項麗慧,宋振碩,張應根,王麗麗,陳 鍵,陳 林
?農(nóng)產(chǎn)品加工工程?
茶鮮葉萎凋過程中攤青工藝對白茶品質的影響
項麗慧,宋振碩,張應根,王麗麗,陳 鍵,陳 林※
(福建省農(nóng)業(yè)科學院茶葉研究所,福州 350013)
為探明茶鮮葉萎凋過程中攤青工藝對白茶風味品質和生化成分的影響,在控溫除濕環(huán)境中以基于靜態(tài)攤晾于水篩加工而成的白茶為對照,在不同茶鮮葉減重率(65%、70%和75%)時對在制品進行并篩或堆青處理。結果表明,各處理制成的白茶呈現(xiàn)出較為相似的感官品質特征,但堆青處理相較并篩處理及對照茶樣的香氣鮮度下降而滋味甜度提高。在并篩處理中以在減重率為70%時并篩略優(yōu)于在減重率為65%時并篩的白茶品質,且二者均以薄并篩處理較優(yōu)于對照茶樣。在減重率達75%時對在制品進行相同時長不同厚度的堆青處理(堆青方式:2~6篩并1筐)以厚堆處理的白茶品質較優(yōu),而不同時長相同厚度的堆青處理(堆青時長:2~6 d)則以短時堆青的白茶品質為佳。不同攤青處理白茶的兒茶素類、生物堿和主要氨基酸組分無明顯規(guī)律性差異。相較靜態(tài)/并篩工藝組,堆青工藝組茶樣中呈甜味的脯氨酸和苯乙醇、橙花醇、香葉醇等花果香成分顯著降低(<0.05)?;诓铇由M成的模式識別可將全部供試茶樣劃分成靜態(tài)/并篩工藝組與堆青工藝組2種類群。堆青處理可通過促進脂肪酸代謝,增加烷烴類、降異戊二烯類和醛類化合物含量來有效調節(jié)白茶樣品的生化組成;橙花醇、橙花醛和香草醛等23種化合物可視為其與靜態(tài)/并篩工藝組茶樣相互區(qū)分的主要特征標識物(群)。研究結果可為基于攤青方式的白茶風味品質工藝技術調控提供參考依據(jù)。
工藝;品質控制;白茶;萎凋;攤青
白茶屬中國六大茶類之一,其外表天然素雅、內質清甜爽口,且因具有良好的抗氧化、降血糖、降血脂和抑菌等功效而廣受消費者青睞[1-3]。白茶制作主要包括萎凋和干燥2道工序,其中萎凋是形成白茶特定風味品質的關鍵工序[4-5]。茶鮮葉在萎凋過程中隨著水分的減少,發(fā)生復雜的生化變化,主要表現(xiàn)為游離氨基酸、咖啡堿、核苷酸和有機酸的增加,兒茶素、碳水化合物、類胡蘿卜素、葉綠素、脂類和脂肪酸的減少,以及可溶性糖、香氣揮發(fā)物和多酚氧化酶活性的改變[6-9]。為提高茶鮮葉的萎凋均勻度并避免葉片貼篩,在萎凋過程中常需進行1~2次并篩,或在萎凋后期通過堆青以實現(xiàn)白茶風味品質的目標轉化[10]。傳統(tǒng)并篩是在萎凋葉含水率約為30%時,將2篩萎凋葉合并為1篩,待萎凋葉含水率約為25%時,再將2篩合并為1篩,繼續(xù)萎凋至梗脈水分大為減少,葉片微軟,葉色轉為灰綠時結束萎凋[11]。堆青則是在萎凋葉含水率約為20%時將在制品進行堆積,厚度約15~60 cm,歷時1~15 d[12-14]。在茶鮮葉萎凋過程施以不同并篩或堆青處理,其實質在于通過控制攤青厚度來改變溫度、相對濕度和通氣條件等環(huán)境因素,以有效調節(jié)在制品失水速率,并促進白茶特定風味品質的形成。目前國內學者僅考察了堆青起始含水率、堆青溫度、堆青歷時等單一或其部分復合因子對白茶品質的影響[13-16],而基于攤青工藝(并篩或堆青起始時間、攤青厚度和攤青歷時)的白茶風味品質耦合調控卻鮮有見報[14]。為此,本試驗在控溫除濕環(huán)境(20~22 ℃,55%~65%相對濕度(relative humidity,RH))中以靜態(tài)攤晾于水篩加工而成的白茶為對照,在不同茶鮮葉減重率(65%、70%和75%)時對在制品進行并篩或堆青處理。通過白茶樣品的感官審評和色譜-質譜聯(lián)用檢測分析,探討了茶鮮葉萎凋過程中不同攤青工藝對白茶風味品質和生化成分的影響,以期為改進白茶加工技術和提高制茶品質提供參考依據(jù)。
鮮葉原料采自福建茶樹種質資源圃(27°13′57″N,119°34′31″E)種植的福云6號茶樹春季第一輪新梢,采摘時間為2021年3月,采摘標準為一芽二、三葉。甲醇和乙腈(色譜純),德國Merck公司;C7~C30正構烷烴,美國Sigma-Aldrich公司。
萎凋環(huán)境控制和監(jiān)測裝備:KF-35GW/35356格力空調,珠海格力電器股份有限公司;CH150D轉輪式除濕機,廣州市森井貿(mào)易有限公司;AOTE-JS06A超聲波加濕機,廣州市傲特電子科技有限公司;ROBO60T工業(yè)電熱風機,上海固途工業(yè)品銷售有限公司;S520-EX溫濕度記錄儀,深圳市華圖測控系統(tǒng)有限公司。
Nexera X2超高效液相色譜儀,日本Shimadzu公司;QTRAP 4500三重四極桿/線性離子阱串聯(lián)質譜儀,美國AB Sciex公司。7890A/5975C氣相色譜-質譜聯(lián)用儀,美國Agilent公司;手動固相微萃取裝置和65 μm PDMS/DVB(聚二甲基硅氧烷/二乙烯基苯)固相微萃取頭,美國Supelco公司。
茶樣制備的工藝流程為鮮葉→萎凋(其間并篩或堆青)→干燥,即取約43 kg福云6號鮮葉(含水率為78.2%)[17],在控溫除濕環(huán)境(20~22 ℃,55%~65% RH)中以基于靜態(tài)攤晾于水篩加工而成的白茶為對照,在不同茶鮮葉減重率時對在制品進行并篩處理(并篩方式:在減重率為65%時將2~6篩合并1篩;在減重率為70%時將4~8篩并成1篩),攤勻;對照和各并篩處理在茶鮮葉減重率達76%時結束萎凋。另在茶鮮葉減重率達75%時對在制品進行相同時長不同厚度的堆青處理(堆青時長:2 d;堆青方式:2~6篩并1筐)和不同時長相同厚度的堆青處理(堆青時長2~6 d;堆青方式:6篩并1筐),攤鋪勻實。萎凋結束后,將上述在制品置80 ℃烘干(1 h),并采用四分法縮分至每份約200 g,由此制得不同攤青處理白茶樣品(見圖1)。
注:萎凋環(huán)境:20~22 ℃,55%~65%相對濕度(RH);干燥溫度:80 ℃。實線箭頭表示萎凋過程,虛線箭頭表示干燥過程,空心箭頭表示攤青處理(并篩或堆青),中括號內數(shù)字表示茶鮮葉萎凋減重率。水篩直徑為90 cm,初始攤葉量為每篩0.5 kg;筐的規(guī)格為46 cm(Φ)*72 cm(H)。
參照GB/T 23776-2018《茶葉感官審評方法》、GB/T 22291-2017《白茶》和GB/T 14487-2017《茶葉感官審評術語》中的方法,由5位專業(yè)人員組成品質評定小組,采用評語法和評分法對茶樣進行感官審評。
非揮發(fā)性代謝物:1)提取與檢測:分別稱取供試磨碎茶樣0.100 g,用1.2 mL 70%甲醇提取液溶解后,每隔30 min渦旋一次,每次渦旋持續(xù)30 s,共渦旋6次,于4 ℃冰箱過夜。以12 000 r/min離心10 min,取上清液,用0.22 μm微孔濾膜過濾,并參照已有文獻方法[18]進行超高效液相色譜-串聯(lián)質譜(ultra performance liquid chromatography-mass spectrometry,UPLC-MS)檢測分析。為保證分析結果的重復性和可靠性,取各供試茶樣提取物混合制備質控樣本,重復檢測3次。2)定性和定量:利用軟件Analyst 1.6.3(美國AB SCIEX公司)處理液質聯(lián)用數(shù)據(jù),使用MultiQuant軟件(美國AB SCIEX公司)進行色譜峰積分。保留質控樣品中峰面積相對標準偏差(relative standard deviation,RSD)≤20%的化合物,根據(jù)樣本物質的二級質譜和保留時間進行定性分析。檢索譜庫:廣泛靶向代謝組數(shù)據(jù)庫MetWare database V3.3(武漢邁特維爾生物科技有限公司)。
揮發(fā)性代謝物:1)提取與檢測:分別稱取供試磨碎茶樣5.0 g,倒入60 mL棕色頂空萃取瓶內,采用本色PTFE/硅膠隔墊瓶蓋密封瓶口。萃取瓶置60 ℃恒溫水浴平衡10 min,隨后將固相微萃取頭插入萃取瓶上方頂空吸附30 min,拔出后立即插入氣相色譜進樣口中熱解吸5 min,同時啟動儀器并按預設的儀器參數(shù)[19]進行數(shù)據(jù)采集。為保證分析結果的重復性和可靠性,取各供試茶樣混合制備質控樣本,重復檢測3次。2)定性和定量:預先將在氣相色譜-質譜聯(lián)用(gas chromatography-mass spectrometer,GC-MS)數(shù)據(jù)分析化學工作站MSD ChemStation E.02.02中創(chuàng)建的供試茶樣數(shù)據(jù)文件導入到質譜軟件AnalyzerPro Version 5.2.2.6441(英國SpectralWorks有限公司)中,采用相同的特征提取參數(shù)進行質譜解卷積(峰面積≥500,峰高≥0.1%,峰寬≥0.01 min,信噪比(S/N)=5)和化合物鑒定(置信度≥80%、保留指數(shù)誤差≤30)。剔除萃取頭和毛細管固定相流失等原因產(chǎn)生的目標雜峰,并保留質控樣品中峰面積RSD≤30%的化合物。檢索譜庫:NIST2017譜庫和茶葉香氣成分標準品自建譜庫[20]。
采用SIMCA14.1軟件(包含Omics skin,德國Sartorius Stedim Biotech集團)進行主成分分析(principal component analysis,PCA)、正交偏最小二乘判別分析(orthogonal partial least squares discrimination analysis,OPLS-DA)、檢驗和火山圖繪制。使用TBtools繪制熱圖[21]。應用ChemRICH(http://chemrich.fiehnlab.ucdavis.edu/)進行代謝物簇富集分析[22]。
白茶樣品的感官審評結果顯示(見表1),各處理制成的白茶呈現(xiàn)出較為相似的風味品質特征,但堆青處理總體上相較并篩處理及對照茶樣的香氣鮮度下降而滋味甜度提高。在并篩工藝組中以在減重率為70%時并篩(S21、S22和S23,平均分為89.33)略優(yōu)于在減重率為65%時并篩(S11、S12和S13,平均分為88.80)的白茶品質,且二者均以薄并篩處理(S11和S21)較優(yōu)于對照茶樣(CK)。此外,在早并篩和晚并篩處理茶樣均隨攤青厚度的增加而品質有所下降。在堆青工藝組中對在制品進行相同時長不同厚度的堆青處理(S31、S32和S33a)以厚堆處理(S33a)的白茶品質較優(yōu),且厚堆處理的白茶更顯甜香;不同時長相同厚度的堆青處理(S33a、S33b和S33c)則以短時處理(S33a)的白茶品質為佳,且堆青時間越長,白茶滋味越雜。
表1 不同攤青處理白茶樣品的感官品質
注:總分=外形×25%+湯色×10%+香氣×25%+滋味×30%+葉底×10%。
Note: Total score is calculated based on a 100-point scale: appearance of dry tea (25%), brew color (10%), aroma (25%), taste (30%), and infused leaf (10%).
2.2.1 不同攤青處理白茶的主要品質成分差異
采用UHPLC-MS和GC-MS檢測技術可從供試茶樣中分別檢出1 313種非揮發(fā)性和123種揮發(fā)性代謝物。白茶在加工過程中不炒不揉,其主要滋味成分在很大程度上保留了鮮葉原料的初始組成特征[23-24]。相較靜態(tài)/并篩工藝組,本試驗堆青工藝組茶樣中呈甜味的脯氨酸(A31)含量顯著降低(<0.05),但各處理間兒茶素類、生物堿及其余氨基酸組分并無明顯的規(guī)律性差異(圖2a)。已有研究顯示[25-27],烷烴類、醇類和醛類等化合物是形成白茶清香、毫香特征的重要物質基礎。由圖2b可看出,相比靜態(tài)/并篩工藝組,堆青工藝組茶樣的烷烴類化合物含量明顯增加。然而其大多為無味的長鏈烷烴,故對白茶特征香氣品質的形成貢獻較小。此外,堆青工藝組茶樣中具有較高含量脂肪味的2,4-二烯醛(B20),而帶清新宜人花果香特征的苯乙醇(B11)、橙花醇(B24)、香葉醇(B32)和橙花醛(B38)的含量均顯著低于其他處理(<0.05),這與其相較并篩處理及對照茶樣稍欠清純的香味品質特征較為相符。
注:變量采用UV-scaling 標度化預處理。各成分在靜態(tài)/并篩工藝組和堆青工藝組間的差異顯著性(P<0.05)采用*表示。A534:表兒茶素;A535:(-)-兒茶素;A536:兒茶素;A595:沒食子兒茶素;A596:表沒食子兒茶素;A804:(-)-表兒茶素沒食子酸酯;A847:沒食子兒茶素沒食子酸酯;A848:表沒食子兒茶素沒食子酸酯。A15:γ-氨基丁酸;A31:脯氨酸;A38:纈氨酸;A82:亮氨酸;A84:異亮氨酸;A148:谷氨酰胺;A149:賴氨酸;A152:谷氨酸;A196:組氨酸;A231:苯丙氨酸;A269:茶氨酸;A270:精氨酸;A304:酪氨酸;A372:色氨酸。A298:茶葉堿;A356:咖啡堿。B18:十二烷;B46:二十四烷;B48:十三烷;B68:二十六烷;B72:3-甲基十三烷;B82:十四烷;B91:壬基環(huán)戊烷;B98:十五烷;B106:8-己基十五烷;B111:3-甲基十五烷;B113:十六烷。B11:苯乙醇;B15:芳樟醇氧化物IV;B24:橙花醇;B32:香葉醇;B114:雪松醇。B19:癸醛;B20:2,4-二烯醛;B22:β-環(huán)檸檬醛;B28:β-環(huán)橙花醛;B38:橙花醛;B73:2-丁基-2-辛烯醛。
2.2.2 不同攤青處理白茶生化組成的模式識別
為進一步闡明不同攤青處理對白茶生化組成的影響,分別對供試茶樣的非揮發(fā)性和揮發(fā)性代謝物進行多變量統(tǒng)計模式識別。主成分分析(principal component analysis,PCA)結果顯示,基于非揮發(fā)性或揮發(fā)性代謝物的模式識別均可在前2個主成分二維得分視圖中將全部供試茶樣劃分為2個類群,即靜態(tài)/并篩工藝組與堆青工藝組(圖3a和圖3b)。與靜態(tài)/并篩工藝組對比,堆青工藝組的非揮發(fā)性和揮發(fā)性代謝物的模式分布更為集中。在并篩工藝組中以早并篩處理(S11、S12和S13)比晚并篩處理(S21、S22和S23)茶樣非揮發(fā)性代謝物的模式分布更為集中,而揮發(fā)性代謝物的模式分布則相較離散。此外,通過正交偏最小二乘判別分析(orthogonal partial least squares discrimination analysis,OPLS-DA)結果表明,基于茶樣非揮發(fā)性代謝物(模型M1)和揮發(fā)性代謝物(模型M2)能對靜態(tài)/并篩工藝組與堆青工藝組進行更好的類群區(qū)分(圖3c和圖3d)。M1和M2的2、2和2分別為0.722、1.000、0.779和0.486、1.000、0.764(2和2分別表示所建模型對和矩陣的解釋率,2表示模型的預測能力)。通過置換檢驗(=200)對模型的有效性檢驗結果顯示,M1和M2均不存在模型過擬合(圖3e和圖3f)。
2.2.3 不同攤青工藝組白茶的差異代謝物富集分析
化學相似度富集分析(ChemRICH)是一種基于化學相似性而非稀疏生化知識注釋的統(tǒng)計富集方法[22]。通過ChemRICH富集分析結果表明,堆青工藝組與靜態(tài)/并篩工藝組茶樣的差異代謝物顯著富集于脂肪酸類、烷烴類、萜烯類和黃酮類等代謝物簇。堆青工藝組中的大多數(shù)不飽和脂肪酸類(9,12-十八碳-6-烯酸、9-氧代-十八碳-12-烯酸、二氫獼猴桃內酯、亞麻酸甲酯、共軛(9,11)亞油酸和-亞麻酸等)、烷烴類(十四烷、9-甲基二十二烷、壬基環(huán)戊烷、3-甲基十三烷、8-己基十五烷和十六烷等)、飽和脂肪酸類(丙戊酸和十一烷酸等)、降異戊二烯類(-紫羅蘭酮和-紫羅蘭酮等)和醛類(2-丁基-2-辛烯醛、癸醛和2,4-二烯醛等)化合物含量高于靜態(tài)/并篩工藝組茶樣,大部分甘油酯類(2--亞麻酸甘油酯和2-亞油酸甘油酯等)、芹菜素類(新西蘭牡荊苷II和新西蘭牡荊苷等)和二肽類(-脯氨酸--亮氨酸和5-氧代脯氨酸等)化合物含量低于靜態(tài)/并篩工藝組茶樣,而近半數(shù)黃酮類(6-甲氧基-2-(2-苯乙基)色酮、3′,4′,7-三羥基黃酮、花旗松素-3′--葡萄糖苷與山奈酚-3--阿拉伯糖苷、高良姜素、山奈酚-3--刺槐糖苷-7--鼠李糖苷、芹菜素-5--葡萄糖苷、異牡荊黃素-4′--葡萄糖苷、山奈酚-7--鼠李糖苷等)、萜烯類(香葉基丙酮、1-咖啡酰---葡萄糖與橙花醇、香葉醇等)和吲哚類(-乙酰--色氨酸與2-(3-吲哚基)噻唑等)化合物則發(fā)生或增或減的含量變化(圖4)。
2.2.4 不同攤青工藝組白茶的主要差異代謝物篩選
為獲得區(qū)分靜態(tài)/并篩工藝組與堆青工藝組茶樣的主要差異代謝物,以OPLS-DA模型的變量投影重要性(variable importance in project,VIP)、檢驗顯著性和差異倍數(shù)值(fold change,F(xiàn)C)為篩選條件(VIP>1、<0.05和|log2FC|>0.5),可從供試茶樣已檢出1 436種化合物中篩選出12種非揮發(fā)性和11種揮發(fā)性代謝物(圖5)。其中2種萜類化合物(橙花醇(B24)和橙花醛(B38))、2種鄰苯二甲酸酯類化合物(鄰苯二甲酸二異辛酯(A758)和鄰苯二甲酸二(2-乙基己基)酯(A759))和4種其他化合物(異抗壞血酸(A276)、鄰磷酸膽堿(A319)、鳥苷3′,5′-環(huán)單磷酸(A695)和大黃酚-1-O--D-葡萄糖苷(A771))在堆青工藝組中的含量顯著低于靜態(tài)/并篩工藝組(<0.05);4種烷烴類化合物(3-甲基十三烷(B72)、1-十四烯(B80)、十四烷(B82)和十六烷(B113))、2種醛類化合物(香草醛(A185)和2-丁基-2-辛烯醛(B73))和9種其他化合物(2-甲基-3-氧代辛酸(A264)、3-吲哚乙酰胺(A267)、9-(阿拉伯糖基)次黃嘌呤(A472)、9-羥基-10,12-十八碳二烯酸乙酯(A635)、油酰單乙醇胺(A636)、未知化合物1(B49)、2,3-二氫-4-甲基-呋喃(B62)、二氫獼猴桃內酯(B103)和未知化合物2(B104))在堆青工藝組中的含量顯著高于靜態(tài)/并篩工藝組(<0.05)。
注:非揮發(fā)性代謝物采用lg轉換和Par-scaling標度化數(shù)據(jù)預處理;揮發(fā)性代謝物采用lg轉換和UV-scaling標度化數(shù)據(jù)預處理。2:的解釋率2:模型的預測能力。
Note: The nonvolatile metabolites are pretreated with lg transformation and Pareto scaling, and the volatile metabolites are pretreated with lg transformation and unit variance scaling.2: the interpretability ofvariable.2: the predictability of the model.
圖3 基于供試白茶樣品生化組成的模式識別
Fig.3 Pattern recognition of biochemical compositions in white tea samples
注:采用柯爾莫可洛夫-斯米洛夫檢驗(K-S檢驗)計算富集分析P值,每個節(jié)點表示一個發(fā)生顯著改變的代謝物簇;節(jié)點大小表示每個代謝物簇中代謝物的數(shù)量;節(jié)點顏色表示堆青工藝組比靜態(tài)/并篩工藝組增加(紅色)或減少(藍色)的化合物比例,紫色節(jié)點表示發(fā)生或增或減的代謝物簇。O=FA_13_1、OH-FA_18_3_2和O=FA_19_1為脂肪酸類氧化產(chǎn)物。
注:圖a橫坐標表示兩白茶樣本組間各代謝物峰面積均值的倍數(shù)變化(fold change,F(xiàn)C);縱坐標表示t檢驗的P值;與靜態(tài)/并篩工藝組相比,堆青工藝組中顯著上調的代謝物標為紅色,顯著下調的代謝物標為藍色,無顯著差異的代謝物標為綠色。其中被標記的化合物為主要差異代謝物(VIP>1、P<0.05和|log2 FC|>0.5)。圖b每行表示不同的代謝物,每列表示不同攤青處理白茶樣品,其中變量采用UV-scaling 標度化預處理。A185:香草醛;A264:2-甲基-3-氧代辛酸;A267:3-吲哚乙酰胺;A276:異抗壞血酸;A319:鄰磷酸膽堿;A472:9-(阿拉伯糖基)次黃嘌呤;A635:9-羥基-10, 12-十八碳二烯酸乙酯;A636:油酰單乙醇胺;A695:鳥苷3′, 5′-環(huán)單磷酸;A771:大黃酚-1-O-β-D-葡萄糖苷;A758:鄰苯二甲酸二異辛酯;A759:鄰苯二甲酸二(2-乙基己基)酯。B24:橙花醇;B38:橙花醛;B49:未知化合物1;B62:2, 3-二氫-4-甲基-呋喃;B72:3-甲基十三烷;B73:2-丁基-2-辛烯醛;B80:1-十四烯;B82:十四烷;B103:二氫獼猴桃內酯;B104:未知化合物2;B113:十六烷。
不同萎凋環(huán)境(溫度和濕度)將明顯影響茶鮮葉的失水速率,且通過特定的控溫除濕環(huán)境可實現(xiàn)白茶風味品質特征的有效調控[28]。已有研究表明,茶鮮葉萎凋減重率45%~60%為其多酚及兒茶類氧化[29-30]和白茶香氣品質形成的重要發(fā)展階段[10]。本試驗在茶鮮葉萎凋減重率為65%~75%時設計了6種并篩和5種堆青處理,結果發(fā)現(xiàn)相比對照茶樣,堆青處理相較并篩處理對白茶風味品質和生化組成模式的影響更為明顯。兒茶素類、氨基酸、生物堿等非揮發(fā)性代謝物是茶湯的主要呈味物質[31-32]。除脯氨酸外,不同攤青處理白茶的主要滋味成分無顯著差異,這與各處理具有較為相似的風味品質特征基本相符。但堆青工藝組中的大多數(shù)脂肪酸類化合物含量高于靜態(tài)/并篩工藝組茶樣,且大部分甘油酯類、芹菜素類化合物和近半數(shù)的黃酮類化合物含量趨向降低。這表明堆青處理促進了在制品中甘油酯的水解,并產(chǎn)生脂肪酸的累積。脂肪酸不僅是白茶香氣成分的重要前體物質[33],也是引起茶葉酸敗的主要成分[34]。堆青工藝組中呈脂肪味的2,4-二烯醛含量顯著高于其他處理茶樣,其主要來源于脂肪酸氧化[35-36]。因此,在堆青過程中需關注脂質氧化程度,以避免產(chǎn)生不良風味。此外,芹菜素類、黃酮類化合物的氧化減少亦可在一定程度上降低堆青工藝組茶樣的苦澀滋味[37-38]。香葉醇、十六醛、庚醛、壬醛和5-乙基-6-甲基-3-庚烯-2-酮等與白茶新鮮氣息密切相關,芳樟醇、呋喃型芳樟醇氧化物、香草醛、苯乙醛、-紫羅蘭酮和香豆素等則是白茶呈現(xiàn)甜香的主要特征香氣成分[25,35]。在茶鮮葉萎凋過程中,類胡蘿卜素裂解雙加氧酶催化類胡蘿卜素形成-紫羅蘭酮和-紫羅蘭酮等降異戊二烯類物質[39]。堆青工藝組茶樣中香草醛、-紫羅蘭酮和-紫羅蘭酮等顯著高于其他處理,而香葉醇的含量均顯著低于其他處理(<0.05),其與堆青工藝組茶樣香甜度較高而鮮度下降的香氣品質特征較為相符。陳維等[14]研究發(fā)現(xiàn)苯甲醛、苯乙醇和苯乙醛等隨堆青時長增加而上升,而正己醇、(,)-2,4-己二烯醛和辛醛在堆青后普遍降低。本試驗結果顯示2-丁基-2-辛烯醛、二氫獼猴桃內酯和1-十四烯等在堆青后增加,苯乙醇、橙花醇、香葉醇和橙花醛等花果香成分減少。這可能與本試驗選用的鮮葉原料、堆青方式和檢測方法等存在差異有關[20,40]。綜上可見,選擇適當?shù)亩亚嗵幚矸绞剑ㄟ^控制脂質氧化和促進清甜花香物質的釋放將有望為改善白茶風味品質提供新的解決方案。
1)不同攤青工藝制成的白茶呈現(xiàn)出較為相似的白茶風味品質特征,但堆青工藝組相較靜態(tài)/并篩工藝組茶樣的香氣鮮度下降而滋味甜度提高,且在茶鮮葉萎凋減重率達75%時將6篩(水篩直徑為90 cm,初始攤葉量為0.5 kg/篩)在制品合并為1筐(直徑=46 cm、高度= 72 cm),堆青2 d后的攤青處理可獲得較優(yōu)的白茶品質。
2)不同攤青處理白茶的兒茶素類、生物堿和大部分氨基酸組分無明顯規(guī)律性差異。相較靜態(tài)/并篩工藝組,堆青工藝組茶樣中呈甜味的脯氨酸和苯乙醇、橙花醇、香葉醇等花果香成分顯著降低(<0.05)。靜態(tài)/并篩工藝組與堆青工藝組茶樣的生化組成模式存在明顯的類群區(qū)分。
3)堆青處理可通過促進脂肪酸代謝,增加烷烴類、降異戊二烯類和醛類化合物含量來有效調節(jié)白茶樣品的生化組成;橙花醇、橙花醛和香草醛等23種化合物可視為其與靜態(tài)/并篩工藝組茶樣相互區(qū)分的主要特征標識物(群)。
4)茶鮮葉萎凋過程中生化成分的變化受鮮葉原料特性、加工環(huán)境條件、技術干預措施等諸多因素的影響,今后尚需考慮開展基于不同茶樹品種、芽葉嫩度和采摘季節(jié)等因素的多批次生產(chǎn)試驗,由此系統(tǒng)揭示攤青工藝對白茶風味品質影響的一般性規(guī)律。
[1] HINOJOSA-NOGUEIRA D, PéREZ-BURILLO S, CUEVA S P, et al. Green and white teas as health-promoting foods[J]. Food and Function, 2021, 12: 3799-3819.
[2] TANG G Y, MENG X, GAN R Y, et al. Health functions and related molecular mechanisms of tea components: An update review[J]. International Journal of Molecular Sciences, 2019, 20(24): 6196.
[3] SANLIER N, ATIK I, ATIK A. A minireview of effects of white tea consumption on diseases[J]. Trends in Food Science and Technology, 2018, 82: 82-88.
[4] 李鑫磊,俞曉敏,林軍,等. 基于非靶向代謝組學的白茶與綠茶、烏龍茶和紅茶代謝產(chǎn)物特征比較[J]. 食品科學,2020,41(12):197-203.
LI Xinlei, YU Xiaomin, LIN Jun, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach[J]. Food Science, 2020, 41(12): 197-203. (in Chinese with English abstract)
[5] CHEN Q C, SHI J, MU B, et al. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry, 2020, 332: 127412.
[6] ZHAO F, QIU X H, YE N X, et al. Hydrophilic interaction liquid chromatography coupled with quadrupole-orbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process[J]. Food Chemistry, 2018, 266: 343-349.
[7] CHEN Q C, YIN Z, DAI W D, et al. Aroma formation and dynamic changes during white tea processing[J]. Food Chemistry, 2019, 274: 915-924.
[8] TOMLINS K I, MASHINGAIDZE A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas-a review[J]. Food Chemistry, 1997, 60(4): 573-580.
[9] DAI W, XIE D, LU M, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International, 2017, 96: 40-45.
[10] 陳林,張應根,陳鍵,等. 烏龍茶品種鮮葉加工白茶過程中香氣成分動態(tài)變化規(guī)律[J]. 茶葉科學,2020,40(6):771-781.
CHEN Lin, ZHANG Yinggen, CHEN Jian, et al. Aroma profiling of fresh leaves of oolong tea cultivars during white tea processing[J]. Journal of Tea Science, 2020, 40(6): 771-781. (in Chinese with English abstract)
[11] 葉乃興. 茶學概論[M]. 北京:中國農(nóng)業(yè)出版社,2013:108.
[12] 林健,李嘉林,黃藝華,等. 花香白牡丹茶及其加工工藝:中國專利,20090307006.2[P].2021-01-11.
[13] 羅舟. 白茶陳化品質及初制后期工藝優(yōu)化研究[D]. 杭州:浙江大學,2019:47-50.
LUO Zhou. Quality of Stored White Tea and the Optimization of Processing Technology[D]. Hangzhou: Zhejiang University, 2019: 47-50. (in Chinese with English abstract)
[14] 陳維,曾斌,苗愛清,等. 基于化學計量學分析堆青時間對白茶香氣的影響[J]. 現(xiàn)代食品科技,2018,34(5):241-250.
CHEN Wei, ZENG Bin, MIAO Aiqing, et al. Effect of pile-up processing duration on the white tea aroma analyzed by chemometrics approaches[J]. Modern Food Science and Technology, 2018, 34(5): 241-250. (in Chinese with English abstract)
[15] 陳霖熙. 白茶連續(xù)化生產(chǎn)線建立及關鍵工藝試驗研究[D]. 福州:福建農(nóng)林大學,2014:53-57.
CHEN Linxi. Build up and Study on Key Processing of White Tea Continuous Production Line[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 53-57. (in Chinese with English abstract)
[16] 吳少玲,王治會,商虎,等. 不同堆青時間對白茶風味品質的影響[J]. 茶葉科學,2023,43(1):78-90.
WU Shaoling, WANG Zhihui, SHANG Hu, et al. Effect of pile-up processing duration on flavor quality of white tea[J]. Journal of Tea Science, 2023, 43(1): 78-90. (in Chinese with English abstract)
[17] 中國標準出版社. 茶葉標準匯編.下冊[M]. 北京:中國標準出版社,2016:19-22.
[18] CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
[19] 王麗麗,張應根,楊軍國,等. 頂空固相微萃取/氣相色譜:質譜聯(lián)用法分析綠茶和白茶香氣物質[J]. 茶葉學報,2017,58(1):1-7.
WANG Lili, ZHANG Yinggen, YANG Junguo, et al. Analysis of aroma components in green and white teas using headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Acta Tea Sinica, 2017, 58(1): 1-7. (in Chinese with English abstract)
[20] 陳林,余文權,張應根,等. 基于SDE和HS-SPME/GC-MS的烏龍茶香氣組成特征分析[J]. 茶葉科學,2019,39(6):771-781.
CHEN Lin, YU Wenquan, ZHANG Yinggen, et al. Aroma profiling of oolong tea by SDE and HS-SPME in combination with GC-MS[J]. Journal of Tea Science, 2019, 39(6): 771-781. (in Chinese with English abstract)
[21] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[22] BARUPAL D K, FIEHN O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets[J]. Scientific Reports, 2017, 7(1): 14567.
[23] 陳林,陳鍵,陳泉賓,等. 不同工藝制法對茶葉風味品質化學輪廓的影響[J]. 核農(nóng)學報,2016,30(11):2196-2203.
CHEN Lin, CHEN Jian, CHEN Quanbin, et al. Effects of different processing methods on chemical profiles of tea in relation to flavor quality[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(11): 2196-2203. (in Chinese with English abstract)
[24] 馬林龍,劉艷麗,曹丹,等. 不同茶樹品種(系)的綠茶滋味分析及評價模型構建[J]. 農(nóng)業(yè)工程學報,2020,36(10):277-287.
MA Linlong, LIU Yanli, CAO Dan, et al. Analysis and evaluation model for the taste quality of green tea made from various cultivars or strains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 277-287. (in Chinese with English abstract)
[25] CHEN Q C, ZHU Y, YAN H, et al. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas[J]. Molecules, 2020(25): 6050.
[26] 陳林,張應根,項麗慧,等. ‘茗科1號’等5個福建烏龍茶品種的白茶適制性鑒定[J]. 茶葉學報,2019,60(2):64-68.
CHEN Lin, ZHANG Yinggen, XIANG Lihui, et al. Quality appraisal on white teas processed from Fujian oolong cultivars ()[J]. Acta Tea Sinica, 2019, 60(2): 64-68. (in Chinese with English abstract)
[27] 羅玉琴,韋燕菊,林琳,等. 基于GC-IMS技術的福建白茶產(chǎn)地判別[J]. 農(nóng)業(yè)工程學報,2021,37(6):264-273.
LUO Yuqin, WEI Yanju, LIN Lin, et al. Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 264-273. (in Chinese with English abstract)
[28] 張應根,項麗慧,陳林,等. 不同控溫除濕萎凋環(huán)境對白茶風味品質和化學輪廓的影響[J]. 茶葉科學,2022,42(4):525-536.
ZHANG Yinggen, XIANG Lihui, CHEN Lin, et al. Effects of air conditions preset for withering on flavor quality and chemical profiles of white teas[J]. Journal of Tea Science, 2022, 42(4): 525-536. (in Chinese with English abstract)
[29] 宋振碩,王麗麗,陳鍵,等. 茶鮮葉萎凋過程中主要品質成分的動態(tài)變化[J]. 茶葉學報,2016,57(3):138-141.
SONG Zhenshuo, WANG Lili, CHEN Jian, et al. Changes on major quality indices in tea leaves during withering[J]. Acta Tea Sinica, 2016, 57(3): 138-141. (in Chinese with English abstract)
[30] 王麗麗,宋振碩,陳鍵,等. 茶鮮葉萎凋過程中兒茶素和生物堿的動態(tài)變化規(guī)律[J]. 福建農(nóng)業(yè)學報,2015,30(9):856-862.
WANG Lili, SONG Zhenshuo, CHEN Jian, et al. Changes on catechin and alkaloid contents in fresh tea leaves during withering[J]. Fujian Journal of Agricultural Sciences, 2015, 30(9): 856-862. (in Chinese with English abstract)
[31] 滑金杰,王華杰,王近近,等. 采用PLS-DA分析毛火方式對工夫紅茶品質的影響[J]. 農(nóng)業(yè)工程學報,2020,36(8):260-270.
HUA Jinjie, WANG Huajie, WANG Jinjin, et al. Influences of first-drying methods on the quality of Congou black tea using partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 260-270. (in Chinese with English abstract)
[32] 潘天紅,李魚強,陳琦,等. 基于Elastic Net特征變量選擇的黃山毛峰茶等級評價[J]. 農(nóng)業(yè)工程學報,2020,36(13):264-271.
PAN Tianhong, LI Yuqiang, CHEN Qi, et al. Evaluation of Huangshan Maofeng tea grades based on feature variable selection using Elastic Net[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 264-271. (in Chinese with English abstract)
[33] FENG Z, LI Y, LI M, et al. Tea aroma formation from six model manufacturing processes[J]. Food Chemistry, 2019, 285: 347-354.
[34] 馬超龍,李小嫄,岳翠男,等. 茶葉中脂肪酸及其對香氣的影響研究進展[J]. 食品研究與開發(fā),2017,38(4):220-224.
MA Chaolong, LI Xiaoyuan, YUE Cuinan, et al. Progress on fatty acids in tea and their influences on tea aroma[J]. Food Research and Development, 2017, 38(4): 220-224. (in Chinese with English abstract)
[35] FENG Z, LI M, LI Y, et al. Characterization of the key aroma compounds in infusions of four white teas by the sensomics approach[J]. European Food Research and Technology, 2022, 248: 1299-1309.
[36] CHEN Q, ZHU Y, DAI W, et al. Aroma formation and dynamic changes during white tea processing[J]. Food Chemistry, 2019, 274: 915-924.
[37] DAI X L, SHI X X, YANG C L, et al. Two UDP-glycosyltransferases catalyze the biosynthesis of bitter flavonoid 7--neohesperidoside through sequential glycosylation in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(7): 2354-2365.
[38] DENG S J, ZHANG G, OLAYEMI ALUKO O, et al. Bitter and astringent substances in green tea: Composition, human perception mechanisms, evaluation methods and factors influencing their formation[J]. Food Research International, 2022, 157: 111262.
[39] WANG J, ZHANG N, ZHAO M, et al. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile beta-ionone during tea () withering[J]. Journal of Agricultural and Food Chemistry, 2020, 68(6): 1684-1690.
[40] ZHAI X, ZHANG L, GRANVOGL M, et al. Flavor of tea (): A review on odorants and analytical techniques[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 3867-3909.
Effects of the leaf-spreading process on the quality of white tea during the withering of fresh tea shoots
XIANG Lihui, SONG Zhenshuo, ZHANG Yinggen, WANG Lili, CHEN Jian, CHEN Lin※
(,,350013,)
This study aims to investigate the effect of the leaf-spreading process on the flavor quality and biochemical components of white tea during withering. Under the indoor air conditions preset at 20-22 ℃ and 55%-65% relative humidity (RH), the static withering on bamboo sieves (0.5 kg fresh leaves per sieve: diameter () = 90 cm) was used as the control (Immobility). Tea samples were acquired by thin or thick piling-up, namely Bingshai or Duiqing when the weight loss rate of fresh tea shoots reached 65%, 70%, and 75%. The results showed that there were the similar sensory qualities in all tea samples. However, the freshness of the aroma decreased, and the sweetness of the taste increased in the white tea samples with Duiqing, compared with the Immobility and Bingshai. The quality of tea samples with the late Bingshai (4 to 8 sieves of work in process (WIP) merged into 1 sieve when the weight loss rate arrived at 70%) was slightly better than those with the early Bingshai (2 to 6 sieves of WIP merged into 1 sieve when the weight loss rate reached 65%). Furthermore, the best sensory qualities of the tea samples were produced from the thinnest Bingshai than Immobility. The best quality white tea sample was acquired with the thickest Duiqing (6 sieves of WIP merged into 1 basket) when treated for the same length of time (2 days) and different thicknesses (2 to 6 sieves of WIP merged into 1 bamboo basket: diameter () = 46 cm, height () = 72 cm) of Duiqing at the weight loss rate of 75%. Additionally, the WIP was preferred for the shortest duration (2 days), if treated with a different length of time (2 to 6 days) at such thickness of Duiqing. Although no regular changes were seen in the contents of catechins, alkaloids, and the main free amino acids among different treatments, the levels of proline (sweet) and some floral fruit components (phenylethanol, nerol, and geraniol) were significantly reduced in the white tea samples from the Duiqing process group, compared with the Immobility/Bingshai process group. The biochemical pattern recognition showed that all white tea samples were divided into two groups, i.e., Immobility/Bingshai and Duiqing process groups. The Duiqing process effectively regulated the biochemical compositions in the white tea samples, with an increase in the content of fatty acids, alkanes, norisoprenoids, and aldehydes. The 23 chemical compounds (such as nerol, citral, and vanillin) were considered the most important markers to distinguish them from each other. These findings can provide a strong reference to regulating the flavor quality of white tea using leaf spreading.
processing; quality control; white tea; withering; leaf-spreading
2022-11-05
2023-01-30
福建省自然科學基金項目(2020J011364);福建省屬公益類科研院所基本科研專項(2019R1029-5和2020R1029008);福建省農(nóng)業(yè)科學院科技創(chuàng)新團隊項目(CXTD2021004-2)
項麗慧,助理研究員,研究方向為茶葉生物化學與分子生物學。Email:xlh1991@foxmail.com
陳林,博士,研究員,研究方向為茶葉加工、茶葉生物化學及綜合利用。Email:chenlin_xy@163.com
10.11975/j.issn.1002-6819.202211049
TS272.7
A
1002-6819(2023)-07-0266-09
項麗慧,宋振碩,張應根,等. 茶鮮葉萎凋過程中攤青工藝對白茶品質的影響[J]. 農(nóng)業(yè)工程學報,2023,39(7):266-274. doi:10.11975/j.issn.1002-6819.202211049 http://www.tcsae.org
XIANG Lihui, SONG Zhenshuo, ZHANG Yinggen, et al. Effects of the leaf-spreading process on the quality of white tea during the withering of fresh tea shoots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 266-274. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211049 http://www.tcsae.org