English abstract)
[2] 陳靜. 我國生豬養(yǎng)殖企業(yè)糞污資源化利用行為及影響因素研究[D]. 北京:中國農(nóng)業(yè)科學院,2019.
CHEN Jing.Study on the Behavior and Factors Influencing the Resource Utilization of Manure in Pig Breeding Enterprises in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract)
[3] 石祖梁,楊四軍,常志州,等. 秸稈產(chǎn)生利用現(xiàn)狀調查與禁燒面臨難點分析:以江蘇省某鄉(xiāng)鎮(zhèn)為例[J]. 農(nóng)業(yè)資源與環(huán)境學報,2014,31(2):103-109.
SHI Zuliang, YANG Sijun, CHANG Zhizhou, et al. Analysis of the current situation of straw production and utilization and the difficulties faced in banning straw burning: Atownship in Jiangsu Province as an example[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 103-109. (in Chinese with English abstract)
[4] JIAO M N, REN X A, HE Y F, et al. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting[J]. Bioresource Technology, 2023, 367: 128191.
[5] ZHU N, ZHU Y Y, KAN Z X, et al. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw[J]. Bioresource Technology, 2021, 341: 125842.
[6] WANG G, KONG Y, YANG Y, et al. Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure[J]. Environmental Pollution, 2022, 303: 119174.
[7] SARKAR S, BANERJEE R, CHANDA S, et al. Effectiveness of inoculation with isolated Geobacillus strains in the thermophilic stage of vegetable waste composting[J]. Bioresource Technology, 2010, 101(8): 2892-2895.
[8] 陸曉林,楊玉欣,洪春來,等. 豬糞輔料促進茄果類蔬菜廢棄物堆肥品質的微生物機理[J]. 農(nóng)業(yè)環(huán)境科學學報,2022,41(5):1097-1107.
LU Xiaolin, YANG Yuxin, HONG Chunlai, et al. Microbial mechanism of pig manure supplementation for compost quality of eggplant and fruit vegetable wastes[J]. Journal of Agricultural Environmental Science, 2022, 41(5): 1097-1107. (in Chinese with English abstract)
[9] 王麗麗,孫東升,許雷,等. 秸稈過濾豬場廢水及濾料與豬糞好氧堆肥研究[J]. 農(nóng)業(yè)工程學報,2022,38(19):180-189.
WANG Lili, SUN Dongsheng , XU Lei, et al. Study on straw filtration of wastewater from pig farm and aerobic composting of filter material and pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 180-189. (in Chinese with English abstract)
[10] LIU H T, GUO H N, GUO X X, et al. Probing changes in humus chemical characteristics in response to biochar addition and varying bulking agents during composting: A holistic multi-evidence-based approach[J]. Journal of Environmental Management, 2021, 300: 113736.
[11] LI Y, CHEN Z M, CHEN J, et al. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation[J]. Global Change Biology, 2022, 28(24): 7410-7427.
[12] MENG X, LIU B, XI C, et al. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks[J]. Bioresource Technology, 2018, 251: 22-30.
[13] ZHOU G, QIU X, CHEN L, et al. Succession of organics metabolic function of bacterial community in response to addition of earthworm casts and zeolite in maize straw composting[J]. Bioresource Technology, 2019, 280: 229-238.
[14] XU Z, XU W, ZHANG L, et al. Bacterial dynamics and functions driven by bulking agents to mitigate gaseous emissions in kitchen waste composting[J]. Bioresource Technology, 2021, 332: 125028.
[15] YANG F, LI G X, YANG Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.
[16] ZHOU H, CHEN T, GAO D, et al. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting[J]. Bioresource Technology, 2014, 171: 452-460.
[17] LIU T, KUMAR A M, VERMA S, et al. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting[J]. Bioresource Technology, 2021, 340: 125713.
[18]Baptista M, Antunes F, Goncalves M S, et al. Composting kinetics in full-scale mechanical-biological treatment plants[J]. Waste Management, 2010, 30(10): 1908-1921.
[19] 龔昆,張莉,熊海容. 秸稈堆肥降解過程中的微生物變化[J]. 湖北農(nóng)業(yè)科學,2019,58(21):81-86.
GONG Kun, ZHANG Li, XIONG Hairong. Microbial changes during the degradation of straw compost[J]. Hubei Agricultural Science, 2019, 58(21): 81-86. (in Chinese with English abstract)
[20] WAN L, WANG X, CONG C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw[J]. Bioresource Technology, 2020, 301: 122730.
[21] 李太魁,王小非,郭戰(zhàn)玲,等. 添加生物炭對豬糞好氧堆肥過程氮素轉化與氨揮發(fā)的影響[J]. 生態(tài)環(huán)境學報,2021,30(4):874-879.
LI Taikui, WANG Xiaofei, GUO Zhanling, et al. Effect of adding biochar on nitrogen conversion and ammonia volatilization during aerobic composting of swine manure[J]. Journal of Ecology and Environment, 2021, 30(4): 874-879. (in Chinese with English abstract)
[22] MENG X, LIU B, ZHANG H, et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment[J]. Bioresource Technology, 2019, 276: 281-287.
[23] 劉娟,沈玉君,羅文海,等. 鹽含量對餐廚垃圾好氧堆肥腐殖化過程及微生物演變的影響[J]. 農(nóng)業(yè)工程學報,2022,38(19):190-201.
LIU Juan, SHEN Yujun, LUO Wenhai, et al. Effects of salt content on humification process and microbial evolution of aerobic food waste compost[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 190-201. (in Chinese with English abstract)
[24] LI S, LI J, YUAN J, et al. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting[J]. Environmental Technology, 2017, 38(1314): 1770-1778.
[25] 張韻,鄭威,楊志敏,等. Fe2O3添加對豬糞好氧堆肥腐熟及碳素保留的影響[J]. 環(huán)境影響評價,2021,43(6):85-91.
ZHANG Yun, ZHENG Wei, YANG Zhimin, et al. Effect of Fe2O3addition on the decomposition and carbon retention of aerobic composting of pig manure[J]. Environmental Impact Assessment, 2021, 43(6): 85-91. (in Chinese with English abstract)
[26] LIU T, AWASTHI M K, AWASTHI S K, et al. Influence of fine coal gasification slag on greenhouse gases emission and volatile fatty acids during pig manure composting[J]. Bioresource Technology, 2020, 316: 123915.
[27] WANG J, LIU Z, XIA J, et al. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting[J]. Bioresource Technology, 2019, 291: 121843.
[28] ONWOSI C O, IGBOKWE V C, ODIMBA J N, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects[J]. Journal of Environmental Management, 2017, 190: 140-157.
[29] TANG J, ZHANG L, ZHANG J, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment, 2020, 701: 134751.
[30] 蔡娟,張應虎,張昌勇,等. 牛糞堆肥過程中的物質變化及腐熟度評價[J]. 貴州農(nóng)業(yè)科學,2018,46(10):72-75.
CAI Juan, ZHANG Yinghu, ZHANG Changyong, et al. Material changes in the composting process of cattle manure and evaluation of maturity degree[J]. Guizhou Agricultural Science, 2018, 46(10): 72-75. (in Chinese with English abstract)
[31] 王國英,袁京,孔藝霖,等. 堆肥種子發(fā)芽指數(shù)測定方法與敏感性種子篩選[J]. 農(nóng)業(yè)工程學報,2021,37(19):220-227.
WANG Guoying, YUAN Jing, KONG Yilin, et al. Compost seed germination index determination method and sensitive seed screening[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 220-227. (in Chinese with English abstract)
[32] 王洹,姚莎,何蓉,等. 有機肥料糞大腸菌群指標檢測時效性初探[J]. 云南化工,2021,48(4):76-78.
WANG Huan, YAO Sha, HE Rong, et al. A preliminary study on the timeliness of fecal coliform index testing of organic fertilizers[J]. Yunnan Chemical, 2021, 48(4): 76-78. (in Chinese with English abstract)
[33] 張地方,袁京,王國英,等. 木本泥炭添加比例對豬糞堆肥腐熟度和污染及溫室氣體排放的影響[J]. 農(nóng)業(yè)工程學報,2016,32(增刊2):233-240.
ZHANG Difang, YUAN Jing, WANG Guoying, et al. Effects of woody peat addition on maturity and gaseous emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 233-240. (in Chinese with English abstract)
[34] 付祥峰,劉琪琪,李戀卿,等. 生物質炭對豬糞堆肥過程中氮素轉化及溫室氣體排放的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,2017,36(9):1893-1900.
FU Xiangfeng, LIU Qiqi, LI Lianqing, et al. Effect of biomass char on nitrogen conversion and greenhouse gas emissions during pig manure composting[J]. Journal of Agricultural Environmental Science, 2017, 36(9): 1893-1900. (in Chinese with English abstract)
[35] WANG M, WU Y, ZHAO J, et al. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting[J]. Bioresource Technology, 2022, 363: 127872.
[36] ANTONY R, WILLOUGHBY A S, GRANNAS A M, et al. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities[J]. Environmental Science & Technology, 2017, 51(8): 4328-4337.
[37] GONG B, ZHONG X, CHEN X, et al. Manipulation of composting oxygen supply to facilitate dissolved organic matter (DOM) accumulation which can enhance maize growth[J]. Chemosphere, 2021, 273: 129729.
[38] CHEN Z, FU Q, CAO Y, et al. Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting[J]. Chemosphere, 2021, 262: 128342.
[39] CHEN Y, CHEN Y, Li Y, et al. Evolution of humic substances and the forms of heavy metals during co-composting of rice straw and sediment with the aid of Fenton-like process[J]. Bioresource Technology, 2021, 333: 125170.
[40] 劉東銀,許景鋼,袁磊,等. 低溫條件下豬糞堆肥過程營養(yǎng)元素動態(tài)變化[J]. 東北農(nóng)業(yè)大學學報,2008,39(11):32-35.
LIU Dongyin, XU Jinggang, YUAN Lei, et al. Nutrient dynamics of pig manure composting process under low temperature conditions[J]. Journal of Northeastern Agricultural University, 2008, 39(11): 32-35. (in Chinese with English abstract)
[41] 徐鵬,徐曉東,李洋,等. 木質纖維素降解菌在秸稈堆肥中的研究現(xiàn)狀與進展[J]. 北方園藝,2022(8):122-128.
XU Peng, XU Xiaodong, LI Yang, et al. Current status and progress of research on lignocellulose-degrading bacteria in straw composting[J]. Northern Gardening, 2022(8): 122-128. (in Chinese with English abstract)
[42] GUO Y, CHEN Q, QIN Y, et al. Succession of the microbial communities and function prediction during short-term peach sawdust-based composting[J]. Bioresource Technology, 2021, 332: 125079.
[43] 張嘉超. 農(nóng)業(yè)廢物好氧堆肥過程因子對細菌群落結構的影響[D]. 長沙:湖南大學,2009.
ZHANG Jiachao. Influence of Agricultural Waste Aerobic Composting Process Factors on Bacterial Community Structure[D]. Changsha: Hunan University, 2009. (in Chinese with English abstract)
Effects of maize stover on the harmlessness and maturity during the static facultative composting of pig manure
YIN Ziming, YANG Yan, TANG Ruolan, BAO Ziyang, LI Liqiong, PENG Lijuan, LI Guoxue, YUAN Jing※
(,,,100193,)
Static facultative composting is one of the most widely-used, cost-effective, lightweight, and simple technologies to utilize local resources in modern agriculture. More than 60% of livestock and poultry manure (especially pig manure) can be treated using static composting. Static facultative composting can also create an aerobic environment with low porosity and limited depth of air diffusion within the heap, resulting in the low metabolic activity of microorganisms. Degradation of organic matter can be inevitably delayed, due to the long fermentation cycles, low fermentation temperatures, incomplete harmlessness, and low product maturity. Alternatively, the straw can be added to adjust the physical structure, oxygen content, and C/N ratios of the heap, in order to effectively improve the rot degree of static facultative compost products for the short rot cycle. This study aims to explore the effects of straw control on the maturity and microbial community structure of static facultative composting, especially on pathogenic bacteria. The corn straw was taken to regulate the physical structure and C/N ratio of the pile. A 90-day static facultative composting experiment was conducted using traditional natural fermentation. A systematic investigation was made to clarify the maturation index, fecal coliforms, and microbial community structure in the static facultative composting. The composting device was set as a 100 L flanged iron hoop bucket. Two treatments were set up in total. The control group was set without pig manure to label as the P treatment. The mixed compost of pig manure and corn straw was labeled as the PC treatment. The wet base mass ratio of 4:1 was selected without ventilation and heap turning. The results showed that the straw regulation increased the porosity of the compost (increased by 19.41%), and then promoted the diffusion of oxygen to the interior of the compost for the better degradation of organic matter by aerobic microorganisms. Specifically, the contents of phytotoxic substances were reduced (such as NH4+-N and DTN) to improve the compost maturity. The seed germination indexes were 40.84% (P) and 114.60% (PC), respectively, in the two groups of compost products. As such, the compost maturation was accelerated during this time. The number of fecal coliforms reached the hygienic safety standard after 30 to 40 days of natural fermentation. Furthermore, the activity of fecal coliforms depended on the temperature of the pile, NH4+-N, and organic acid content. The corn straw was added to improve the diversity of bacteria and synergistic effect. Firmicutes, Actinobacteria, Proteobacteria, and other phylum related to lignocellulosic degradation were the dominant microbial phylum in the reactor, where the aerobic, facultative, and anaerobic microbial stratification was formed from the aerobic to anaerobic bacteria from the top to the bottom. Therefore, the corn straw regulation can be expected to increase the aerobic area of the pile in the process of static composting. The harmless and mature degree can be promoted in the static composting of pig manure. The finding can provide the theoretical basis and technical standardization support for the static composting of livestock and poultry manure.
stover; quality control; static facultative composting; fecal coliforms; microbial community
2022-10-19
2023-03-05
內(nèi)蒙古自治區(qū)科技計劃項目(2021GG0316);國家自然科學基金項目(42207380)
尹子銘,研究方向為固體廢棄物資源化利用。Email:yinzm2021@163.com
袁京,博士,副教授,研究方向為固體廢棄物資源化利用。Email:jingyuan@cau.edu.cn
10.11975/j.issn.1002-6819.202210143
S21; X713
A
1002-6819(2023)-07-0218-09
尹子銘,楊燕,唐若蘭,等. 秸稈對豬糞靜態(tài)兼性堆肥無害化和腐熟度的影響[J]. 農(nóng)業(yè)工程學報,2023,39(7):218-226. doi:10.11975/j.issn.1002-6819.202210143 http://www.tcsae.org
YIN Ziming, YANG Yan, TANG Ruolan, et al. Effects of maize stover on the harmlessness and maturity during the static facultative composting of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 218-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210143 http://www.tcsae.org