周丹 尹伊秋 沈艷琴 武海良 姚一軍
摘要:以醋酸酐為改性劑對(duì)淀粉乙?;幚碇苽淞舜姿狨サ矸?,進(jìn)一步通過(guò)檸檬酸氫二銨對(duì)其增塑得到了塑性醋酸酯淀粉漿料。分析了醋酸酯淀粉的化學(xué)結(jié)構(gòu),研究了塑性醋酸酯淀粉漿料的漿膜力學(xué)性能和增塑機(jī)制,測(cè)試了塑性醋酸酯淀粉漿液黏度和熱穩(wěn)定性,并將其用于純棉特細(xì)紗上漿工藝實(shí)踐。紅外測(cè)試表明醋酸酯淀粉結(jié)構(gòu)上有酯基特征峰;與醋酸酯淀粉相比,塑性醋酸酯淀粉漿膜呈現(xiàn)高的斷裂伸長(zhǎng)率,這是由于檸檬酸氫二銨與醋酸酯淀粉結(jié)構(gòu)上的羥基所形成的氫鍵作用,削弱了淀粉自身氫鍵網(wǎng)狀結(jié)構(gòu),使分子鏈柔順性提高。塑性醋酸酯淀粉漿液表現(xiàn)出高的黏度熱穩(wěn)定性,對(duì)純棉特細(xì)紗漿紗效果良好。
關(guān)鍵詞:檸檬酸氫二銨;塑性醋酸酯淀粉;漿膜性能;漿紗性能
中圖分類號(hào):TS103.84
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2023)02-0159-08
醋酸酯淀粉是淀粉衍生物中重要的一個(gè)品種[1],具有糊化溫度低、成膜良好、膜柔韌、黏度穩(wěn)定性好以及透明度高等優(yōu)點(diǎn)[2],已廣泛應(yīng)用于食品[3]、塑料[4]、紡織[5]、造紙[6]、醫(yī)藥[7]等領(lǐng)域。醋酸酯淀粉在純棉漿紗中較其他變性淀粉漿料更具競(jìng)爭(zhēng)力[8]。低黏度(10~20 mPa·s)醋酸酯淀粉在特細(xì)號(hào)高密織物上漿中被廣泛應(yīng)用[9]。但醋酸酯淀粉的成膜脆硬缺陷依然存在,增塑劑可有效提高淀粉黏附性及其漿膜韌性[10]。因此,塑性淀粉技術(shù)與研究是研制環(huán)保型新型漿料重要途徑。
近年來(lái),許多研究者也對(duì)淀粉增塑劑及其增塑作用進(jìn)行了相關(guān)研究,研究主要集中于醇類[11]、氨基類[12]、酰胺類[13]的增塑劑。張希文等[10]針對(duì)淀粉成膜性差、漿膜硬脆的缺陷,以乙醇胺為增塑劑,考察了乙醇胺添加量對(duì)淀粉漿料漿膜力學(xué)性能的影響。該研究表明:乙醇胺對(duì)干基淀粉質(zhì)量分?jǐn)?shù)為3%時(shí),漿膜各項(xiàng)性能優(yōu)異,漿液性能穩(wěn)定,經(jīng)紗上漿效果良好。楊明杰等[14]采用山梨醇對(duì)氧化淀粉進(jìn)行增塑處理,增塑后的氧化淀粉漿膜耐屈曲次數(shù)高達(dá)102次,漿膜柔韌性佳。李偉等[15]使用含酰胺基基團(tuán)的小分子增塑劑對(duì)淀粉進(jìn)行增塑處理,經(jīng)紗的上漿效果提升顯著。
綜上可知,目前研究主要集中于原淀粉及氧化淀粉進(jìn)行增塑處理,對(duì)酯化淀粉進(jìn)行增塑處理以改善其成膜性的相關(guān)研究較少。檸檬酸氫二銨屬銨鹽類化合物,其分子中的—OH、CO等基團(tuán)會(huì)與淀粉中的—OH或—O—等基團(tuán)形成氫鍵,從而產(chǎn)生塑性作用。據(jù)此,本文以檸檬酸氫二銨作為增塑劑,研究增塑劑量與淀粉漿料性能的關(guān)系,分析檸檬酸氫二銨對(duì)淀粉的增塑機(jī)制,得出最佳增塑劑含量;通過(guò)制備出塑性醋酸酯淀粉漿料,測(cè)試漿料基本性能及漿液性能,并對(duì)純棉高支紗上漿工藝進(jìn)行研究,以期對(duì)相關(guān)從業(yè)者提供理論參考。
1實(shí)驗(yàn)
1.1實(shí)驗(yàn)藥品和儀器
1.1.1實(shí)驗(yàn)藥品
玉米淀粉(錦州元成生化科技有限公司),
K-2000變形淀粉(上海立明助劑有限公司),蒸餾水(自制);醋酸酐(南通醋酸纖維有限公司),氫氧化鈉(無(wú)錫市亞泰聯(lián)合化工有限公司),檸檬酸氫二銨
(天津市科密歐化學(xué)試劑有限公司),稀鹽酸(深圳市博林達(dá)科技有限公司)等,均為分析純。
1.1.2實(shí)驗(yàn)儀器
HH-1型數(shù)顯恒溫水浴鍋(上海浦東物理光學(xué)儀器廠),JJ-1磁力電動(dòng)攪拌器(常州國(guó)華電器有限公司),F(xiàn)80型小型高速攪拌機(jī)(萊州鏵鈺機(jī)械有限公司),NDJ-79型旋轉(zhuǎn)式黏度計(jì)(同濟(jì)大學(xué)機(jī)電廠),HD021N電子單紗強(qiáng)力儀(南通宏大實(shí)驗(yàn)儀器
有限公司),ASS3000型全自動(dòng)單紗漿紗機(jī)(江陰市通源紡機(jī)有限公司),JCM-5000掃描電鏡(日本電子株式會(huì)社)。
1.2醋酸酯淀粉的制備
1.2.1醋酸酯淀粉的乙?;?/p>
以玉米淀粉為基體,使用醋酸酐按照文獻(xiàn)[16]中的方法對(duì)其進(jìn)行乙?;幚?,制備出實(shí)驗(yàn)所需的性能良好穩(wěn)定的醋酸酯淀粉,原理如圖1所示。
1.2.2醋酸酯淀粉的取代度
按照文獻(xiàn)[17]中方法測(cè)定取代度,通過(guò)式(1)、式(2)計(jì)算出乙?;亢腿〈?。
A/%=V2W2-V1W1×M×0.043×100(1)
DS=162A4300-43A(2)
式中:A為試樣乙?;?,%;M為鹽酸標(biāo)準(zhǔn)溶液濃度,mol/L;V1為樣品消耗鹽酸溶液體積,mL;V2為原淀粉消耗鹽酸溶液體積,mL;W1為試樣質(zhì)量,g;W2為空白試樣質(zhì)量,g。
1.3塑性醋酸酯淀粉漿料的制備
將不同含量的增塑劑與醋酸酯淀粉混合,投入到F80型小型高速攪拌機(jī)中,轉(zhuǎn)速60 r/min條件下制備出塑性淀粉漿料,物料充分混合15 min后,出料。保持T=30 ℃,RH=65%條件下72 h后,裝袋待用。
1.4塑性醋酸酯淀粉漿膜性能測(cè)試
采用澆鑄法制備漿膜。參照文獻(xiàn)[18]測(cè)試塑性醋酸酯淀粉漿膜的力學(xué)性能,樣本數(shù)為10,取平均值。
1.5塑性醋酸酯淀粉漿液及漿紗性能測(cè)試
1.5.1漿液黏度及黏度穩(wěn)定性測(cè)試
調(diào)制6%濃度漿液,待溫度升至95 ℃后,間隔30 min后,使用NDJ-79型旋轉(zhuǎn)式黏度計(jì)讀取黏度數(shù)值,測(cè)定0.5~3 h間的6次黏度。漿料黏度波動(dòng)率及熱穩(wěn)定性計(jì)算參見(jiàn)文獻(xiàn)[19]。
1.5.2漿液黏附力測(cè)試
配制2000 mL含固量為1%的漿料,根據(jù)文獻(xiàn)[20]制備出黏附力測(cè)試樣本,在HD021N電子單紗強(qiáng)力儀上進(jìn)行測(cè)試。
1.5.3漿紗性能
調(diào)制700 mL含固量為10%的漿液,煮好漿后在95 ℃攪拌條件下悶漿30 min后,在ASS3000型全自動(dòng)單紗漿紗機(jī)上對(duì)9.7 tex棉紗特細(xì)紗進(jìn)行上漿(烘房溫度為55 ℃,上漿方式為雙壓雙浸,漿紗速度為15 m/min),并根據(jù)文獻(xiàn)[21]、[22]對(duì)漿紗性能進(jìn)行測(cè)試。
1.5.4漿紗表面形態(tài)
選擇塑性和非塑性淀粉漿紗為樣品,使用JCM-5000型掃描電鏡對(duì)漿紗表面形態(tài)及漿液浸透狀態(tài)進(jìn)行分析。
2結(jié)果和討論
2.1醋酸酯淀粉的結(jié)構(gòu)和取代度計(jì)算
圖2為玉米淀粉與所制備的醋酸酯淀粉的紅外光譜對(duì)比圖。從圖2中可以看出,在玉米原淀粉的譜圖上,位于3424 cm-1處的吸收峰歸屬于O—H伸縮振動(dòng)。與原淀粉譜圖相比,位于3424 cm-1處的O—H吸收峰變?nèi)?,這主要是因?yàn)榉磻?yīng)發(fā)生在羥基上,部分羥基被醋酸酐取代;此外,在1730 cm-1附近出現(xiàn)了新的特征峰,為酯基(—COO—)的伸縮振動(dòng)吸收峰,表明制備的醋酸酯淀粉中含有酯基,即乙?;磻?yīng)形成。按照1.2公式計(jì)算出醋酸酯淀粉的取代度(DS)為0.16。
2.2增塑劑對(duì)醋酸酯淀粉漿膜性能的影響
2.2.1增塑劑與醋酸酯淀粉漿膜性能的關(guān)系
圖3和圖4為檸檬酸氫二銨量與醋酸酯淀粉漿膜性能的關(guān)系。圖3和圖4表明,加入增塑劑后對(duì)淀粉漿料性能存在顯著影響。由于檸檬酸氫二銨小分子在不斷攪拌下滲入淀粉大分子鏈中,分子中極性基團(tuán)有效作用于淀粉分子上的羥基,淀粉分子間和分子內(nèi)氫鍵被削弱,增塑劑與淀粉之間偶合形成新的氫鍵,破壞了淀粉原有的結(jié)晶結(jié)構(gòu)(見(jiàn)圖5),使分子結(jié)構(gòu)無(wú)序化[23],降低了分子間作用力,使大分子鏈段具備相對(duì)滑動(dòng)性,提高了混合淀粉漿料的分散性,同時(shí)也強(qiáng)化了相之間的界面相容性。隨著含量增加,漿膜的拉伸斷裂強(qiáng)力隨之降低,宏觀表現(xiàn)為漿膜柔軟性提高,強(qiáng)度降低,伸長(zhǎng)率增大。而隨著檸檬酸氫二銨用量的增加,淀粉大分子鏈段相對(duì)滑動(dòng)性表現(xiàn)越好,但當(dāng)?shù)矸鄯肿拥幕顒?dòng)能力過(guò)強(qiáng)時(shí)(增塑劑質(zhì)量分?jǐn)?shù)超過(guò)1%),淀粉分子容易發(fā)生再聚集和結(jié)晶,淀粉漿膜失去增塑效果,故此可屈曲性能在增塑劑量為1%時(shí)最好。
檸檬酸氫二銨量與漿膜吸濕性及水溶性關(guān)系如圖6所示。圖6表明,增塑劑對(duì)漿膜水溶性與吸濕性影響不大。淀粉漿料與檸檬酸氫二銨均為水溶性物質(zhì),加入量不同時(shí),水溶速率均小于4 s,利于退漿。增塑劑一方面促使?jié){膜拉伸強(qiáng)度降低,淀粉分子間的滑移變得相對(duì)容易,另一方面使得漿液中水分子更易進(jìn)入淀粉大分子鏈間,使淀粉漿料與增塑劑的混合變得更加均勻,因而漿膜吸濕性提高,對(duì)應(yīng)的吸濕率增加。
2.2.2檸檬酸氫二銨增塑淀粉機(jī)制分析
淀粉分子結(jié)構(gòu)中有3個(gè)活潑的羥基(—OH),一個(gè)伯羥基(C6位)和兩個(gè)仲羥基(C2和C3位),這些羥基會(huì)形成分子內(nèi)及分子間氫鍵網(wǎng)狀結(jié)構(gòu)(見(jiàn)圖7),造成自身具有很強(qiáng)的內(nèi)聚力,空間位阻效應(yīng)大,漿膜脆性大。
圖8為檸檬酸氫二銨對(duì)淀粉漿料的增塑機(jī)制,檸檬酸氫二銨與淀粉分子鏈上的羥基可形成氫鍵,削弱淀粉自身特有的氫鍵網(wǎng)狀結(jié)構(gòu),使分子鏈柔順性提高,淀粉膜韌性得到改善,從而達(dá)到增塑效果。
2.3塑性醋酸酯淀粉漿液性能
綜合漿膜強(qiáng)度、伸長(zhǎng)率及耐屈曲性能,選擇最佳質(zhì)量分?jǐn)?shù)為1%增塑劑制備塑性淀粉漿料。
2.3.1黏度及黏度熱穩(wěn)定性能測(cè)試
表1顯示的是兩種淀粉漿料的漿液黏度及熱穩(wěn)定性測(cè)試結(jié)果。
黏度熱穩(wěn)定性越好,越有利于穩(wěn)定上漿率。由表1可知,增塑劑有助于提高淀粉漿液黏度熱穩(wěn)定性,對(duì)漿液黏度影響很小。檸檬酸氫二銨發(fā)揮增塑作用時(shí),屬于小范圍的自身運(yùn)動(dòng),但畢竟存在于溶液中,大多數(shù)包圍在淀粉分子鏈無(wú)定形區(qū),當(dāng)外力作用在淀粉鏈段結(jié)構(gòu)時(shí),增塑劑會(huì)首先受到外力沖擊,對(duì)大分子鏈在一定程度上起到保護(hù)作用,宏觀表現(xiàn)為黏度波動(dòng)率減小,即黏度熱穩(wěn)定性相應(yīng)提高。增塑劑畢竟含量有限,不足以使淀粉分子大范圍相對(duì)滑移運(yùn)動(dòng),淀粉鏈整體大強(qiáng)度破壞仍然存在難度,提高漿液流動(dòng)性作用也很有限,符合自由體積理論,所以黏度方面改善不大。
2.3.2黏附性測(cè)試
塑性醋酸酯淀粉與醋酸酯淀粉對(duì)純棉粗紗黏附力測(cè)試結(jié)果見(jiàn)表2。
由表2可知,塑性淀粉能夠有效提高純棉粗紗的黏附力。在漿液體系中熱和機(jī)械剪切作用下,增塑劑小分子滲入到淀粉顆粒內(nèi)部,破壞了顆粒內(nèi)部本身存在的結(jié)晶結(jié)構(gòu),可有效降低淀粉大分子膠接層及其與纖維界面上的內(nèi)應(yīng)集中,通過(guò)纖維或纖維片段間的粘合作用,增強(qiáng)了漿膜與纖維間黏合強(qiáng)度,提高了纖維之間的抱合力,從而改善黏附性。
2.3.3塑性醋酸酯淀粉漿料用于純棉高支紗上漿工藝實(shí)踐
表3、表4和表5分別為塑性醋酸酯淀粉漿料對(duì)9.7 tex純棉紗漿紗配方、漿紗毛羽數(shù)據(jù)及漿紗性能。由表4和表5可知,塑性淀粉漿料可有效改善純棉高支紗的漿紗性能。由于塑性淀粉漿膜被覆在紗線表面,可提高漿膜與紗線整體性,漿膜作用在紗線表面毛羽上,達(dá)到伏貼毛羽目的。紗線上漿后,柔軟的漿膜被覆在紗線表面,有效提高漿膜完整性與漿紗緊密性。耐磨性能的改善主要體現(xiàn)在漿紗提高增磨率。塑性淀粉作為主體上漿時(shí),可改善紗線表面漿膜性能及內(nèi)部漿液粘附性,從而提高漿紗伸長(zhǎng)性。即對(duì)應(yīng)增強(qiáng)率提高、減伸率降低。
淀粉漿料本身含水率一定,漿紗置于空氣時(shí),吸水程度是一定的,故紗線回潮率影響不大。由漿膜性能可知,增塑劑對(duì)淀粉漿膜水溶性影響不大,采用常用堿式溶液退漿時(shí),塑性淀粉依舊保持良好水溶性,遇堿時(shí)漿液也易從紗線上脫離,故退漿性能良好。
2.3.4漿紗表面形態(tài)
圖9顯示的是漿液在紗線中的浸透狀態(tài)。測(cè)試條件為縱向形態(tài)放大500倍,橫截面測(cè)試條件為放大2000倍。由圖9可知,淀粉漿液對(duì)紗線表面存在很大改善,紗線中纖維彼此集束性更明顯。由于塑性淀粉漿液分子更均勻,更容易在紗線纖維間滲透,以至更好作用在纖維表面,使纖維與漿液間的膠粘層更緊密。原紗截面間纖維彼此較稀疏,上漿后漿紗截面上纖維彼此間充斥漿液,通過(guò)漿液粘接作用,纖維彼此間空隙變小,纖維與纖維間的排列也更密集,整體性得到加強(qiáng)。說(shuō)明增塑劑的加入,加強(qiáng)了漿液與紗線的滲透,達(dá)到了改善漿紗的目的。
3結(jié)論
本文首先對(duì)淀粉乙酰化處理制備了醋酸酯淀粉,進(jìn)一步通過(guò)檸檬酸氫二銨對(duì)其增塑得到了塑性醋酸酯淀粉,探究了塑性醋酸酯淀粉漿料的漿膜、漿液和漿紗性能。主要結(jié)論如下:
a) 紅外光譜表明成功合成了醋酸酯淀粉。
b) 檸檬酸氫二銨與淀粉分子鏈上的羥基形成氫鍵,削弱了淀粉自身特有的網(wǎng)狀氫鍵作用,淀粉分子鏈柔順性提高,淀粉膜韌性得到改善。當(dāng)檸檬酸氫二銨對(duì)淀粉質(zhì)量分?jǐn)?shù)為1%時(shí),漿膜成膜柔韌,力學(xué)性能表現(xiàn)較好。
c) 檸檬酸氫二銨可有效提高醋酸酯淀粉漿料漿液的黏度熱穩(wěn)定性和對(duì)純棉粗紗的黏附力。
d) 含塑性醋酸酯淀粉漿料配方表現(xiàn)出更高的漿紗力學(xué)性能,毛羽服帖效果好,具有良好的上漿效果。
參考文獻(xiàn):
[1]岳書(shū)杭,劉忠義,吳小艷,等.醋酸酯大米淀粉的有限溶劑法合成及表征[J].中國(guó)糧油學(xué)報(bào),2019,34(5):38-43.
YUE Shuhang, LIU Zhongyi, WU Xiaoyan, et al. Synthesis and characterization of acetate rice starch by limited solvent method[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5): 38-43.
[2]周丹,沈艷琴,武海良,等.醋酸酯淀粉漿料的制備及性能研究[J].棉紡織技術(shù),2013,41(12):20-23.
ZHOU Dan, SHEN Yanqin, WU Hailiang, et al. Prepara-tion and property research of acetate starch size mixture[J]. Cotton Textile Technology, 2013, 41(12): 20-23.
[3]李少華,龍嬌妍,司俊娜,等.變性淀粉對(duì)玉米飲料穩(wěn)定性的影響[J].食品與機(jī)械,2015,31(1):208-211.
LI Shaohua, LONG Jiaoyan, SI Junna, et al. Effect of modified starch on stability of maize beverage[J]. Food & Machinery. 2015, 31(1): 208-211.
[4]MINIMOL P F, PAUL W, SHARMA C P. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery[J]. Carbohydrate Polymers, 2013, 95(1):1-8.
[5]楊明杰,沈艷琴,姚一軍,等.醋酸酯淀粉對(duì)聚乳酸長(zhǎng)絲的上漿研究[J].高科技纖維與應(yīng)用,2015,40(6):41-44.
YANG Mingjie, SHEN Yanqin, YAO Yijun, et al. Research of acetate starch sizing on polylactic acid fiber filament[J]. Hi-Tech Fiber & Application, 2015, 40(6): 41-44.
[6]王建,陳偉,屈跡霜,等.三聚氰胺甲醛樹(shù)脂對(duì)醋酸酯淀粉的增強(qiáng)性能研究[J].陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,34(3):12-15.
WANG Jian, CHEN Wei, QU Jishuang, et al. Study on the strengthening performance of modified starch acetate with melamine formaldehyde resin[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2016, 34(3): 12-15.
[7]李榮榮,王素珍,岳雪,等.pH依賴型植物基微膠囊的制備和體外釋藥研究[J].食品工業(yè)科技,2017,38(13):74-77,84.
LI Rongrong, WANG Suzhen, YUE Xue, et al. Study on the preparation and drug release of p H-dependent plant microcapsules in vitro[J]. Science and Technology of Food Industry, 2017, 38(13): 74-77,84.
[8]林武滔,謝兆龍.醋酸酐制備低取代度木薯淀粉醋酸酯[J].寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版),2009,29(1):30-34.
LIN Wutao, XIE Zhaolong. Preparation for cassava starch acetate with low degree of substitution by acetic anhydride[J]. Journal of Baoji University of Arts and Sciences (Natural Science Edition), 2009, 29(1): 30-34.
[9]徐浩貽.特細(xì)號(hào)高密織物及其無(wú)PVA上漿研討[J].現(xiàn)代紡織技術(shù),2014,22(5):47-50.
XU Haoyi. On super-fine high-density fabric and its PVA-free sizing process[J]. Advanced Textile Technology, 2014, 22(5): 47-50.
[10]張希文,沈艷琴,武海良,等.乙醇胺對(duì)淀粉漿料增塑作用的研究[J].現(xiàn)代紡織技術(shù),2017,25(6):13-17.
ZHANG Xiwen, SHEN Yanqin, WU Hailiang, et al. Study on the effect of ethanolamine on plasticization of starch sizing agents[J]. Advanced Textile Technology, 2017, 25(6): 13-17.
[11]趙鑫.熱塑性淀粉在可降解食品包裝上的應(yīng)用[J].食品工業(yè),2019,40(7):234-237.
ZHAO Xin. Application of thermoplastic starch on degraded food package[J]. The Food Industry, 2019, 40(7): 234-237.
[12]查東東,周文,銀鵬,等.熱塑性淀粉力學(xué)性能的提升途徑及作用機(jī)理[J].化學(xué)進(jìn)展,2019,31(7):1044-1055.
ZHA Dongdong, ZHOU Wen,YIN Peng, et al.Ways and mechanism of improving the mechanical properties of thermoplastic starch[J]. Progress in Chemistry,2019, 31(7): 1044-1055.
[13]楊晉輝.乙二撐二甲酰胺塑化熱塑性淀粉性能研究[D].天津:天津大學(xué),2007:20-30
YANG Jinhui. Study on the Properties of Ethylenebisfor-mamide Plasticized Starch[D]. Tianjin: Tianjin University, 2007: 20-30.
[14]楊明杰,沈艷琴,武海良,等.取代度對(duì)醋酸酯淀粉結(jié)構(gòu)與性能的影響[J].現(xiàn)代紡織技術(shù),2017,25(4):1-5.
YANG Mingjie, SHEN Yanqin, WU Hailiang, et al. Effect of substitution degree on structure and properties of starch acetate[J]. Advanced Textile Technology, 2017, 25(4): 1-5.
[15]李偉,徐珍珍,魏安方,等.酰胺基增塑劑對(duì)淀粉漿膜增塑作用的研究[J].安徽工程大學(xué)學(xué)報(bào),2017,32(1):14-18.
LI Wei, XU Zhenzhen,WEI Anfang, et al. On the plasticization effect of amide compounds on starch films[J]. Journal of Anhui Polytechnic University, 2017, 32(1): 14-18.
[16]ZHANG K L, DAI Y Y, HOU H X, et al. Preparation of high quality starch acetate under grinding and its influence mechanism[J]. International Journal of Biological Macromolecules, 2018, 120: 2026-2034.
[17]錢(qián)江濤,汪洋,李婷,等.玉米淀粉基膠粘劑的制備及性能表征[J].中國(guó)膠粘劑,2017,26(12):1-3,16.
QIAN Jiangtao, WANG Yang, LI Ting, et al. Preparation and property characterization of corn starch-based adhesive[J]. China Adhesives,2017, 26(12): 1-3,16
[18]張朝輝,徐珍珍,徐文正,等.季銨陽(yáng)離子型接枝淀粉漿料的漿膜性能[J].紡織學(xué)報(bào),2018,39(11):68-72.
ZHANG Chaohui, XU Zhenzhen, XU Wenzheng, et al. Film properties of starch sizing grafted by quaternary ammonium cations[J]. Journal of Textile Research, 2018, 39(11): 68-72.
[19]沈艷琴,楊樹(shù),武海良,等.漿紗用中低溫水溶性淀粉漿料的研究進(jìn)展[J].紡織學(xué)報(bào),2019,40(6):143-152.
SHEN Yanqin, YANG Shu, WU Hailiang, et al. Research progress of medium and low temperature water-soluble textile starch size[J]. Journal of Textile Research, 2019, 40(6): 143-152.
[20]張陽(yáng)陽(yáng),范雪榮,榮瑞萍,等.JD-H漿料的性能研究與應(yīng)用[J].棉紡織技術(shù),2018,46(10):12-15.
ZHANG Yangyang, FAN Xuerong, RONG Ruiping, et al. Research and application of JD-H size mixture property[J]. Cotton Textile Technology, 2018, 46(10): 12-15.
[21]SHEN, Y Q, YAO, Y J, WANG, Z L, et al. Hydroxypropylation reduces gelatinization temperature of corn starch for textile sizing[J]. Cellulose,2021, 28(8): 5123-5134.
[22]郭歡,劉召英,劉馨,等.聚丙烯酸聚乙烯醇共聚漿料的漿紗性能分析[J].棉紡織技術(shù),2021,49(10):34-37.
GUO Huan, LIU Zhaoying, LIU Xin, et al. Sizing property analysis of polyacrylic acid polyvinyl alcohol copolymer size mixture[J]. Cotton Textile Technology, 2021, 49(10): 34-37.
[23]李偉,祝志峰,徐珍珍,等.淀粉漿料用極性增塑劑及其增塑作用的研究進(jìn)展[J].紡織學(xué)報(bào),2017,38(4):171-176.
LI Wei, ZHU Zhifeng, XU Zhenzhen, et al. Research progress and plasticization effect of polar plasticizers for starch sizing agents[J]. Journal of Textile Research. 2017, 38(4): 171-176.
Research on the plastic acetate starch applied to sizing for superfine cotton yarns
ZHOU Dan, YIN Yiqiu, SHEN Yanqin, WU Hailiang, YAO Yijun
(School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China)
Abstract: With China's goal of peaking carbon emissions before 2030 and achieving carbon neutrality before 2060, the development of low carbon starch has become an important research and development direction of low carbon textile starch weaving. Starch has been widely developed and applied in the field of low carbon textile starch because of its rich source, renewablity, modification, biodegradability and other properties. However, the strong network structure of hydrogen bonds within and between molecules of starch leads to hard and brittle film forming, which is difficult to meet the requirements of sizing weaving. In order to overcome the defect of starch membrane formation, researchers modified the starch structure to weaken the intramolecular and intermolecular hydrogen bond network structure through various methods such as esterification, etherification, grafting and plasticizer, and introduced new substituents to further destroy the hydrogen bond interaction in the starch structure. Acetate starch, with its advantages of low gelatinization temperature and high viscosity thermal stability, provides potential for low temperature and low carbon sizing. However, acetate starch still has the problem of brittle film forming. The plasticizing mechanism of acetate starch and the correlation between plasticizer and plastic acetate starch yarn have not been reported publicly.
In this paper, acetate starch was prepared by acetylation of starch with acetic anhydride as the modifier, and plastic acetate starch size was obtained by plasticizing with diammonium hydrogen citrate. The chemical structure of acetate starch was analyzed, the size film mechanical properties and plasticizing mechanism of plastic acetate starch were studied, the viscosity and thermal stability of plastic acetate starch size were tested, and the plastic acetate starch size was applied to the sizing practice of superfine cotton yarns. The FT-IR results showed that the ester group characteristic peaks appeared on the structure of acetate starch. Compared with acetate starch, the plastic acetate starch size film presents a higher elongation at break, which is due to the fact that the formation of hydrogen bond between diammonium hydrogen citrate and the hydroxyl group on the structure of acetate starch weakens the hydrogen bond network structure of the starch itself and improves the compliance of the molecular chain. When diammonium hydrogen citrate is 1% of starch acetate, the size film shows better toughness and mechanical properties. In addition, the plastic acetate starch size shows high viscosity thermal stability, and has good sizing effect on superfine cotton yarns.
Studying the plasticizing mechanism of plastic acetate starch and the properties of its size film, serous fluid and sizing can effectively solve the inherent brittle and hard defects of starch forming, provide a theoretical basis for exploring the mechanism of starch forming and plasticizing, provide technical support for the development of low carbon high performance textile starch slurry, and promote the development of low carbon textile sizing weaving.
Keywords:
diammonium hydrogen citrate; plastic acetate starch size; film property; sizing property
收稿日期:20220507
網(wǎng)絡(luò)出版日期:20221104
基金項(xiàng)目:陜西省三秦學(xué)者創(chuàng)新團(tuán)隊(duì)經(jīng)費(fèi)資助項(xiàng)目;陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(21JK0664)
作者簡(jiǎn)介:周丹(1987—),女,陜西西安人,工程師,碩士,主要從事新型漿料與漿紗技術(shù)方面的研究。
通信作者:沈艷琴,E-mail:shenyanqin1208@126.com