傅偉軍 徐向瑞 魏玲玲 葉正錢 歐陽(yáng)瀟 吳聞澳 柳丹 方先芝 倪治華
摘要
溫室氣體(GHGs)過(guò)量排放造成的全球氣候變化問(wèn)題受到廣泛關(guān)注,農(nóng)業(yè)活動(dòng)是第二大溫室氣體排放源,減少農(nóng)業(yè)溫室氣體排放刻不容緩.生物炭由生物質(zhì)在高溫限氧條件下熱解炭化獲得,其性質(zhì)穩(wěn)定、孔徑豐富、富含芳香碳,因而減排增匯效果優(yōu)異,具有參與農(nóng)業(yè)自愿減排碳交易的顯著潛力.然而生物炭固碳減排效果異質(zhì)性大,影響因素復(fù)雜多樣,因此有必要對(duì)其減排效應(yīng)、影響因素和研究進(jìn)展進(jìn)行歸納總結(jié).本文系統(tǒng)梳理了國(guó)內(nèi)外與生物炭固碳減排相關(guān)的室內(nèi)、大田研究和整合分析研究,同時(shí)采用CiteSpace軟件進(jìn)行可視化分析,探究了該領(lǐng)域的發(fā)展趨勢(shì)和研究熱點(diǎn).基于國(guó)內(nèi)外碳交易市場(chǎng)發(fā)展特點(diǎn)與程度以及相應(yīng)配套政策總結(jié)了生物炭參與碳交易面臨的機(jī)遇和挑戰(zhàn),并提出了相應(yīng)的解決手段,為生物炭固碳減排研究的開(kāi)展和生物炭農(nóng)田應(yīng)用項(xiàng)目參與碳交易提供了科學(xué)指導(dǎo)和建議.
關(guān)鍵詞生物炭;土壤碳庫(kù);溫室氣體;甲烷;氧化亞氮;碳交易
中圖分類號(hào)
S365;X171.1
文獻(xiàn)標(biāo)志碼
A
收稿日期
2022-05-30
資助項(xiàng)目
浙江省基礎(chǔ)公益研究計(jì)劃 (LY20C160004)
作者簡(jiǎn)介傅偉軍,男,博士,教授,主要從事區(qū)域土壤碳氮循環(huán)及環(huán)境信息技術(shù)與應(yīng)用研究.fuweijun@zafu.edu.cn
葉正錢(通信作者),男,博士,教授,主要從事土壤肥料和土壤重金屬污染修復(fù)等研究.yezhq@zafu.edu.cn
倪治華 (通信作者),男,研究員,主要從事土壤改良、養(yǎng)分管理、監(jiān)測(cè)評(píng)價(jià)與農(nóng)業(yè)廢棄物資源化利用等工作.hznzh@163.com
0 農(nóng)業(yè)溫室氣體排放與生物炭農(nóng)田減排潛力
氣候變化作為當(dāng)前世界各國(guó)面臨的嚴(yán)峻挑戰(zhàn),已嚴(yán)重威脅到人類的生存與發(fā)展.聯(lián)合國(guó)政府間氣候變化專門委員會(huì)(Intergovernmental Panel on Climate Change,IPCC)的第六次評(píng)估報(bào)告(Sixth Assessment Report,AR6)表明,人類活動(dòng)主導(dǎo)的溫室氣體增排是導(dǎo)致大氣、海洋和陸地變暖的主要因素[1].AR6 明確指出,當(dāng)前大氣中三大主要溫室氣體CO 2、CH 4和N 2O的體積分?jǐn)?shù)已經(jīng)分別高達(dá)4.10×10-4、1.87×10-6和3.32×10-7[1].受此影響,近10年全球地表均溫較20世紀(jì)初提升了1.09 ℃.
與農(nóng)業(yè)相關(guān)的生產(chǎn)活動(dòng)是溫室氣體重要排放源之一,其對(duì)CH 4和N 2O的排放影響尤為顯著 [2-3].據(jù)聯(lián)合國(guó)糧農(nóng)組織FAOSTAT數(shù)據(jù)庫(kù)(http://faostat3.fao.org/home/index.html)統(tǒng)計(jì),2018年全球農(nóng)業(yè)源溫室氣體排放約93億t CO 2-eq(二氧化碳當(dāng)量,下同),約占全球總?cè)藶闇厥覛怏w排放的11%.其中:畜牧業(yè)是最大的農(nóng)業(yè)源,動(dòng)物腸道發(fā)酵貢獻(xiàn)了39.3%的農(nóng)業(yè)溫室氣體排放,畜牧業(yè)的糞便管理貢獻(xiàn)了15.2%;化肥使用和稻田CH 4排放分別占農(nóng)業(yè)溫室氣體排放的11.8%和10.1%.此外,其他農(nóng)業(yè)途徑如作物秸稈燃燒、農(nóng)田碳庫(kù)損失等貢獻(xiàn)了農(nóng)業(yè)溫室氣體排放的16.8%.中國(guó)作為擁有巨大人口密度的農(nóng)業(yè)大國(guó),如何減少農(nóng)業(yè)溫室氣體排放面臨著巨大的挑戰(zhàn)[4-5].《中國(guó)氣候變化第三次國(guó)家信息通報(bào)》[6]表明,中國(guó)農(nóng)業(yè)活動(dòng)相關(guān)的溫室氣體排放量約占溫室氣體排放總量的7.9% (約8.28億t CO 2-eq),CH 4和N 2O的貢獻(xiàn)分別超過(guò)了4億t和3億t CO 2-eq.農(nóng)業(yè)溫室氣體減排是“碳中和”目標(biāo)實(shí)現(xiàn)過(guò)程中亟待解決的問(wèn)題.
《全球碳捕集與封存現(xiàn)狀》報(bào)告[7]指出,如果不部署碳捕集、利用及封存項(xiàng)目(Carbon Capture,Utilization and Storage,CCUS),實(shí)現(xiàn)“碳中和”幾乎是不可能完成的目標(biāo).CCUS指把化石燃料燃燒產(chǎn)生的CO 2進(jìn)行收集并將其安全地存儲(chǔ)于地質(zhì)結(jié)構(gòu)層中或進(jìn)行資源化利用的工程,是“碳中和”的重要實(shí)現(xiàn)途徑之一[8-9].CCUS相關(guān)技術(shù)成為世界范圍內(nèi)的研發(fā)熱點(diǎn),中國(guó)也對(duì)此展開(kāi)了廣泛的試驗(yàn)和探索[10].2009年,華能集團(tuán)于上海石洞口第二電廠啟動(dòng)了10萬(wàn)t/年CO 2捕集示范項(xiàng)目,成為世界上規(guī)模最大的燃煤電廠煙氣CO 2捕集裝置之一;河北新奧集團(tuán)開(kāi)發(fā)的“微藻生物吸碳技術(shù)”,實(shí)現(xiàn)了微藻吸收煤化工CO 2工藝,年吸收110 t CO 2;江蘇中科金龍環(huán)保新材料有限公司CO 2制備化工產(chǎn)品和原料技術(shù)示范以酒精廠捕集的CO 2為原料,制備保溫材料和可降解塑料等產(chǎn)品,年CO 2利用量達(dá)8 000 t.然而,絕大部分CCUS技術(shù)仍處于試驗(yàn)、示范階段,難以在全球范圍內(nèi)開(kāi)展大規(guī)模應(yīng)用[10].主要問(wèn)題有兩方面:一是CCUS技術(shù)尚未成熟,難以確保封存的CO 2不會(huì)逸出并長(zhǎng)期穩(wěn)定;二是項(xiàng)目成本居高不下,嚴(yán)重影響了現(xiàn)有技術(shù)的推廣應(yīng)用[9,11-12].有別于傳統(tǒng)的CCUS技術(shù),生物炭在技術(shù)門檻、資源消耗、經(jīng)濟(jì)成本等方面要求較低,是一種更易實(shí)施的固碳減排途徑[13-14].大量研究[14-18]表明,生物炭具有巨大的固碳減排潛力,在減緩氣候變化方面具有重要作用.
生物炭是廢棄生物質(zhì)或有機(jī)體在限氧條件下熱裂解生成的固態(tài)物質(zhì),具有較高的pH、有機(jī)碳含量和陽(yáng)離子交換量,并且具有豐富的孔隙、復(fù)雜的官能團(tuán)以及巨大的比表面積[19-20].生物炭的研究源自科學(xué)家在南美洲亞馬孫地區(qū)對(duì)一種名為“Terra Preta”的黑色肥沃土壤的研究[21-23].生物炭的相關(guān)報(bào)道在21世紀(jì)初數(shù)量較少,但隨著科學(xué)研究的不斷深入及其生態(tài)環(huán)境功能的不斷挖掘,生物炭在作物增產(chǎn)、污染治理、固碳減排等方面的作用被廣泛關(guān)注[17,24-26].隨著我國(guó)“雙碳”目標(biāo)的提出,生物炭制備技術(shù)及其固碳效應(yīng)將受到越來(lái)越多的關(guān)注.
生物炭基于自身的碳素穩(wěn)定性、對(duì)土壤有機(jī)碳分解的潛在抑制能力以及熱解過(guò)程中副產(chǎn)物的循環(huán)利用,具備直接或間接地減少CO 2的排放以及增加土壤碳匯的功能[17].對(duì)農(nóng)業(yè)源的溫室氣體而言,生物炭可以通過(guò)吸附作用、改變土壤理化性質(zhì)和影響微生物活動(dòng)等過(guò)程發(fā)揮減排作用.總的來(lái)講,與其他傳統(tǒng)固碳減排方式相比,生物炭?jī)?yōu)勢(shì)顯著:
1)生物炭固碳潛力巨大.有研究報(bào)道生物炭在全球范圍內(nèi)具備約3.4~6.3 Pg CO 2-eq的溫室氣體減排潛力[17].
2)生物炭的固碳效果相對(duì)穩(wěn)定,而傳統(tǒng)的土壤固碳方式存在固碳量下降風(fēng)險(xiǎn).例如:林草生態(tài)系統(tǒng)帶來(lái)的碳匯可能會(huì)由于火災(zāi)、放牧等擾動(dòng)而被損耗[27-28];免耕農(nóng)業(yè)在恢復(fù)耕作后可能減少積累的碳儲(chǔ)量[29];地質(zhì)封存等CCUS項(xiàng)目亦存在泄露風(fēng)險(xiǎn)[30].
3)生物炭的原料來(lái)源十分廣泛,幾乎所有廢棄生物質(zhì)均可用于制備生物炭,因此生物炭制備技術(shù)具備廢棄生物質(zhì)高效處置與碳匯提升的協(xié)調(diào)效益[31].例如:農(nóng)林廢棄物中常見(jiàn)的秸稈、樹(shù)枝、畜禽糞便等[32-34];食品工業(yè)中用于制糖的甘蔗渣、甜菜渣等[35-37];污染水體中的污泥和藻類也可以經(jīng)過(guò)預(yù)處理并制成生物炭[34,38-39].
4)常見(jiàn)的生物炭多來(lái)自有機(jī)廢棄生物質(zhì),其原料成本相對(duì)低廉.
盡管熱解過(guò)程中的生產(chǎn)成本在現(xiàn)階段增加了生物炭產(chǎn)業(yè)推廣的難度,但是生物炭的多領(lǐng)域應(yīng)用具備在未來(lái)提升其市場(chǎng)競(jìng)爭(zhēng)力的潛能[14].比如,對(duì)農(nóng)田而言,生物炭可以實(shí)現(xiàn)農(nóng)業(yè)增產(chǎn)提質(zhì)從而助力糧食安全并增加農(nóng)戶收入[40].
1 生物炭農(nóng)田土壤固碳研究進(jìn)展
1.1 生物炭對(duì)農(nóng)田土壤有機(jī)碳含量的影響
土壤有機(jī)碳(SOC)儲(chǔ)量和植被碳庫(kù)之和是大氣碳庫(kù)的3倍,其中地下2 m內(nèi)土壤有機(jī)碳庫(kù)約為2 400 Pg(以C計(jì)),因此SOC在調(diào)節(jié)大氣二氧化碳濃度方面具有重要的作用[41-42].大量研究表明農(nóng)田施用生物炭可有效增加SOC,但結(jié)果存在一定的異質(zhì)性[43-44].整合分析作為一種集成并定量分析多個(gè)研究從而獲得普適結(jié)論的方法,可以幫助揭示生物炭施用對(duì)SOC的影響.多項(xiàng)整合分析表明[15-16,45-51],生物炭對(duì)SOC存在積極影響,施炭后SOC的增幅范圍約在14.3%~101.6%(表1).不同研究之間存在差異可能跟搜集的數(shù)據(jù)量有關(guān),如肖婧等[46]數(shù)據(jù)量最少,僅為28對(duì),其整合分析所得結(jié)果的異質(zhì)性也最大,生物炭施用后SOC的增幅在14.3%~71.5%之間,而Gross等[51]涉及的數(shù)據(jù)最豐富,其研究中的差異也較?。送猓鶕?jù)表1結(jié)果可知,生物炭性質(zhì)、土壤性質(zhì)、氣候區(qū)、試驗(yàn)條件、田間管理等因素均可能影響施炭后SOC的增量[15,47-51].盡管有研究表明生物炭可能會(huì)引起土壤有機(jī)質(zhì)激發(fā)效應(yīng)[52],但長(zhǎng)期來(lái)看生物炭對(duì)SOC發(fā)揮了積極作用,如Sun等[53]開(kāi)展了8年的田間試驗(yàn)發(fā)現(xiàn),長(zhǎng)期施用生物炭增加了SOC含量,這可能原因是生物炭增加了SOC的穩(wěn)定性且激發(fā)效應(yīng)隨著施用年限的增加而減弱[54].
生物炭的施用可直接增加SOC,且在持續(xù)多年施用下對(duì)農(nóng)作物穩(wěn)產(chǎn)提質(zhì)[55-56],表明農(nóng)田可作為生物炭的巨大儲(chǔ)庫(kù).前人研究表明,生物炭通過(guò)參與土壤中的生物地球化學(xué)循環(huán),不僅具備“固碳”作用,還具有“增匯”和“穩(wěn)匯”的潛力.
1)生物炭可促進(jìn)土壤中植物源的有機(jī)碳輸入.Dai等[57] 研究表明,施用生物炭后植物生物量平均提高16.0%,這大大增加了地上部的凋落物來(lái)源;而且有研究表明生物炭可加速凋落物的分解,從而促進(jìn)植物殘?bào)w向SOC的轉(zhuǎn)化[58-59].對(duì)植物地下部而言,生物炭可以促進(jìn)根系生長(zhǎng)并刺激根系分泌物的產(chǎn)生,進(jìn)而增加了植物的根際碳輸入[60-61].Xiang等[60]整合分析表明施炭后作物的根際生物量增加了26%~37%;Sun等[62]試驗(yàn)結(jié)果發(fā)現(xiàn)生物炭普遍促進(jìn)了根系分泌物的產(chǎn)生,與對(duì)照相比最高增幅可達(dá)564.0%.
2)生物炭增加了微生物源的SOC輸入.微生物殘?bào)w碳貢獻(xiàn)了約50%的土壤有機(jī)碳庫(kù)[63],生物炭提供了微生物生長(zhǎng)所需的養(yǎng)分和基質(zhì),刺激了體內(nèi)周轉(zhuǎn)的同化過(guò)程并增加了微生物生物量,進(jìn)而促進(jìn)了SOC在土壤中的積累[64-66].Zhang等[64]研究發(fā)現(xiàn)施炭量在66.7~112.5 t·hm-2時(shí)微生物殘?bào)w碳增加了3.0%~5.0%,但生物炭沒(méi)有顯著改變真菌殘?bào)w碳和細(xì)菌殘?bào)w碳的比例.有研究[65]報(bào)道,施加玉米秸稈炭顯著提高了真菌和細(xì)菌的磷脂脂肪酸(PLFA),但降低了氨基糖在有機(jī)碳中的占比,表明微生物殘?bào)w碳的增加是生物炭對(duì)SOC貢獻(xiàn)的途徑之一.
3)生物炭還可降低SOC的分解速率,這可能與土壤團(tuán)聚體有密切關(guān)系.已有多項(xiàng)整合分析證實(shí)了生物炭施用促進(jìn)了土壤團(tuán)聚體的形成,團(tuán)聚體的平均質(zhì)量直徑可提升8.2%~16.4%[67-69].土壤團(tuán)聚體增加且減緩SOC分解的潛在機(jī)制可能是:首先,生物炭增加了SOC在土壤團(tuán)聚體形成過(guò)程中的膠結(jié)作用,而團(tuán)聚體結(jié)構(gòu)加強(qiáng)了SOC與微生物的物理隔絕從而降低SOC的分解[70-71];其次,生物炭也會(huì)增大土壤的靜電斥力和范德華引力,提高土壤的內(nèi)部黏結(jié)和抗碎裂性[72]并穩(wěn)定了土壤團(tuán)聚體結(jié)構(gòu),從微生物角度而言,生物炭可能會(huì)刺激微生物產(chǎn)生菌絲和膠結(jié)物質(zhì),有助于土壤團(tuán)聚體結(jié)構(gòu)的加速形成和穩(wěn)定[65];最后,有研究報(bào)道施炭后礦物結(jié)合態(tài)SOC含量顯著增加,表明生物炭還可通過(guò)土壤礦物途徑增加對(duì)SOC的保護(hù)[73-74].
1.2 生物炭在土壤中穩(wěn)定性的研究進(jìn)展
盡管生物炭施用到土壤后的分解過(guò)程十分緩慢,但其并非是絕對(duì)穩(wěn)定的惰性物質(zhì),隨著施用時(shí)間的增加,終會(huì)參與生物地球化學(xué)循環(huán)且發(fā)生分解.多項(xiàng)試驗(yàn)研究表明[52,75-78](表2),生物炭施用后的日均分解速率在0.000 1%~0.040 7%之間.生物炭輸入到土壤后的穩(wěn)定性的差異可能跟土壤條件、生物炭性質(zhì)等因素有關(guān)(表2).其中生物炭的熱解溫度是最為直接的影響因素,高溫炭的礦化速率普遍比低溫炭低[52,78].原料也決定了生物炭的分解速率,一般而言,木炭通常比秸稈炭、污泥炭更難分解[79-80].熱解溫度和原料可能通過(guò)影響生物炭的元素組成(摩爾比)進(jìn)而影響其穩(wěn)定性.Spokas等[81]定量分析了生物炭穩(wěn)定性與O/C的關(guān)系,結(jié)果表明,O/C小于0.2的生物炭通常是最穩(wěn)定的,其半衰期在1 000年以上;而O/C大于0.6的生物炭半衰期則不足100年.此外,H/C可用于評(píng)價(jià)生物炭中芳環(huán)結(jié)構(gòu)的熱化學(xué)改變程度,較低的H/C意味著較高的熔融芳香環(huán)含量和較高的穩(wěn)定性[79].同時(shí),施用年限的長(zhǎng)短也會(huì)影響生物炭的穩(wěn)定性,有研究表明施用年限越長(zhǎng),土壤中留存的生物炭越穩(wěn)定.Wang等[80] 基于24篇文獻(xiàn)中128對(duì)數(shù)據(jù)開(kāi)展的整合分析表明,生物炭施入后的初始分解速率約為0.021%~0.033% d-1,但在施用3年后,生物炭分解極為緩慢.
不同研究中生物炭的分解速率差異較大,且同一研究中的分解速率也存在年際變化,難以具體估算生物炭施用年限的固碳量.因此,IPCC給出了生物炭施入土壤后的固碳量參考計(jì)算公式[82]:
ΔBC mineral=∑np=1(BC TOT p·F C p·F perm p),
其中:BC mineral表示生物炭施入土壤100年后的殘留碳量;
BC TOT p
表示施炭量(t·hm-2·a-1);F C p
表示生物炭的有機(jī)碳含量,單位是t(C)·t-1;F perm p
表示100年尺度上生物炭的存留系數(shù),單位是t (C-eq)·t-1;n 表示使用的第n種生物炭.
1.3 生物炭土壤固碳研究的熱點(diǎn)與發(fā)展趨勢(shì)
在Web of Science中以檢索式TS=biochar AND TS=(“soil organic carbon” OR “soil carbon” OR “carbon sequestration”) NOT TS=incubation進(jìn)行檢索,通過(guò)CiteSpace對(duì)檢索結(jié)果進(jìn)行關(guān)鍵詞共現(xiàn)研究.除檢索語(yǔ)句包含的詞匯外,出現(xiàn)頻次最高的有black carbon(黑炭)、charcoal(木炭)、bioma(生物質(zhì))、nitrogen(氮)、 greenhouse gas emission(溫室氣體排放)、pyrolysis(熱解)、stability(穩(wěn)定性).對(duì)關(guān)鍵詞進(jìn)行聚類分析,共出現(xiàn)四大主題:穩(wěn)定性、廢棄物與污染治理、熱解過(guò)程、土壤有機(jī)質(zhì)與農(nóng)業(yè)生產(chǎn)(圖1).
首先,生物炭自身的穩(wěn)定性是研究熱點(diǎn)之一,如biochar stability(生物炭穩(wěn)定性)和decomposition(分解)等分別是第一和第二的高頻詞.此外,enzyme activity(酶活性)、community structure(群落結(jié)構(gòu))等土壤微生物相關(guān)方向也受到了廣泛關(guān)注,這表明聚類主題所包括的研究范圍較廣,是一個(gè)綜合性較強(qiáng)的聚類.而CO 2、soil nutrient(土壤養(yǎng)分)、soil contamination(土壤污染)、sewage sludge biochar(污水污泥生物炭)等關(guān)鍵詞的出現(xiàn),也在一定程度上表明土壤有機(jī)碳增加是提升土壤生態(tài)系統(tǒng)服務(wù)功能的核心.
其次,廢棄物處理與污染治理也是重要的關(guān)鍵詞聚類結(jié)果.這一主題的關(guān)鍵詞包括surface charge(表面電荷)、heavy metal(重金屬)、brownfield soil(污染土壤)、waste(廢棄物)、water(水體)、crop residue(作物殘茬)、soil carbon(土壤碳)等,說(shuō)明生物炭對(duì)土壤有機(jī)碳的增加與其污染治理功能相關(guān).有研究表明,通過(guò)提升土壤有機(jī)碳含量,可在一定程度上鈍化重金屬含量.
再次,生物炭的熱解過(guò)程受到了廣泛關(guān)注.pyrolysis(熱解)、temperature(溫度)、biochar property(生物炭性質(zhì))、lignocellulosic bioma(木質(zhì)纖維素)、bioenergy(生物質(zhì)能)、CO 2 capture(碳捕集)為這一主題的主要關(guān)鍵詞,這一結(jié)果表明原料、溫度等生產(chǎn)條件對(duì)生物炭固碳功能的重要性,以及將生物炭生產(chǎn)過(guò)程中的氣態(tài)和液態(tài)副產(chǎn)物作為實(shí)現(xiàn)CCUS與循環(huán)加工的可能性.
最后,土壤有機(jī)質(zhì)與農(nóng)業(yè)生產(chǎn)也形成了聚類.該主題聚焦于生物炭的固碳功能,所包括的關(guān)鍵詞主要有dynamics(動(dòng)態(tài))、soil organic matter(土壤有機(jī)質(zhì))、microbial activity(微生物活動(dòng))、management(管理)、agricultural soil(農(nóng)業(yè)土壤)、soil degradation(土壤退化).土壤有機(jī)碳是生物炭實(shí)現(xiàn)固碳功能的主要途徑,微生物和土壤酶活動(dòng)是土壤碳循環(huán)的重要參與者.當(dāng)前生物炭的主要應(yīng)用場(chǎng)景為農(nóng)田,避免施炭所具備的負(fù)面影響需配合合理的管理措施.此外,生物炭的施用不僅影響了土壤的碳循環(huán),nutrient(養(yǎng)分)、nitrogen mineralization(氮礦化)等關(guān)鍵詞的出現(xiàn)表明生物炭對(duì)其他養(yǎng)分的周轉(zhuǎn)也存在影響.
突現(xiàn)詞結(jié)果顯示,2007至2016年突現(xiàn)強(qiáng)度最大的是charcoal(木炭)、black carbon(黑炭)、char(炭),可見(jiàn)此前研究中對(duì)生物炭的命名并不統(tǒng)一(圖2).carbon sequestration(固碳)、bioenergy(生物質(zhì)能)、fast pyrolysis(快速熱解)、activated carbon(活性炭)、sorption(吸附)、oxidation(氧化)等突現(xiàn)詞說(shuō)明早期對(duì)生物炭的固碳研究聚焦于熱解工藝、生物質(zhì)能源以及生物炭的污染治理作用.2018至2022年的突現(xiàn)詞主要包括temperature sensitivity(溫度敏感性)、soil property(土壤性質(zhì))、physicochemical property(理化性質(zhì))、water retention(持水力),表明研究熱點(diǎn)逐漸向生物炭固碳帶來(lái)的生態(tài)功能發(fā)展,探究生物炭帶來(lái)的土壤有機(jī)碳改變?nèi)绾斡绊懲寥浪μ卣?、微生物活?dòng)等土壤活動(dòng)與功能(圖2).
2 生物炭農(nóng)田減排研究進(jìn)展
2.1 生物炭農(nóng)田應(yīng)用對(duì)土壤溫室氣體排放的影響
大量研究已表明,生物炭具備減少土壤CH 4和N 2O排放的潛力.Huang等[83]報(bào)道化肥配施生物炭可減少菜地土壤CH 4排放2.36 kg·hm-2.Nan等[84]在稻田開(kāi)展了7年的觀測(cè)試驗(yàn),與對(duì)照相比,生物炭還田可降低稻田14.8%~46.7%的CH 4排放,而秸稈還田則增加了111%~950.5%的CH 4排放.Yang等[85]研究了不同生物炭施用量(0、10、20和40 t·hm-2)對(duì)早、晚稻種植系統(tǒng)CH 4排放的影響,發(fā)現(xiàn)10 t·hm-2生物炭處理下早稻CH 4平均降低了26%,而20 t·hm-2和40 t·hm-2的生物炭施用量則分別使CH 4排放增加102%和200%;對(duì)晚稻而言,所有施炭量水平均可降低CH 4排放通量,且低施用量(10 t·hm-2)減排效果最好,降幅達(dá)27.2%.Nan等[86]對(duì)比了2.8 t·hm-2和22.5 t·hm-2施用量下新鮮和老化秸稈生物炭對(duì)水稻土CH 4排放的影響,發(fā)現(xiàn)施用2.8 t·hm-2和22.5 t·hm-2新鮮生物炭分別顯著增加了15.0%和36.0%的CH 4排放;老化生物炭處理組中,2.8 t·hm-2施用量對(duì)CH 4排放無(wú)顯著影響,而22.5 t·hm-2施用量顯著減少了101%~169%的CH 4排放.
對(duì)N 2O而言,Sial等[87]對(duì)比了不同溫度下(300、450和600 ℃)制成的胡桃殼生物炭對(duì)北方小麥-玉米種植土壤N 2O排放的影響,結(jié)果表明三種生物炭均顯著降低土壤N 2O排放,且熱解溫度越高降低效果越好,最大降幅達(dá)64.9%.Ginebra等[88]分別向農(nóng)田施加11 t·hm-2的木渣、牛糞和雞糞為原料制成的生物炭,發(fā)現(xiàn)僅木渣和牛糞生物炭對(duì)N 2O排放有顯著抑制作用(降幅分別為50.0%和23.0%),雞糞相比對(duì)照增加了24.0%的N 2O排放.對(duì)不同作物而言,He等[89]在宜興開(kāi)展了持續(xù)10年的生物炭對(duì)稻麥輪作系統(tǒng)N 2O排放的研究,長(zhǎng)期生物炭處理顯著降低了水稻季N 2O累積排放量.
除了開(kāi)展大量室內(nèi)模擬實(shí)驗(yàn)及大田試驗(yàn)外,也有學(xué)者利用整合分析研究了不同因素影響下生物炭對(duì)土壤CH 4排放的影響(表3).Wu等[90]基于60項(xiàng)研究中的209對(duì)獨(dú)立結(jié)果開(kāi)展了整合分析,結(jié)果表明生物炭改良土壤的CH 4排放量平均降低幅度為9.3%.Shakoor等[91]對(duì)50項(xiàng)研究中的600對(duì)獨(dú)立試驗(yàn)結(jié)果的整合分析亦顯示生物炭施加降低了農(nóng)田37.0%的CH 4排放.也有少量研究表明在特定的試驗(yàn)條件下生物炭施用對(duì)CH 4排放無(wú)顯著影響[92-93],Zhang等[94]利用從129項(xiàng)研究中共648對(duì)獨(dú)立研究數(shù)據(jù)進(jìn)行整合分析,結(jié)果顯示生物炭?jī)H在施用后第1個(gè)月對(duì)土壤CH 4減排有促進(jìn)作用,平均降幅為33.0%.
本文亦列舉了主要的生物炭對(duì)N 2O影響的整合分析結(jié)果(表3).Wu等[90]整合分析結(jié)果顯示施用生物炭可平均減少18.7%的N 2O排放量.Borchard等[95]從88篇研究中提取了608對(duì)獨(dú)立研究結(jié)果進(jìn)行整合分析,結(jié)果表明生物炭施用使N 2O排放顯著下降了38.0%.相似地,Zhang等[94]的整合分析結(jié)果表明生物炭施用使N 2O的排放得到顯著抑制,降幅在27.9%~47.9%.Cayuela等[96]搜集2007—2013年間30項(xiàng)研究成果的261對(duì)數(shù)據(jù)進(jìn)行整合分析,發(fā)現(xiàn)生物炭減少了54.0%的土壤N 2O排放,在所有整合分析結(jié)果中最高.然而也有研究表明生物炭有增加土壤N 2O排放的風(fēng)險(xiǎn),如Feng等[97]的整合分析結(jié)果顯示生物炭對(duì)土壤N 2O排放有顯著的促進(jìn)作用,增幅為4.9%~23.5%.此外,也有部分整合分析結(jié)果顯示生物炭施加并未對(duì)N 2O排放造成顯著影響[98-100].
2.2 生物炭對(duì)農(nóng)田溫室氣體排放的影響因素與機(jī)制
2.2.1 生物炭減緩農(nóng)田CH 4排放
土壤CH 4主要由產(chǎn)甲烷菌在厭氧條件下分解土壤有機(jī)物質(zhì)(如乙酸、甲基化合物等)產(chǎn)生,多數(shù)CH 4會(huì)被甲烷氧化菌直接消耗,少部分氣體排放至大氣[101].一般認(rèn)為,生物炭可通過(guò)改變土壤中可利用有機(jī)物的含量或土壤的理化性質(zhì)影響產(chǎn)甲烷菌與甲烷氧化菌的活性,進(jìn)而對(duì)CH 4的生成和消耗產(chǎn)生影響[102].根據(jù)表3,目前研究關(guān)注生物炭影響CH 4排放的因素主要分為三類,包括土壤因素(如pH、土壤質(zhì)地、SOC、DOC(可溶性有機(jī)碳))、生物質(zhì)因素(如原料、熱解溫度、老化時(shí)間、施用量、生物炭pH、C/N)和人為管理因素(如肥料類型及施加量、作物類型、試驗(yàn)類型、作物持續(xù)時(shí)間).
1)對(duì)于土壤因素,土壤質(zhì)地與pH的改變對(duì)CH 4排放影響較大.生物質(zhì)能增加土壤通氣性,破壞適宜產(chǎn)甲烷菌生長(zhǎng)的厭氧條件,從而抑制CH 4的產(chǎn)生.有研究表明因稻稈生物質(zhì)的微孔數(shù)與孔徑均比竹子生物質(zhì)大,因而更有利于增加土壤通氣并具備更好的CH 4抑制作用[101].產(chǎn)甲烷菌生長(zhǎng)最適pH值范圍在6.8~7.2之間,溫度、pH、氧氣濃度的急劇變化均容易導(dǎo)致該厭氧菌種工作的停止,而生物質(zhì)呈堿性,其“石灰效應(yīng)”使土壤pH上升,抑制了產(chǎn)甲烷菌的活動(dòng)[103],整合分析結(jié)果表明土壤pH<6時(shí)施加生物炭才能顯著降低土壤CH 4排放[94].
2)對(duì)生物質(zhì)性質(zhì)而言,Wang等[104]發(fā)現(xiàn)新鮮生物質(zhì)中DOC含量較高,對(duì)產(chǎn)甲烷菌的繁殖有利,因而在短期內(nèi)造成CH 4大量排放.Wu等[105]發(fā)現(xiàn),施用生物質(zhì)3年后土壤甲烷氧化菌/產(chǎn)甲烷菌比值高于對(duì)照,證明生物質(zhì)老化增加了甲烷氧化菌的豐度,從而減少了CH 4的總排放量.土壤CH 4排放對(duì)生物炭的響應(yīng)也受原料、C/N、pH和熱解溫度的影響,Ji等[99]整合分析顯示以木質(zhì)和草本原料制成的生物質(zhì)顯著降低了CH 4排放,而畜禽糞便原料則增加21%的CH 4排放;高C/N值(>300)、pH(>8.5)、熱解溫度下的生物質(zhì)減排效果更好,這得益于生物質(zhì)更穩(wěn)定的性質(zhì)和更豐富孔結(jié)構(gòu),以及對(duì)土壤pH的提升作用[106].
3)對(duì)于人為管理因素,氮肥施加與否會(huì)對(duì)生物質(zhì)減少CH 4排放的效果產(chǎn)生影響.研究表明累積CH 4排放在施加氮肥和不施加處理之間表現(xiàn)出明顯的差異,施加氮肥后,硝態(tài)氮可能作為稻田土壤中甲烷氧化菌的優(yōu)先氮源,增強(qiáng)其對(duì)CH 4的氧化[99,106-107].此外,有報(bào)道指出生物質(zhì)施加對(duì)水稻種植季CH 4排放的抑制效果通常高于麥季,這可能是因?yàn)樯镔|(zhì)處理后作物產(chǎn)量和生物量的提高更有利于O 2向水稻根際遷移,促進(jìn)了CH 4氧化[107].
2.2.2 生物炭減緩農(nóng)田N 2O排放
土壤N 2O排放主要源于土壤中氮素的硝化和反硝化過(guò)程.硝化作用由含有amoA和amoB基因的氨氧化細(xì)菌以及含有nxrA的亞硝化細(xì)菌驅(qū)動(dòng),反硝化過(guò)程則由含有亞硝酸鹽還原酶(nirK和nirS)及一氧化二氮還原酶(nosZ)等特定酶系的一系列反硝化細(xì)菌驅(qū)動(dòng).與影響CH 4排放的機(jī)制相似,生物炭減緩?fù)寥繬 2O排放受到土壤性質(zhì)、生物炭性質(zhì)和人為管理措施等因素影響.
1)對(duì)土壤因素而言,生物炭基于多孔結(jié)構(gòu)和大比表面積的特性,能夠增強(qiáng)土壤通氣,抑制反硝化路徑中N 2O的排放,因而對(duì)于黏性土壤具有更好的減排效果[107].此外,土壤陽(yáng)離子交換量(CEC)較低的土壤施用生物炭可能抑制N 2O排放的效果更好[100],生物炭施加后會(huì)增加CEC并促進(jìn)NH+ 4/NO- 3的吸附和土壤N固定[108],減少硝化/反硝化的底物,并抑制氮循環(huán)酶(如脲酶、蛋白酶)的活性[109].相反地,在土壤C/N高(>10)的情況下,施用生物炭可能通過(guò)改變土壤碳氮比刺激土壤微生物活性,導(dǎo)致農(nóng)田土壤更高的氮氧化物排放[110].
2)對(duì)生物炭性質(zhì)而言,Chen等[111]研究發(fā)現(xiàn)生物炭熱解溫度和添加量越高,含有nosZ的微生物豐度和基因表達(dá)水平越高,而含有nirS和nirK基因的微生物生長(zhǎng)繁殖則受到抑制,表明添加生物炭能夠通過(guò)削弱硝酸鹽和亞硝酸鹽向N 2O轉(zhuǎn)化并促進(jìn)N 2O轉(zhuǎn)化為N 2來(lái)減少土壤N 2O 的排放.生物炭老化對(duì)土壤N 2O排放影響較大,F(xiàn)eng等[97]發(fā)現(xiàn)生物炭對(duì)土壤N 2O排放的減緩作用由于老化而降低了15.0%,老化生物炭有利于加速硝化作用產(chǎn)生N 2O,同時(shí)削弱N 2O的還原作用.
3)人為管理因素中,氮肥是生物炭影響N 2O排放最關(guān)鍵因素.Wu等[90]研究氮肥施加配合施用生物炭對(duì)農(nóng)田N 2O排放的影響,發(fā)現(xiàn)N 2O排放總是在施肥后達(dá)到峰值,在氮肥處理下,生物炭處理組的N 2O排放量顯著低于對(duì)照,降幅在19.5%~26.3%之間,說(shuō)明生物炭在高施氮農(nóng)田生態(tài)系統(tǒng)中具有較好的緩解N 2O排放的潛力.
2.3 生物炭減排研究熱點(diǎn)與趨勢(shì)
在Web of Science對(duì)生物炭減排主題進(jìn)行檢索,構(gòu)建的檢索式為TS=(biochar AND soil AND (CO 2 OR N 2O OR CH 4 OR greenhouse gas)) NOT TS=(incubation),使用CiteSpace軟件對(duì)檢索結(jié)果進(jìn)行關(guān)鍵詞共現(xiàn)研究.高頻詞匯有bioma(生物質(zhì))、nitrogen(氮)、yield(產(chǎn)量)、organic matter(有機(jī)質(zhì))、growth(生長(zhǎng))、pyrolysis(熱解).對(duì)關(guān)鍵詞進(jìn)行聚類分析,共出現(xiàn)四大主題:生物炭農(nóng)業(yè)減排潛力、生物炭的減排機(jī)制、土壤改良與污染控制、農(nóng)業(yè)提質(zhì)增產(chǎn)與廢棄物資源化利用(圖3).
首先是生物炭農(nóng)業(yè)減排潛力,這一主題的關(guān)鍵詞包括CO 2 emission(二氧化碳排放)、CH 4 emission(甲烷排放)、N 2O emission(氧化亞氮排放)、gaseous emission(氣體排放)、agriculture(農(nóng)業(yè))、emission factor(排放因子)、paddy soil(水稻土)、cropping system(種植系統(tǒng))等.農(nóng)業(yè)是重要的溫室氣體源,而生物炭可以緩解農(nóng)業(yè)源的GHGs(溫室氣體)排放,其施用于農(nóng)田后對(duì)各類GHGs的減排效果(減排量的估算)是近年的研究熱點(diǎn).
其次,生物炭的減排機(jī)制也形成了聚類.該主題重點(diǎn)關(guān)注生物炭減排作用的發(fā)生機(jī)制,主要包含adsorption(吸附)、oxidation(氧化)、aromatic hydrocarbon(芳香烴)、dissolved organic matter(可溶性有機(jī)質(zhì))、microbial functional gene(微生物功能基因)、bacterium(細(xì)菌)、stabilization(穩(wěn)定)、chemical(化學(xué))、acid(酸性)等關(guān)鍵詞.生物炭減排機(jī)制可分為宏觀和微觀兩個(gè)層次,相關(guān)研究主要圍繞調(diào)整土壤通氣條件、酸堿度、有機(jī)質(zhì)含量、微生物及相關(guān)功能基因的豐度等方面開(kāi)展.
在土壤改良與污染控制的主題中,contaminated soil(污染土壤)、desorption(解吸)、bioavailability(生物有效性)、toxicity(毒性)、cation exchange capacity(陽(yáng)離子交換量)、cadmium(鎘)、degradation(退化)成為高頻關(guān)鍵詞.生物炭不僅減排潛力巨大,同時(shí)還具有增加土壤肥力、改善土壤結(jié)構(gòu)等作用,因而其對(duì)受污染(如重金屬污染)或退化嚴(yán)重土壤的改良效果也備受研究者關(guān)注.
最后一個(gè)主題是農(nóng)業(yè)提質(zhì)增產(chǎn)與廢棄物資源化利用.該主題以yield(產(chǎn)量)、rice straw(水稻秸稈)、crop(作物)、bioenergy(生物能)、gasification(氣化)、crop production system(作物生產(chǎn)系統(tǒng))、global change(全球變化)為高頻共現(xiàn)關(guān)鍵詞.發(fā)展綠色農(nóng)業(yè)、氣候智慧型農(nóng)業(yè)是應(yīng)對(duì)全球變化的必然選擇.當(dāng)前農(nóng)業(yè)廢棄物資源(如秸稈、畜禽糞便等)利用不充分導(dǎo)致資源浪費(fèi)甚至額外的GHGs排放,生物炭產(chǎn)業(yè)發(fā)展不僅有利于解決廢棄生物質(zhì)的處置問(wèn)題,生物質(zhì)燃料、生物炭基肥等附加產(chǎn)品還帶來(lái)額外的減排,生物炭施用的增產(chǎn)效果也為農(nóng)業(yè)提質(zhì)增產(chǎn)提供了新途徑和新視角.
突現(xiàn)詞結(jié)果顯示,早期研究主要關(guān)注生物炭的固碳效果和生物質(zhì)能源的使用,如2007—2016年突增的charcoal(木炭)、manure(糞便)、black carbon(黑炭)、carbon sequestration(固碳)、biofuel(生物燃料)等關(guān)鍵詞(圖4).2010年出現(xiàn)emission(排放)、N 2O等突現(xiàn)詞,此階段生物炭農(nóng)業(yè)應(yīng)用的減排效果開(kāi)始得到關(guān)注.隨著研究的深入,大尺度分析方法于2017年被引入該主題的研究中用來(lái)定量評(píng)估生物炭減排的普適性效果,如meta-analysis(整合分析).2018年起,community composition(群落組成)、use efficiency(利用效率)、temperature sensitivity(溫度敏感性)等關(guān)鍵詞陸續(xù)出現(xiàn),說(shuō)明研究開(kāi)始關(guān)注生物炭的微觀減排機(jī)制,同時(shí)在不同的土壤、氣候、管理措施(氮肥施用)等因素下來(lái)研究生物炭的減排效果和影響因素.
3 生物炭參與碳交易面臨的機(jī)遇與挑戰(zhàn)
3.1 生物炭參與碳交易的機(jī)遇
“雙碳”目標(biāo)的提出表明了中國(guó)氣候治理的宏偉決心,如何在限期內(nèi)完成這一目標(biāo)是未來(lái)高質(zhì)量可持續(xù)發(fā)展和綠色低碳轉(zhuǎn)型的關(guān)鍵.碳交易是基于溫室氣體(GHGs)排放指標(biāo)的買賣行為,其通過(guò)引入市場(chǎng)機(jī)制來(lái)解決全球氣候變化問(wèn)題,充分利用碳交易推動(dòng)GHGs減排是實(shí)現(xiàn)“碳中和”的重要環(huán)節(jié).生物炭因優(yōu)異的減排增匯、提質(zhì)增產(chǎn)能力而具有參與農(nóng)業(yè)自愿減排碳交易明顯潛力[112].
以生物質(zhì)熱解多聯(lián)產(chǎn)技術(shù)(Biomass Intermediate Pyrolysis Poly-generation,BIPP)為例,該技術(shù)將生物質(zhì)轉(zhuǎn)化為固液燃料、肥料、燃?xì)?、改良劑等多種產(chǎn)物并加以利用[113],有望成為中國(guó)生物炭產(chǎn)業(yè)發(fā)展的主要形式.Yang等[114]設(shè)計(jì)了一套BIPP并對(duì)其農(nóng)田應(yīng)用直接帶來(lái)的碳匯、生物燃料替代化石燃料、降低化肥需求、間接的農(nóng)田溫室氣體減排等效應(yīng)進(jìn)行了計(jì)量,僅利用中國(guó)33%的可持續(xù)利用的作物殘茬,每年就會(huì)減少高達(dá)54.27 Mt CO 2-eq排放;若將所有可利用的生物質(zhì)都用于生產(chǎn)生物炭和生物燃料,到2030年每單位GDP的碳排放量將減少61%[115].綜上,生物炭的固碳減排效益具備可行的技術(shù)基礎(chǔ)和巨大的理論潛力,生物炭參與我國(guó)碳交易前景十分可觀.
國(guó)際上對(duì)生物炭農(nóng)田應(yīng)用的固碳減排作用關(guān)注較早.美國(guó)《清潔能源與安全法案》提出了農(nóng)業(yè)和林業(yè)減排抵消計(jì)劃,鼓勵(lì)生物炭等農(nóng)林業(yè)生態(tài)產(chǎn)品參與碳市場(chǎng).早在2009年,英國(guó)就已關(guān)注到生物炭參與碳交易的可能性并將其納入立法討論范圍內(nèi).歐盟最早啟動(dòng)碳交易市場(chǎng)并且運(yùn)行機(jī)制最為成熟,農(nóng)戶通過(guò)生物炭應(yīng)用等固碳減排措施帶來(lái)的碳減排量進(jìn)行市場(chǎng)交易能很大程度抵消減排成本.2021年,歐盟議會(huì)提出要設(shè)立“碳關(guān)稅”(https://oeil.secure.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2020/2043(INI)&l=en),意味著生物炭固碳減排項(xiàng)目產(chǎn)生的環(huán)境效益將體現(xiàn)在產(chǎn)品價(jià)格中,進(jìn)一步助力農(nóng)民增收.目前中國(guó)農(nóng)業(yè)減排項(xiàng)目?jī)H能通過(guò)清潔發(fā)展機(jī)制項(xiàng)目(CDM)和國(guó)家核證自愿減排項(xiàng)目(CCER)進(jìn)行國(guó)際上和國(guó)內(nèi)的碳減排量交易.2022年4月,《中共中央 國(guó)務(wù)院關(guān)于加快建設(shè)全國(guó)統(tǒng)一大市場(chǎng)的意見(jiàn)》正式發(fā)布,意見(jiàn)提出要建設(shè)全國(guó)統(tǒng)一的碳排放權(quán)交易市場(chǎng),實(shí)行統(tǒng)一規(guī)范的行業(yè)標(biāo)準(zhǔn)、交易監(jiān)管機(jī)制.總的看來(lái),生物炭參與中國(guó)碳交易的政策體系已大體具備,相關(guān)計(jì)量標(biāo)準(zhǔn)與交易細(xì)則陸續(xù)出臺(tái)后,生物炭自愿減排碳交易市場(chǎng)有望蓬勃發(fā)展.
3.2 生物炭參與碳交易的挑戰(zhàn)
碳交易的市場(chǎng)機(jī)制將在中國(guó)綠色、低碳產(chǎn)業(yè)轉(zhuǎn)型的道路上發(fā)揮不可或缺的激勵(lì)與約束作用,而積極參與碳交易是農(nóng)業(yè)領(lǐng)域?qū)崿F(xiàn)“碳中和”的必然選擇.生物炭產(chǎn)業(yè)的發(fā)展能有效解決中國(guó)耕地肥力不足、農(nóng)業(yè)廢棄物深度利用效率低等現(xiàn)實(shí)困境,生物炭顯著的減排增匯效果亦賦予其廣泛參與碳交易的基礎(chǔ)條件.然而生物炭參與碳交易仍需解決碳排放計(jì)量與核算方法不夠完善、碳交易平臺(tái)未能得到有效開(kāi)發(fā)和利用等問(wèn)題.
農(nóng)業(yè)碳減排量與碳匯的精確計(jì)量與核算是碳交易順利進(jìn)行的前提條件.中國(guó)不同省份地區(qū)農(nóng)業(yè)發(fā)展程度與特色產(chǎn)業(yè)、土壤環(huán)境和氣候條件等存在較大差異,因此農(nóng)業(yè)碳排放量的核算較為復(fù)雜,仍然缺乏統(tǒng)一的核算方法和標(biāo)準(zhǔn)[116].目前僅有3個(gè)農(nóng)業(yè)相關(guān)的計(jì)量方法學(xué)在國(guó)家發(fā)展改革委員會(huì)備案[117].一般而言,生物炭農(nóng)田應(yīng)用碳減排計(jì)量方法學(xué)的開(kāi)發(fā)包括項(xiàng)目邊界和基線、關(guān)鍵排放源與碳匯、項(xiàng)目泄漏等[118],涉及生產(chǎn)、運(yùn)輸、施用和計(jì)量等多個(gè)環(huán)節(jié).生物炭生產(chǎn)過(guò)程造成的碳排放量因原料、生產(chǎn)工藝的不同有很大區(qū)別,農(nóng)田溫室氣體排放系數(shù)也可能由于目標(biāo)耕地的性質(zhì)及氣候的差異而異質(zhì)性較大,因此生物炭農(nóng)田應(yīng)用減排增匯的精確量化存在一定難度.
中國(guó)碳交易市場(chǎng)尚處于起步階段,特別是農(nóng)業(yè)領(lǐng)域參與碳交易程度不高.聯(lián)合國(guó)氣候變化框架公約網(wǎng)站(https://cdm.unfccc.int/Projects/projsearch.html)顯示,截至2022年4月25日,中國(guó)已注冊(cè)3 876個(gè)CDM項(xiàng)目,其中與農(nóng)業(yè)直接相關(guān)的僅有35個(gè).目前,中國(guó)經(jīng)核實(shí)公示CCER審定項(xiàng)目2 852個(gè),林業(yè)碳匯、生物質(zhì)能、避免甲烷排放等與農(nóng)業(yè)高度相關(guān)的項(xiàng)目數(shù)為615個(gè),占比僅達(dá)21%.中國(guó)小農(nóng)戶個(gè)體居多且較為分散,所產(chǎn)生的碳減排量難以準(zhǔn)確計(jì)量并規(guī)?;瘏⑴c碳交易[119],并且中國(guó)碳交易市場(chǎng)整體平均碳價(jià)維持在較低水平,僅23元/t左右,與當(dāng)前歐盟約100歐元/t的碳價(jià)相去甚遠(yuǎn).此外,生物炭制備成本本身較高,若農(nóng)戶產(chǎn)生的碳減排量參與碳交易獲得的收益難以覆蓋生產(chǎn)成本,無(wú)疑將打擊生物炭農(nóng)業(yè)應(yīng)用項(xiàng)目參與碳交易的積極性.
3.3 展望與建議
農(nóng)業(yè)廢棄物以生物炭形式利用能直接增加土壤碳庫(kù),并且通過(guò)改變土壤理化性質(zhì)和微生物群落結(jié)構(gòu)使CH 4和N 2O排放減少并新增SOC,帶來(lái)可觀的減排增匯量.生物炭還能通過(guò)增加土壤肥力起到增產(chǎn)作用,并且不會(huì)引起病蟲(chóng)害,相比直接還田、好氧堆肥、厭氧發(fā)酵和焚燒發(fā)電等利用方式可以更全面地發(fā)揮廢棄物的資源屬性,負(fù)面效應(yīng)少.總的來(lái)說(shuō),生物炭參與碳交易的前景廣闊,對(duì)中國(guó)農(nóng)業(yè)綠色可持續(xù)發(fā)展意義重大.
對(duì)于生物炭農(nóng)田應(yīng)用固碳減排項(xiàng)目參與碳交易所面臨的問(wèn)題,目前可以通過(guò)以下手段來(lái)積極應(yīng)對(duì).第一,未來(lái)需要因地制宜地利用區(qū)域特色農(nóng)業(yè)廢棄物,繼續(xù)深入研究生物炭制備過(guò)程和固碳減排結(jié)果異質(zhì)性的機(jī)理,最終建立針對(duì)不同地區(qū)生物炭推薦施用參考目錄(如制備工藝、農(nóng)田施用量等),為政府制定相關(guān)行業(yè)規(guī)范和性質(zhì)測(cè)定標(biāo)準(zhǔn)提供科學(xué)依據(jù).第二,應(yīng)進(jìn)一步開(kāi)發(fā)和完善生物炭固碳減排方法學(xué),建立科學(xué)完善的碳排與碳匯核算體系,由政府引導(dǎo)并聯(lián)合各大科研院所建立生物炭的固碳減排大數(shù)據(jù)平臺(tái),為各地獲取更有效的應(yīng)用技術(shù)及更精確的排放因子提供數(shù)據(jù)基礎(chǔ).第三,應(yīng)在農(nóng)業(yè)集約化過(guò)程中配合推動(dòng)生物炭應(yīng)用產(chǎn)業(yè)化,使生物質(zhì)碳減排量計(jì)量標(biāo)準(zhǔn)化、生物炭參與自愿減排碳交易規(guī)?;⑼苿?dòng)生物炭農(nóng)業(yè)固碳減排項(xiàng)目碳減排量交易試點(diǎn)工作,鼓勵(lì)企業(yè)優(yōu)先認(rèn)購(gòu)農(nóng)業(yè)碳減排量,以良好的經(jīng)濟(jì)效益帶動(dòng)農(nóng)業(yè)生產(chǎn)者參與積極性.第四,政府和社會(huì)組織應(yīng)當(dāng)增加相應(yīng)技術(shù)培訓(xùn),設(shè)立合理的補(bǔ)償與約束措施,加強(qiáng)綠色生產(chǎn)等概念的宣傳,提高農(nóng)業(yè)生產(chǎn)者向低碳農(nóng)業(yè)轉(zhuǎn)型的積極性.
參考文獻(xiàn)
References
[1] IPCC.Climate change 2021:the physical science basis [R].Cambridge,UK,and New York,USA:Cambridge University Press,2021
[2] Reay D S,Davidson E A,Smith K A,et al.Global agriculture and nitrous oxide emissions[J].Nature Climate Change,2012,2(6):410-416
[3] Montzka S A,Dlugokencky E J,Butler J H.Non-CO 2 greenhouse gases and climate change[J].Nature,2011,476(7358):43-50
[4] 李長(zhǎng)生,肖向明,F(xiàn)rolking S,等.中國(guó)農(nóng)田的溫室氣體排放[J].第四紀(jì)研究,2003,23(5):493-503
LI Changsheng,XIAO Xiangming,F(xiàn)rolking S,et al.Greenhouse gas emissions from croplands of China[J].Quaternary Sciences,2003,23(5):493-503
[5] 譚秋成.中國(guó)農(nóng)業(yè)溫室氣體排放:現(xiàn)狀及挑戰(zhàn)[J].中國(guó)人口·資源與環(huán)境,2011,21(10):69-75
TAN Qiucheng.Greenhouse gas emission in Chinas agriculture:situation and challenge[J].China Population,Resources and Environment,2011,21(10):69-75
[6] 國(guó)家應(yīng)對(duì)氣候變化戰(zhàn)略研究和國(guó)際合作中心.中國(guó)氣候變化第三次國(guó)家信息通報(bào) [R/OL].[2022-01-08].https://tnc.ccchina.org.cn/Detail.aspx?newsId=73250&TId=203
[7] 全球碳捕集與封存研究院.全球碳捕集與封存現(xiàn)狀 [R].2021
[8] 陳文穎,吳宗鑫,王偉中.CO 2收集封存戰(zhàn)略及其對(duì)我國(guó)遠(yuǎn)期減緩CO 2排放的潛在作用[J].環(huán)境科學(xué),2007,28(6):1178-1182
CHEN Wenying,WU Zongxin,WANG Weizhong.Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China[J].Environmental Science,2007,28(6):1178-1182
[9] 王鍵,楊劍,王中原,等.全球碳捕集與封存發(fā)展現(xiàn)狀及未來(lái)趨勢(shì)[J].環(huán)境工程,2012,30(4):118-120
WANG Jian,YANG Jian,WANG Zhongyuan,et al.The present status and future trends of global carbon capture and storage[J].Environmental Engineering,2012,30(4):118-120
[10] 仲平,彭斯震,賈莉,等.中國(guó)碳捕集、利用與封存技術(shù)研發(fā)與示范[J].中國(guó)人口·資源與環(huán)境,2011,21(12):41-45
ZHONG Ping,PENG Sizhen,JIA Li,et al.Development of carbon capture,utilization and storage (CCUS) technology in China[J].China Population,Resources and Environment,2011,21(12):41-45
[11] 韓文科,楊玉峰,苗韌,等.全球碳捕集與封存(CCS)技術(shù)的最新進(jìn)展[J].宏觀經(jīng)濟(jì)研究,2009(12):22-23,43
HAN Wenke,YANG Yufeng,MIAO Ren,et al.The latest development of global carbon capture and storage (CCS) technology[J].Macroeconomics,2009(12):22-23,43
[12] 仲平,彭斯震,張九天,等.發(fā)達(dá)國(guó)家碳捕集、利用與封存技術(shù)及其啟示[J].中國(guó)人口·資源與環(huán)境,2012,22(4):25-28
ZHONG Ping,PENG Sizhen,ZHANG Jiutian,et al.Carbon capture utilization and storage technology development in developed countries and inspirations to China[J].China Population,Resources and Environment,2012,22(4):25-28
[13] Smith P,Davis S J,Creutzig F,et al.Biophysical and economic limits to negative CO 2 emissions[J].Nature Climate Change,2016,6(1):42-50
[14] Smith P.Soil carbon sequestration and biochar as negative emission technologies[J].Global Change Biology,2016,22(3):1315-1324
[15] Liu S W,Zhang Y J,Zong Y J,et al.Response of soil carbon dioxide fluxes,soil organic carbon and microbial biomass carbon to biochar amendment:a meta-analysis[J].GCB Bioenergy,2016,8(2):392-406
[16] 劉成,劉曉雨,張旭輝,等.基于整合分析方法評(píng)價(jià)我國(guó)生物質(zhì)炭施用的增產(chǎn)與固碳減排效果[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(3):696-706
LIU Cheng,LIU Xiaoyu,ZHANG Xuhui,et al.Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis[J].Journal of Agro-Environment Science,2019,38(3):696-706
[17] Lehmann J,Cowie A,Masiello C A,et al.Biochar in climate change mitigation[J].Nature Geoscience,2021,14(12):883-892
[18] Qambrani N A,Rahman M M,Won S,et al.Biochar properties and eco-friendly applications for climate change mitigation,waste management,and wastewater treatment:a review[J].Renewable and Sustainable Energy Reviews,2017,79:255-273
[19] Lehmann J.Bio-energy in the black[J].Frontiers in Ecology and the Environment,2007,5(7):381-387
[20] Wang J L,Wang S Z.Preparation,modification and environmental application of biochar:a review[J].Journal of Cleaner Production,2019,227:1002-1022
[21] Marris E.Putting the carbon back:black is the new green[J].Nature,2006,442(7103):624-626
[22] 袁金華,徐仁扣.生物質(zhì)炭的性質(zhì)及其對(duì)土壤環(huán)境功能影響的研究進(jìn)展[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(4):779-785
YUAN Jinhua,XU Renkou.Progress of the research on the properties of biochars and their influence on soil environmental functions[J].Ecology and Environmental Sciences,2011,20(4):779-785
[23] Chen W F,Meng J,Han X R,et al.Past,present,and future of biochar[J].Biochar,2019(1):75-87
[24] Tan Z X,Lin C,Ji X Y,et al.Returning biochar to fields:a review[J].Applied Soil Ecology,2017,116:1-11
[25] Liang L P,Xi F F,Tan W S,et al.Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J].Biochar,2021,3(3):255-281
[26] Schmidt H P,Kammann C,Hagemann N,et al.Biochar in agriculture:a systematic review of 26 global meta-analyses [J].Global Change Biology Bioenergy,2021,13(11):1708-1730
[27] He Y H,Zhou X H,Jiang L L,et al.Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].GCB Bioenergy,2017,9(4):743-755
[28] Zhang M,Li X B,Wang H,et al.Comprehensive analysis of grazing intensity impacts soil organic carbon:a case study in typical steppe of Inner Mongolia,China[J].Applied Soil Ecology,2018,129:1-12
[29] Denis T,Gabriela C I,Gerard J.Long term impact of different tillage systems on carbon pools and stocks,soil bulk density,aggregation and nutrients:a field meta-analysis[J].Catena,2021,199:105102
[30] 李琦,蔡博峰,陳帆,等.二氧化碳地質(zhì)封存的環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)方法研究綜述[J].環(huán)境工程,2019,37(2):13-21
LI Qi,CAI Bofeng,CHEN Fan,et al.Review of environmental risk assessment methods for carbon dioxide geological storage[J].Environmental Engineering,2019,37(2):13-21
[31] 王懷臣,馮雷雨,陳銀廣.廢物資源化制備生物質(zhì)炭及其應(yīng)用的研究進(jìn)展[J].化工進(jìn)展,2012,31(4):907-914
WANG Huaichen,F(xiàn)ENG Leiyu,CHEN Yinguang.Advances in biochar production from wastes and its applications[J].Chemical Industry and Engineering Progress,2012,31(4):907-914
[32] Lu K P,Yang X,Gielen G,et al.Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd,Cu,Pb and Zn) in contaminated soil[J].Journal of Environmental Management,2017,186(Pt 2):285-292
[33] Zhang X X,Zhang P Z,Yuan X R,et al.Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar[J].Bioresource Technology,2020,296:122318
[34] Zhao L,Cao X D,Maek O,et al.Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J].Journal of Hazardous Materials,2013,256/257:1-9
[35] Ippolito J A,Cui L Q,Kammann C,et al.Feedstock choice,pyrolysis temperature and type influence biochar characteristics:a comprehensive meta-data analysis review[J].Biochar,2020(4):421-438
[36] Inyang M,Gao B,Pullammanappallil P,et al.Biochar from anaerobically digested sugarcane bagasse[J].Bioresource Technology,2010,101(22):8868-8872
[37] Yao Y,Gao B,Inyang M,et al.Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential[J].Bioresource Technology,2011,102(10):6273-6278
[38] Sun F F,Lu S G.Biochars improve aggregate stability,water retention,and pore-space properties of clayey soil[J].Journal of Plant Nutrition and Soil Science,2014,177(1):26-33
[39] Bird M I,Wurster C M,de Paula Silva P H,et al.Algal biochar:production and properties[J].Bioresource Technology,2011,102(2):1886-1891
[40] Lehmann J.A handful of carbon[J].Nature,2007,447(7141):143-144
[41] Eglinton T I,Galy V V,Hemingway J D,et al.Climate control on terrestrial biospheric carbon turnover[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(8):e2011585118
[42] Cotrufo M F,Ranalli M,Haddix M,et al.Soil carbon storage informed by particulate and mineral-associated organic matter[J].Nature Geoscience,2019,12(12):1-6
[43] Lu W W,Ding W X,Zhang J H,et al.Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil:a negative priming effect[J].Soil Biology and Biochemistry,2014,76:12-21
[44] Han L F,Yang Y,Xia X H,et al.Biochars stability and effect on the content,composition of soil organic carbon[J].Geoderma,2020,364:114184
[45] 史雷,張然,馬龍,等.小麥產(chǎn)量及土壤性狀對(duì)施用生物質(zhì)炭的量化響應(yīng)[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(7):1273-1283
SHI Lei,ZHANG Ran,MA Long,et al.Quantitative response of wheat yield and soil properties to biochar amendment in China[J].Plant Nutrition and Fertilizer Science,2020,26(7):1273-1283
[46] 肖婧,王傳杰,黃敏,等.生物質(zhì)炭對(duì)設(shè)施大棚土壤性質(zhì)與果蔬產(chǎn)量影響的整合分析[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):228-236
XIAO Jing,WANG Chuanjie,HUANG Min,et al.Meta-analysis of biochar application effects on soil fertility and yields of fruit and vegetables in greenhouse[J].Journal of Plant Nutrition and Fertilizers,2018,24(1):228-236
[47] Bai X X,Huang Y W,Ren W,et al.Responses of soil carbon sequestration to climate-smart agriculture practices:a meta-analysis[J].Global Change Biology,2019,25(8):2591-2606
[48] Chagas J K M,F(xiàn)igueiredo C C,Ramos M L G.Biochar increases soil carbon pools:evidence from a global meta-analysis[J].Journal of Environmental Management,2022,305:114403
[49] Singh H,Northup B K,Rice C W,et al.Biochar applications influence soil physical and chemical properties,microbial diversity,and crop productivity:a meta-analysis[J].Biochar,2022,4(1):103-119
[50] Xu H,Cai A D,Wu D,et al.Effects of biochar application on crop productivity,soil carbon sequestration,and global warming potential controlled by biochar C∶N ratio and soil pH:a global meta-analysis[J].Soil & Tillage Research,2021,213:105125
[51] Gross A,Bromm T,Glaser B.Soil organic carbon sequestration after biochar application:a global meta-analysis[J].Agronomy,2021,11(12):2474
[52] Zimmerman A R,Gao B,Ahn M Y.Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J].Soil Biology and Biochemistry,2011,43(6):1169-1179
[53] Sun J L,Li H B,Zhang D S,et al.Long-term biochar application governs the molecular compositions and decomposition of organic matter in paddy soil[J].GCB Bioenergy,2021,13(12):1939-1953
[54] Singh B P,Cowie A L.Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil[J].Scientific Reports,2014,4:3687
[55] 魏永霞,朱畑豫,劉慧.連年施加生物炭對(duì)黑土區(qū)土壤改良與玉米產(chǎn)量的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):291-301
WEI Yongxia,ZHU Tianyu,LIU Hui.Effects of successive application of biochar on soil improvement and maize yield of black soil region[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):291-301
[56] Bi Y C,Cai S Y,Wang Y,et al.Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils:views from crop production,carbon sequestration and net ecosystem economic benefits[J].Journal of Environmental Management,2019,245:173-186
[57] Dai Y H,Zheng H,Jiang Z X,et al.Combined effects of biochar properties and soil conditions on plant growth:a meta-analysis[J].Science of the Total Environment,2020,713:136635
[58] Saarnio S,Kettunen R.Biochar addition affected nutrient leaching and litter decomposition rates in boreal sandy soils[J].Agricultural and Food Science,2020,29(4):287-296
[59] Minamino Y,F(xiàn)ujitake N,Suzuki T,et al.Effect of biochar addition on leaf-litter decomposition at soil surface during three years in a warm-temperate secondary deciduous forest,Japan[J].Scientific Reports,2019,9(1):16961
[60] Xiang Y Z,Deng Q,Duan H L,et al.Effects of biochar application on root traits:a meta-analysis[J].GCB Bioenergy,2017,9(10):1563-1572
[61] Akhter A,Hage-Ahmed K,Soja G,et al.Compost and biochar alter mycorrhization,tomato root exudation,and development of Fusarium oxysporum f.sp.lycopersici[J].Frontiers in Plant Science,2015,6:529
[62] Sun C X,Wang D,Shen X B,et al.Effects of biochar,compost and straw input on root exudation of maize (Zea mays L.):from function to morphology[J].Agriculture,Ecosystems & Environment,2020,297:106952
[63] Liang C,Amelung W,Lehmann J,et al.Quantitative assessment of microbial necromass contribution to soil organic matter[J].Global Change Biology,2019,25(11):3578-3590
[64] Zhang Y,Xie H,Wang F,et al.Effects of biochar incorporation on soil viable and necromass carbon in the luvisol soil[J].Soil Use and Management,2022,38(1):318-330
[65] Zhang Y L,Xie H T,Wang F P,et al.Variations of soil viable and necromass carbon affected by biochar incorporation frequencies[J].Archives of Agronomy and Soil Science,2021:1-12.DOI:10.1080/03650340.2021.1915484
[66] 梁超,朱雪峰.土壤微生物碳泵儲(chǔ)碳機(jī)制概論[J].中國(guó)科學(xué)(地球科學(xué)),2021,51(5):680-695
LIANG Chao,ZHU Xuefeng.Introduction to carbon storage mechanism of soil microbial carbon pump[J].Scientia Sinica (Terrae),2021,51(5):680-695
[67] Wu W A,Han J Y,Gu Y N,et al.Impact of biochar amendment on soil hydrological properties and crop water use efficiency:a global meta-analysis and structural equation model[J].GCB Bioenergy,2022,14(6):657-668
[68] Omondi M O,Xia X,Nahayo A,et al.Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J].Geoderma,2016,274:28-34
[69] Islam M U,Jiang F H,Guo Z C,et al.Does biochar application improve soil aggregation? A meta-analysis[J].Soil and Tillage Research,2021,209:104926
[70] Bachmann J,Guggenberger G,Baumgartl T,et al.Physical carbon-sequestration mechanisms under special consideration of soil wettability[J].Journal of Plant Nutrition and Soil Science,2008,171(1):14-26
[71] Lehmann J,Hansel C M,Kaiser C,et al.Persistence of soil organic carbon caused by functional complexity[J].Nature Geoscience,2020,13(8):529-534
[72] Hu F N,Xu C Y,Ma R T,et al.Biochar application driven change in soil internal forces improves aggregate stability:based on a two-year field study[J].Geoderma,2021,403:115276
[73] 高誠(chéng)祥,劉玉學(xué),汪玉瑛,等.生物炭的穩(wěn)定性及其對(duì)礦物改性的響應(yīng)機(jī)制研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(9):3245-3251
GAO Chengxiang,LIU Yuxue,WANG Yuying,et al.Stability of biochar and the mechanisms underlying its response to mineral modification:a review[J].Chinese Journal of Applied Ecology,2019,30(9):3245-3251
[74] Plaza C,Giannetta B,F(xiàn)ernndez J M,et al.Response of different soil organic matter pools to biochar and organic fertilizers[J].Agriculture,Ecosystems & Environment,2016,225:150-159
[75] Luo Y,Durenkamp M,De Nobili M,et al.Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J].Soil Biology and Biochemistry,2011,43(11):2304-2314
[76] Hilscher A,Heister K,Siewert C,et al.Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil[J].Organic Geochemistry,2009,40(3):332-342
[77] Keith A,Singh B,Singh B P.Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J].Environmental Science & Technology,2011,45(22):9611-9618
[78] Bruun S,Jensen E S,Jensen L S.Microbial mineralization and assimilation of black carbon:dependency on degree of thermal alteration[J].Organic Geochemistry,2008,39(7):839-845
[79] Leng L J,Huang H J.An overview of the effect of pyrolysis process parameters on biochar stability[J].Bioresource Technology,2018,270:627-642
[80] Wang J Y,Xiong Z Q,Kuzyakov Y.Biochar stability in soil:meta-analysis of decomposition and priming effects[J].GCB Bioenergy,2016,8(3):512-523
[81] Spokas K A.Review of the stability of biochar in soils:predictability of O∶C molar ratios[J].Carbon Management,2010,1(2):289-303
[82] Task Force on National Greenhouse Gas Inventories (TFI).The refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R].IPCC,2019:5-13
[83] Huang R,Wang Z F,Xiao Y,et al.Increases in temperature response to CO 2 emissions in biochar-amended vegetable field soil[J].Environmental Science and Pollution Research,2022:1-11.DOI:10.1007/s11356-022-19011-6
[84] Nan Q,F(xiàn)ang C X,Cheng L Q,et al.Elevation of NO- 3-N from biochar amendment facilitates mitigating paddy CH 4 emission stably over seven years[J].Environmental Pollution,2022,295:118707
[85] Yang X,Vancov T,Penuelas J,et al.Optimal biochar application rates for mitigating global warming and increasing rice yield in a subtropical paddy field[J].Experimental Agriculture,2022:1-17.DOI:10.1017/S0014479721000259
[86] Nan Q,Hu S L,Qin Y,et al.Methane oxidation activity inhibition via high amount aged biochar application in paddy soil[J].Science of the Total Environment,2021,796:149050
[87] Sial T A,Shaheen S M,Lan Z L,et al.Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO 2 and N 2O emissions,nutrients availability,and enzymes activity[J].Chemosphere,2022,293:133476
[88] Ginebra M,Muoz C,Calvelo-Pereira R,et al.Biochar impacts on soil chemical properties,greenhouse gas emissions and forage productivity:a field experiment[J].Science of the Total Environment,2022,806:150465
[89] He L L,Xu Y X,Li J,et al.Biochar mitigated more N-related global warming potential in rice season than that in wheat season:an investigation from ten-year biochar-amended rice-wheat cropping system of China[J].Science of the Total Environment,2022,821:153344
[90] Wu Z,Zhang X,Dong Y B,et al.Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:six-year field observation and meta-analysis[J].Agricultural and Forest Meteorology,2019,278:107625
[91] Shakoor A,Dar A A,Arif M S,et al.Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture? [J].Science of the Total Environment,2022,805:150337
[92] Khan M N,Huang J,Shah A,et al.Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar[J].Environmental Research,2022,203:111879
[93] Shin J,Park D,Hong S,et al.Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production[J].Environmental Pollution,2021,285:117457
[94] Zhang Q,Xiao J,Xue J H,et al.Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils:a global meta-analysis[J].Sustainability,2020,12(8):3436
[95] Borchard N,Schirrmann M,Cayuela M L,et al.Biochar,soil and land-use interactions that reduce nitrate leaching and N 2O emissions:a meta-analysis[J].Science of the Total Environment,2019,651:2354-2364
[96] Cayuela M L,Jeffery S,van Zwieten L.The molar H∶Corg ratio of biochar is a key factor in mitigating N 2O emissions from soil[J].Agriculture,Ecosystems & Environment,2015,202:135-138
[97] Feng Y Y,F(xiàn)eng Y F,Liu Q,et al.How does biochar aging affect NH 3 volatilization and GHGs emissions from agricultural soils? [J].Environmental Pollution,2022,294:118598
[98] Shakoor A,Shahzad S M,Chatterjee N,et al.Nitrous oxide emission from agricultural soils:application of animal manure or biochar? A global meta-analysis[J].Journal of Environmental Management,2021,285:112170
[99] Ji C,Jin Y G,Li C,et al.Variation in soil methane release or uptake responses to biochar amendment:a separate meta-analysis[J].Ecosystems,2018,21(8):1692-1705
[100] Liu Q,Zhang Y H,Liu B J,et al.How does biochar influence soil N cycle? A meta-analysis[J].Plant and Soil,2018,426(1/2):211-225
[101] Liu Y X,Yang M,Wu Y M,et al.Reducing CH 4 and CO 2 emissions from waterlogged paddy soil with biochar[J].Journal of Soils and Sediments,2011,11(6):930-939
[102] Feng Y Z,Xu Y P,Yu Y C,et al.Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J].Soil Biology and Biochemistry,2012,46:80-88
[103] Qin X B,Li Y E,Wang H,et al.Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system:a four-year case study in South China[J].Science of the Total Environment,2016,569/570:1390-1401
[104] Wang J Y,Pan X J,Liu Y L,et al.Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J].Plant and Soil,2012,360(1/2):287-298
[105] Wu Z,Zhang X,Dong Y B,et al.Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season[J].Environmental Science and Pollution Research,2018,25(31):31307-31317
[106] Qi L,Ma Z L,Chang S X,et al.Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil[J].Science of the Total Environment,2021,752:141958
[107] Hu A,Lu Y H.The differential effects of ammonium and nitrate on methanotrophs in rice field soil[J].Soil Biology and Biochemistry,2015,85:31-38
[108] He T T,Yun F,Liu T,et al.Differentiated mechanisms of biochar- and straw-induced greenhouse gas emissions in tobacco fields[J].Applied Soil Ecology,2021,166:103996
[109] Pu Y L,Zhu B,Dong Z X,et al.Soil N 2O and NO x emissions are directly linked with N-cycling enzymatic activities[J].Applied Soil Ecology,2019,139:15-24
[110] Hilber I,Blum F,Leifeld J,et al.Quantitative determination of PAHs in biochar:a prerequisite to ensure its quality and safe application[J].Journal of Agricultural and Food Chemistry,2012,60(12):3042-3050
[111] Chen G H,Zhang Z R,Zhang Z Y,et al.Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J].Science of the Total Environment,2018,615:1547-1556
[112] Hansson A,Haikola S,F(xiàn)ridahl M,et al.Biochar as multi-purpose sustainable technology:experiences from projects in Tanzania[J].Environment,Development and Sustainability,2021,23(4):5182-5214
[113] Vamvuka D.Bio-oil,solid and gaseous biofuels from biomass pyrolysis processes:an overview[J].International Journal of Energy Research,2011,35(10):835-862
[114] Yang Q,Zhou H W,Bartocci P,et al.Prospective contributions of biomass pyrolysis to Chinas 2050 carbon reduction and renewable energy goals[J].Nature Communications,2021,12:1698
[115] Shan Y L,Liu J H,Liu Z,et al.New provincial CO 2 emission inventories in China based on apparent energy consumption data and updated emission factors[J].Applied Energy,2016,184:742-750
[116] 何可,汪昊,張俊飚.“雙碳”目標(biāo)下的農(nóng)業(yè)轉(zhuǎn)型路徑:從市場(chǎng)中來(lái)到“市場(chǎng)”中去[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2022(1):1-9
HE Ke,WANG Hao,ZHANG Junbiao.Agricultural transformation path with respect to the target of carbon peak and carbon neutrality:from the market to the “market”[J].Journal of Huazhong Agricultural University (Social Sciences Edition),2022(1):1-9
[117] 程琨,潘根興.農(nóng)業(yè)與碳中和[J].科學(xué),2021,73(6):8-12,4
CHENG Kun,PAN Genxing.Agriculture and carbon neutrality[J].Science,2021,73(6):8-12,4
[118] 孫建飛,鄭聚鋒,程琨,等.面向自愿減排碳交易的生物質(zhì)炭基肥固碳減排計(jì)量方法研究[J].中國(guó)農(nóng)業(yè)科學(xué),2018,51(23):4470-4484
SUN Jianfei,ZHENG Jufeng,CHENG Kun,et al.Quantifying carbon sink by biochar compound fertilizer project for domestic voluntary carbon trading in agriculture[J].Scientia Agricultura Sinica,2018,51(23):4470-4484
[119] 何可,李凡略,暢華儀.構(gòu)建低碳共同體:地方性共識(shí)與規(guī)模養(yǎng)豬戶農(nóng)業(yè)碳交易參與——以農(nóng)村沼氣CCER碳交易項(xiàng)目為例[J].中國(guó)農(nóng)村觀察,2021(5):71-91
HE Ke,LI Fanlue,CHANG Huayi.Building a low carbon community:local consensus and the participation of large—scale pig breeders in agricultural carbon trading[J].China Rural Survey,2021(5):71-91
Effect of biochar agricultural application on carbon
sequestration and emission reduction:a review
FU Weijun1 XU Xiangrui2 WEI Lingling1 YE Zhengqian1 OUYANG Xiao3
WU Wenao3 LIU Dan1 FANG Xianzhi1 NI Zhihua4
1College of Environment and Resources,Zhejiang A&F University,Hangzhou 311300
2School of Spatial Planning and Design,Zhejiang University City College,Hangzhou 310015
3College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095
4Cultivated Land Quality and Fertilizer Management Station of Zhejiang Province,Hangzhou 310020
Abstract Global climate change caused by excessive greenhouse gas (GHG) emissions has been widely concerned.Agricultural activities are the second largest source of GHGs emissions,so it is urgent to reduce agricultural GHGs emissions.Biochar,which has stable properties,abundant aromatic carbon and pores,is produced by pyrolysis of biomass under high temperature and limited oxygen conditions.The effect of biochar amendment on GHGs mitigation and soil carbon sequestration is excellent,and biochar application has the potential to participate in Chinas ongoing carbon trading of voluntary emission reduction (VER).However,the factors affecting the carbon sequestration and GHGs emission reduction effect of biochar are complicated,so it is necessary to systematically summarize the mitigation effect,influencing factors and research progress of biochar.This paper reviewed researches on the GHGs emission reduction and carbon sequestration effect of biochar through pot and field experiment as well as meta-analysis research.At the same time,CiteSpace software was used for visual analysis to explore the research hotspots and development trends in this field.The opportunities and challenges faced by biochar application projects participating in carbon trading were summarized based on the characteristics of domestic and foreign carbon trading market development and corresponding supporting policies.Corresponding solutions were also provided in this study,which offered scientific guidance and useful reference for the development of carbon sequestration and GHGs emission reduction research of biochar and the successful participation of biochar application projects in carbon trading.
Key words biochar;soil carbon pool;greenhouse gases;methane;nitrous oxide;carbon trading