国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于模糊化鄰域系統(tǒng)的模糊粗糙集模型

2023-06-21 03:59候婷冉虹馬歡秦克云
關(guān)鍵詞:模糊集粗糙集

候婷 冉虹 馬歡 秦克云

摘要:基于鄰域系統(tǒng)的粗糙集模型是Pawlak粗糙集模型的重要推廣形式.討論基于模糊化鄰域系統(tǒng)的模糊粗糙集模型,給出模型中模糊粗糙近似算子的構(gòu)造方法并討論算子的基本性質(zhì).另外,當(dāng)模糊化鄰域系統(tǒng)串行、自反、對(duì)稱、一元和傳遞時(shí)刻畫了相關(guān)近似算子的代數(shù)結(jié)構(gòu).

關(guān)鍵詞:模糊化鄰域系統(tǒng); 上近似算子; 下近似算子; 粗糙集; 模糊集

中圖分類號(hào):TP182 文獻(xiàn)標(biāo)志碼:A 章編號(hào):1001-8395(2023)05-0652-08

粗糙集理論是由波蘭數(shù)學(xué)家Pawlak[1]在1982年提出的,它是一種處理不確定性問題的重要數(shù)學(xué)工具.經(jīng)過40多年的發(fā)展,粗糙集理論已經(jīng)在機(jī)器學(xué)習(xí)[2]、決策分析[3]、模式識(shí)別[4]與數(shù)據(jù)挖掘[5]等領(lǐng)域被廣泛應(yīng)用.

經(jīng)典粗糙集模型是基于一個(gè)等價(jià)關(guān)系來建立近似空間.在現(xiàn)實(shí)生活中,基于等價(jià)關(guān)系的粗糙集模型在其它領(lǐng)域的應(yīng)用具有一定的局限性.因此,眾多學(xué)者對(duì)經(jīng)典的粗糙集模型進(jìn)行擴(kuò)展.用一般二元關(guān)系代替等價(jià)關(guān)系,Yao[6]提出了基于一般二元關(guān)系的廣義粗糙集模型.將等價(jià)關(guān)系弱化為相似關(guān)系[7]、容差關(guān)系[8]、優(yōu)勢(shì)關(guān)系[9]等,等價(jià)關(guān)系確定的劃分就擴(kuò)展成了論域的覆蓋.于是,經(jīng)典粗糙集模型拓展到了覆蓋廣義粗糙集模型[10-11].

Lin[12]借助拓?fù)鋵W(xué)中內(nèi)點(diǎn)和閉包的概念,提出了基于鄰域系統(tǒng)的粗糙集模型.基于一般二元關(guān)系的粗糙集模型、基于覆蓋的粗糙集模型以及模糊粗糙集模型都是基于鄰域系統(tǒng)的粗糙集模型的特例[13].因此,研究基于鄰域系統(tǒng)的粗糙集模型具有重要的理論意義.另外,鄰域系統(tǒng)在群決策問題研究中具有直接的應(yīng)用.Zhu等[14]建立了基于模糊鄰域系統(tǒng)的決策評(píng)價(jià)模型,將相應(yīng)的評(píng)價(jià)問題表示為模糊鄰域信息系統(tǒng),并討論了系統(tǒng)的屬性約簡(jiǎn)問題.Zhang等[15]系統(tǒng)研究了基于鄰域系統(tǒng)的粗糙集模型中近似算子的相關(guān)性質(zhì).而模糊化鄰域系統(tǒng)是鄰域系統(tǒng)的一種推廣形式,它把鄰域從經(jīng)典集擴(kuò)展到模糊集.Li等[16]研究了經(jīng)典集在模糊化鄰域系統(tǒng)下近似集的基本性質(zhì),以及當(dāng)模糊化鄰域系統(tǒng)自反、串行和對(duì)稱等時(shí)討論了相關(guān)近似算子的性質(zhì).

文獻(xiàn)[16]中定義的近似算子的被近似對(duì)象是經(jīng)典集,近似的結(jié)果是模糊集.本文是在文獻(xiàn)[16]的基礎(chǔ)上把近似算子的被近似對(duì)象從經(jīng)典集推廣到模糊集,給出了模糊粗糙近似算子的定義,導(dǎo)出了基于模糊化鄰域系統(tǒng)的模糊粗糙集模型.本文主要研究模糊集在模糊化鄰域系統(tǒng)下模糊粗糙近似集的基本性質(zhì).此外,當(dāng)模糊化鄰域系統(tǒng)自反、對(duì)稱和傳遞等時(shí),文中進(jìn)一步刻畫了模糊粗糙近似算子的代數(shù)結(jié)構(gòu).

1 預(yù)備知識(shí)

1.1 粗糙集

1.2 模糊集

1.3 基于鄰域系統(tǒng)的粗糙集

2 基于模糊化鄰域系統(tǒng)的模糊粗糙集模型

下面是在Li等[16]提出的基于模糊化鄰域系統(tǒng)的粗糙集模型的基礎(chǔ)上,給出了模糊粗糙近似算子的定義,導(dǎo)出基于模糊化鄰域系統(tǒng)的模糊粗糙集模型.本節(jié)主要研究模糊粗糙近似算子的基本性質(zhì),以及討論模糊化鄰域系統(tǒng)在串行、自反、對(duì)稱、一元和傳遞時(shí)模糊粗糙近似算子的代數(shù)結(jié)構(gòu).

參考文獻(xiàn)

[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences,1982,11(5):341-356.

[2] AVISO K B, JANAIRO J I B, PROMENTILLA M A B, et al. Prediction of CO2 storage site integrity with rough set-based machine learning[J]. Clean Technologies and Environmental Policy,2019,21(8):1655-1664.

[3] DAI J H, LIU Z B, HU H, et al. Rough set model for cognitive expectation embedded interval-valued decision systems[J]. Chinese Journal of Electronics,2018,27(4):675-679.

[4] LIANG J Y, WANG F, DANG C Y, et al. An efficient rough feature selection algorithm with a multi-granulation view[J]. International Journal of Approximate Reasoning,2012,53(6):912-926.

[5] ZHANG J B, LI T R, CHEN H M. Composite rough sets for dynamic data mining[J]. Information Sciences,2014,257:81-100.

[6] YAO Y Y. Constructive and algebraic methods of the theory of rough sets[J]. Information Sciences,1998,109(1/2/3/4):21-47.

[7] STEFANOWSKI J, TSOUKIAS A. Incomplete information tables and rough classification[J]. Computational Intelligence,2001,17(3):545-566.

[8] LEUNG Y. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences,2003,153:85-106.

[9] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research,2001,129(1):1-47.

[10] ZHU W. Topological approaches to covering rough sets[J]. Information Sciences,2007,177(6):1499-1508.

[11] ZHU W, WANG F Y. On three types of covering-based rough sets[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1131-1143.

[12] LIN T Y. Granular Computing:Practices,Theories,and Future Directions[M]. New York:Springer,2012:1404-1420.

[13] ?SYAU Y R, LIN E B, LIAU C J. Neighborhood systems:rough set approximations and definability[J]. Fundamenta Informaticae,2018,159(4):429-450.

[14] ?ZHU P, XIE H Y, WEN Q Y. A unified view of consistent functions[J]. Soft Computing,2017,21(9):2189-2199.

[15] ZHANG Y L, LI C Q, LIN M L, et al. Relationships between generalized rough sets based on covering and reflexive neighborhood system[J]. Information Sciences,2015,319:56-67.

[16] LI L Q, JIN Q, YAO B X, et al. A rough set model based on fuzzifying neighborhood systems[J]. Soft Computing,2020,24(8):6085-6099.

[17] YAO Y Y. Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning,1996,15(4):291-317.

[18] ZADEH L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.

[19] SYAU Y R, LIN E B. Neighborhood systems and covering approximation spaces[J]. Knowledge-Based Systems,2014,66:61-67.

[20] ZHAO F F, LI L Q. Axiomatization on generalized neighborhood system-based rough sets[J]. Soft Computing,2018,22(18):6099-6110.

[21] FANG J M, YUE Y L. K. Fans theorem in fuzzifying topology[J]. Information Sciences,2004,162(3/4):139-146.

[22] FANG J M, CHEN P W. One-to-one correspondence between fuzzifying topologies and fuzzy preorders[J]. Fuzzy Sets and Systems,2007,158(16):1814-1822.

[23] HERRLICH H, ZHANG D X. Categorical properties of probabilistic convergence spaces[J]. Applied Categorical Structures,1998,6(4):495-513.

[24] YING M S. A new approach for fuzzy topology (I)[J]. Fuzzy Sets and Systems,1991,39(3):303-321.

Fuzzy Rough Set Model Based on Fuzzifying Neighborhood Systems

HOU Ting RAN Hong MA Huan QIN Keyun

(School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan)

Abstract:The generalized rough set in neighborhood system is an important extension of the Pawlaks rough set model. This paper discusses the fuzzy rough set model based on the fuzzifying neighborhood system. The construction method of the fuzzy rough approximation operators in the model is presented and the basic properties of the operators are investigated. In addition, when the fuzzifying neighborhood system is serial, reflexive, symmetric, unary and transitive, the algebraic structures of the related approximation operators are examined.

Keywords:fuzzifying neighborhood system; upper approximation operator; low approximation operator; rough set; fuzzy set

2020 MSC:47H99

(編輯 余毅)

猜你喜歡
模糊集粗糙集
基于Pawlak粗糙集模型的集合運(yùn)算關(guān)系
基于上下截集的粗糙模糊集的運(yùn)算性質(zhì)
復(fù)圖片模糊集及其在信號(hào)處理中的應(yīng)用
基于二進(jìn)制鏈表的粗糙集屬性約簡(jiǎn)
區(qū)間直覺模糊集相似度構(gòu)造
優(yōu)勢(shì)直覺模糊粗糙集決策方法及其應(yīng)用
多?;植诩再|(zhì)的幾個(gè)充分條件
雙論域粗糙集在故障診斷中的應(yīng)用
基于粗糙模糊集的輸電桿塔塔材實(shí)際強(qiáng)度精確計(jì)算
兩個(gè)域上的覆蓋變精度粗糙集模型
永福县| 容城县| 成武县| 遵义市| 禹城市| 咸宁市| 铁岭市| 五指山市| 绥化市| 二手房| 湘乡市| 夹江县| 和硕县| 南投市| 扎赉特旗| 永城市| 德保县| 砚山县| 阿拉善左旗| 梓潼县| 易门县| 哈密市| 萨嘎县| 宁明县| 新沂市| 彭阳县| 泸溪县| 大庆市| 米林县| 乐陵市| 巴楚县| 抚松县| 浠水县| 军事| 开封市| 天峻县| 辽宁省| 琼海市| 陆河县| 上蔡县| 彭泽县|